首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinical and endocrinological responses to administration of gonadotropin releasing hormone analog (LH-RH-A) during the lactation period and postweaning in the sow were investigated. Plasma LH concentrations in lactating sows rose immediately after administration of LH-RH-A. However, in postweaning sows the increase of LH level was more slowly. Three of 5 postweaning sows came into estrus and ovulated after LH-RH-A treatment. One sow exhibited a distinct LH response, but her ovaries remained quiescent. The remaining one with feeble estrus for a short period became cystic ovaries. Thus, LH response to GnRH in the sow seems to be higher during early lactation than at 2 days postweaning.  相似文献   

2.
The object of this investigation was to study luteinizing hormone (LH) response to different doses of synthetic gonadotropin-releasing hormone (GnRH) in prepubertal gilts. Four crossbred prepubertal gilts, 128–134 days old and body weight 57–63 kg, were used in this study. Four doses, 0. 5, 25 and 125 μg, of GnRH were administered via a jugular vein catheter in a latin square design. Each treatment consisted of 3 injections at 90 min intervals. Frequent blood samples were taken during a period of 90 min before up to 90 min after treatment. Total LH responses were measured from post-treatment samples as the area under the curve above base level obtained from pre-treatment samples. A positive relationship between GnRH dose and LH release was obtained in all gilts, except for 1 treatment given to a gilt with high plasma level of oestradiol-17β on the day of treatment. This study has demonstrated the responsiveness of the pituitary gland by LH release to different doses of GnRH in 4.5-month-old prepubertal gilts.  相似文献   

3.
As gonadotropin-releasing hormone (GnRH) is expressed in the thymus, its direct action on thymic cells, including thymic involution, has been suggested. Annexin A5 (ANXA5), a biomarker of GnRH, was used to determine whether GnRH affects the thymus of male rats. Immunohistochemistry showed positive reactions for ANXA5 in large medullary epithelial cells at 30 days of age, and the expression continued until 180 days of age. Organ culture of thymus pieces was performed to examine the direct action of a GnRH agonist (GnRHa) on the expression of Anxa5 and Gnrh mRNA. Thymus tissues obtained from male rats (40–60 days old) were cut into small pieces (2–3 mm3) and incubated for 3 hr with the GnRHa. The expression levels of Anxa5 and Gnrh mRNA were augmented by the GnRHa. Immunohistochemistry of these tissue fragments showed that ANXA5 expression was enhanced, especially in medullary epithelial cells. These results revealed that GnRH synthesis in the thymus could affect thymic epithelial cells after puberty.  相似文献   

4.
The objective of this article was to review the current literature of the influence of gonadotropin releasing hormone (GnRH) and GnRH agonists on conception rate in dairy cattle. The application of GnRH or agonists at artificial insemination (first and subsequent) and between days 7 and 34 after parturition were considered. The variations between studies were discussed as well as different mechanisms concerning the influence of GnRH for establishing pregnancy. From a critical point of view the routine use of GnRH or agonists at the time of first or subsequent breeding or during the postpartum period cannot be supported.  相似文献   

5.
It has long been recognised that steroids can have both organisational and activational effects on the reproductive neuroendocrine axis of many species, including the sheep. Specifically, if the ovine foetus is exposed to testosterone during a relatively short 'window' of in utero development (from approximately day 30-90 of a 147 day pregnancy) the neural mechanisms regulating gonadotrophin releasing hormone (GnRH) secretion become organised in a male-specific manner. In post-natal life the consequences of foetal androgen exposure are sexually differentiated responses of the GnRH neuronal network to activation by factors such as photoperiod and ovarian steroid hormones. Studies in the gonadectomized lamb have demonstrated that elevated concentrations of oestrogen (E) are unable to trigger a preovulatory-like GnRH surge in the male and the androgenized ewe lamb. Further, these animals have markedly reduced sensitivity to the inhibitory actions of progesterone on tonic GnRH release compared with normal ewes. The reasons for these abnormal steroid feedback mechanisms may reside in sexually dimorphic inputs to the GnRH neurone, including those from oestrogen-receptive neurones in the arcuate nucleus that synthetize the neuropeptide, neurokinin B (NKB). The consequences of in utero androgen exposure are reflected in a progressive and dramatic impairment of fertility in the ovary-intact ewe.  相似文献   

6.
In vitro responsiveness of the horse anterior pituitary (AP) gonadotropes to single and multiple GnRH challenges was examined. The pituitaries were collected from reproductively sound mares in estrus (n = 5) and diestrus (n = 5). Uniform 0.5 mm AP slices were subdivided using a 3 mm biopsy punch and then bisected for use in the perifusion chamber. Four bisected sections per chamber were perifused at 0.5 ml/min at 37 C for 560 min in Medium 199 saturated with 95% 0(2)/5% CO2. Ten minute fractions were collected after an initial 2 hr equilibration period. Four different treatment regimes of GnRH (10(-10) M) were evaluated: (A) three consecutive 10 min GnRH pulses separated by 80 and 100 min, respectively; (B) a single 120 min GnRH infusion; (C) a 10 min GnRH pulse followed 80 min later by a 120 min GnRH infusion and (D) two 10 min GnRH pulses separated by 60 min followed 80 min later by a 120 min GnRH infusion. Estimated total pituitary LH content was higher in estrous than diestrus mares (p less than 0.05). The total amount of LH released in response to GnRH tended to be greater in estrus than diestrus (p less than 0.1), whereas the percentage of LH released in estrus and diestrus was similar. An increase in the area under the LH response curve was noted with each successive 10 min pulse of GnRH during both estrus and diestrus (p less than 0.05), demonstrating a self-priming effect of GnRH. In addition, a significant increase in the peak LH amplitude (p less than 0.05) and the slope to peak amplitude (p less than 0.05) were observed for the 120 min GnRH pulse in regime C and D indicating that prior exposure to short-term pulses of GnRH increased the acute LH secretory response. These results suggest that in the cycling mare (1) the responsiveness of the pituitary (amount of LH released as percent of total LH) is similar in both estrus and diestrus, however, the magnitude of the LH response (total microgram amount of LH released) differs with the stage of the estrous cycle, being highest in estrus, and appears to be related, in part, to pituitary LH content and (2) GnRH self-priming occurs independently of the stage of the estrous cycle. Furthermore, we have demonstrated that the pulsatile mode of GnRH can act directly on the anterior pituitary to dictate the pulsatile release pattern of LH in the cycling mare.  相似文献   

7.
8.
9.
10.
An attempt was made to induce precocious puberty in gilts approximately 164 days of age by stimulating a luteinizing hormone (LH) secretory pattern similar to that which occurs before normal onset of puberty. Hourly iv administration of 1 μg synthetic gonadotropin releasing hormone (GnRH) for 7 or 8 days resulted in a mean serum LH concentration of 1.7 ± .3 ng/ml in three treated gilts compared with .9 ± .1 ng/ml in three control gilts (P<.08). Serum LH peak frequency was also greater (P<.05) in treated (3.4 ± .5 peaks/4 hr) than in control gilts (1.2 ± .1 peaks/4 hr), but serum LH peak amplitude was not altered (P>.33) by GnRH treatment. All treated gilts displayed estrus and ovulated within 6 days after treatment began, and all control gilts remained prepuberal throughout the study (P=.05). Only one of the three treated gilts displayed a normal estrous cycle and reovulated after treatment. Precocious ovulation but not puberty was induced in gilts by hourly administration of 1 μg synthetic GnRH, indicating that the pituitary and ovaries of 164-day-old gilts are competent and that final sexual maturation occurs at the hypothalamic level.  相似文献   

11.
The effect of gonadotropin releasing hormone (GnRH) supplement was investigated in twenty eight FSH-treated buffalo cows. Animals were assigned to three groups; Group I: GnRH was given at standing heat (n=9), Group II: GnRH was given 8-12 hr after standing heat (n=8) and Group III: Control group with FSH alone (n=11). The responses (no. of corpora lutea and no. of anovulatory follicles), the number of recovered embryos and transferable embryos among the three groups were compared following slaughter of the animals on days 6 to 7 after first mating. The results indicated that the application of GnRH in FSH-treated animals gave no advantage by increasing in the number of ovulations or recovered embryos in all the treatment groups (P>0.05): 4.33 +/- 3.35 vs 3.88 +/- 4.09 vs 4.5 +/- 2.68 for corpora lutea, and 2.33 +/- 2.24 vs 2.0 +/- 3.20 vs 1.91 +/- 2.74 for recovered embryos respectively. GnRH treatment tended to reduce the number of anovulatory follicles but the finding was not significant; 6.11 +/- 3.3 vs 7.38 +/- 4.84 vs 10.18 +/- 2.74 follilcles (P>0.05). The supplementation of GnRH at 8-12 hr after standing heat seemed to produce more transferable embryos than those of treated at standing heat or the controls 1.63 +/- 2.77 vs 1.25 +/- 1.67 vs 1.36 +/- 1.69 embryos respectively.  相似文献   

12.
13.
The main objective of this study was to examine the modulatory in vitro effects of gonadotropin-releasing hormone (GnRH) on isolated Leydig cells of adult alpaca (Lama pacos) testis. We first evaluated the presence of GnRH receptor (GnRHR) and cyclooxygenase (COX) 1 and COX2 in alpaca testis. We then studied the in vitro effects of buserelin (GnRH analogue), antide (GnRH antagonist), and buserelin plus antide or inhibitor of phospholipase C (compound 48/80) and COXs (acetylsalicylic acid) on the production of testosterone, PGE(2), and PGF(2α) and on the enzymatic activities of COX1 and COX2. Immunoreactivity for GnRHR was detected in the cytoplasm of Leydig cells and in the acrosomal region of spermatids. COX1 and COX2 immunosignals were noted in the cytoplasm of spermatogonia, spermatocytes, spermatids, Leydig cells, and Sertoli cells. Western blot analysis confirmed the GnRHR and COX1 presence in alpaca testis. The in vitro experiments showed that buserelin alone increased (P < 0.01) and antide and buserelin plus acetylsalicylic acid decreased (P < 0.01) testosterone and PGF(2α) production and COX1 activity, whereas antide and compound 48/80 counteracted buserelin effects. Prostaglandin E(2) production and COX2 activity were not affected by buserelin or antide. These data suggest that GnRH directly up-regulates testosterone production in Leydig cells of adult alpaca testis with a postreceptorial mechanism that involves PLC, COX1, and PGF(2α).  相似文献   

14.
Two experiments were conducted to investigate the response of the bovine corpus luteum to surges of luteinizing hormone (LH) induced by natural gonadotropin-releasing hormone (GnRH) administered twice during the same estrous cycle. In experiment 1, eight mature beef cows, each cow serving as her own control, were injected intravenously (iv) with saline on days 2 and 8 of the cycle (day of estrus = day 0 of the cycle), then with 100 micrograms GnRH on days 2 and 8 of the subsequent cycle. Jugular blood samples were taken immediately prior to an injection and at 15, 30, 45, 60, 120 and 240 min postinjection, to quantitate changes in serum luteinizing hormone. Blood was also collected on alternate days after an injection until day 16 of the cycle, to characterize changes in serum progesterone concentrations. Although exogenous GnRH caused release of LH on days 2 and 8 of the cycle, the quantity of LH released was greater on day 8 (P less than .025). Serum levels of progesterone after treatment with GnRH on day 8 of the cycle did not differ significantly from those observed during the control cycles of the heifers. Because exposure of the bovine corpus luteum to excess LH, induced by GnRH early during the estrous cycle, causes attenuated progesterone secretion during the same cycle, these data suggest that a second surge of endogenous LH may ameliorate the suppressive effect of the initial release of LH on luteal function. Duration of the estrous cycle was not altered by treatment (control, 20.4 +/- .5 vs. treated, 20.4 +/- .4 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
采用放射免疫分析法 (RIA)测定了不同日龄 (60 ,10 0 ,2 0 0和 380日龄 )绍兴鸭和卡基 康贝尔鸭 (KhakiCampbellDuck)血清中促性腺激素释放激素 (GnRH)浓度 ,试图通过比较不同品种、性别和日龄鸭之间GnRH浓度的变化 ,探讨GnRH与产蛋性能的关系。结果表明 :绍兴鸭和康贝尔鸭母鸭血清中GnRH浓度呈现类似的年龄性变化 ,60日龄时GnRH浓度较低 ,10 0日龄时最高 ,2 0 0日龄时显著下降 ,380日龄时回升至较高水平。公鸭血清中GnRH浓度的年龄性变化与母鸭相似 ,10 0日龄时最高 ,2 0 0日龄时最低  相似文献   

16.
A bull was referred for a progressive oligoasthenotheratozoospermia that resulted in a unsuitable seminal quality for the cryopreservation. Breeding soundness evaluation results suggested gonadal dysfunction. Because of the lack of normal ranges for these hormones in the bull, in this study, the hypogonadism and the site of the dysfunction (hypothalamus) were diagnosed by the gonadotropin-releasing hormone (GnRH) stimulation test. The evaluation of pituitary and testicular responsiveness by a GnRH stimulating test revealed a responsiveness of the pituitary and testis, thus a secondary hypogonadism (hypothalamic hypogonadism) was postulated and a therapeutic approach based on the subcutaneous administration of GnRH analog was attempted. An increase in semen volume, concentration and sperm characteristics were detected 9 weeks after the start of the treatment, corroborating the hypothalamic origin of the disease and the useful of the GnRH therapy.  相似文献   

17.
The gonadotropin‐releasing hormone (GnRH) stimulation test is a common procedure used to investigate normality of the pituitary‐gonadal axis in mammals. There is very little information on the technique, its efficacy and side effects in small animals and in particular no information for male cats. In dogs, such test is performed by intravenous (IV) administration. With cats, the number of times the animal needs to be restrained for blood sampling should be the least possible. The purpose of this study was to assess efficacy and side effects of the GnRH stimulation test in tomcats comparing the IV with the intramuscular (IM) route of administration. A GnRH stimulation test was performed in eight adult tomcats through IM or IV administration of 50 μg gonadorelin. The response of the pituitary‐gonadal axis was assessed by measuring serum testosterone on blood samples collected prior to and 1 hr following treatment. When considering each single group of cats, the post‐stimulation serum testosterone values were significantly higher than the pre‐treatment ones (p < .05). When comparing the two groups of cats, basal testosterone concentrations did not differ, and also post‐GnRH testosterone concentrations did not differ. In conclusion, in the cats of our study, the GnRH stimulation test produced the same results following the IM or the IV route of administration. Therefore, in tomcats, the IM route can be considered as effective as the IV one and should be preferred when doing a GnRH test.  相似文献   

18.
The effects of unilateral castration (UC) and induced unilateral cryptorchidism (UCR) on basal plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone, and on the responses of these hormones to gonadotropin releasing hormone (GnRH), were investigated in bulls altered at 3, 6 or 9 months of age. Blood plasma was collected before and after GnRH (200 micrograms) stimulation approximately 1 year following gonadal manipulation. Neither mean baseline concentrations nor GnRH-induced increases in plasma testosterone were altered (P greater than .1) by hemicastration or UCR (P greater than .1). Both mean baseline LH and GnRH-induced LH release were greater (P less than .05) in bulls altered at 3 months of age than in bulls altered at 9 months of age. UC increased (P less than .05) plasma LH response to GnRH over that observed in intact bulls, but not above that in UCR bulls. UCR had no detectable effect on either baseline concentrations or GnRH-stimulated LH release. FSH was increased (P less than .05) in hemicastrates, while UCR had a variable effect on peripheral FSH: FSH was reduced (P less than .05) in UCR animals altered at 3 months of age but increased (P less than .05) in UCR bulls altered at both 6 and 9 months of age when compared to FSH in intact bulls. The results indicate that, compared with intact bulls, UC bulls release increased amounts of both gonadotropins but similar amounts of testosterone in response to GnRH stimulation. UCR had a variable effect on FSH release and did not alter either LH or testosterone.  相似文献   

19.
Two experiments (Exp) were conducted to examine in vitro the release of gonadotropin releasing hormone (GnRH) from the hypothalamus after treatment with naloxone (NAL) or morphine (MOR). In Exp 1, hypothalamic-preoptic area (HYP-POA) collected from 3 market weight gilts at sacrifice and sagitally halved were perifused for 90 min prior to a 10 min pulse of morphine (MOR; 4.5 × 10−6 M) followed by NAL (3.1 × 10−5 M) during the last 5 min of MOR (MOR + NAL; N=3). The other half of the explants (n=3) were exposed to NAL for 5 min. Fragments were exposed to KCl (60 mM) at 175 min to assess residual GnRH releasability. In Exp 2, nine gilts were ovariectomized and received either oil vehicle im (V; n=3); 10 μg estradiol-17β/kg BW im 42 hr before sacrifice (E; n=3); .85 mg progesterone/kg BW im twice daily for 6 d prior to sacrifice (P4; n=3). Blood was collected to assess pituitary sensitivity to GnRH (.2 μg/kg BW) on the day prior to sacrifice. On the day of sacrifice HYP-POA explants were collected and treated as described in Exp 1 except tissue received only NAL. In Exp 1, NAL increased (P<.05) GnRH release. This response to NAL was attenuated (P<.05) by coadministration of MOR. Cumulative GnRH release after NAL was greater (P<.05) than after MOR + NAL. All tissues responded similarly to KCl with an increase (P<.05) in GnRH release. In Exp 2, pretreatment luteinizing hormone (LH) concentrations were lower (P<.05) in E gilts compared to V and P4 animals with P4 being lower (P<.05) than V gilts. LH response to GnRH was lower (P<.05) in E pigs than in V and P4 animals, while the responses was similar between V and P4 gilts. NAL increased GnRH release in all explants, whereas, KCl increased GnRH release in 6 of 9 explants. These results indicate that endogenous opioid peptides may modulate in vitro GnRH release from the hypothalamus in the gilt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号