首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对某农用自卸车制动蹄结构存在薄弱环节,采用有限元方法对其进行静动态特性分析和优化设计。建立制动蹄的有限元模型,计算凸轮对制动蹄的促动力和制动蹄回位弹簧的拉力,在其工况下进行静力学和模态分析。在此基础上进行拓扑优化,并提出制动蹄优化设计方案。优化结果表明,制动蹄的最大变形量减小16.5%,最大应力降低28.38%,前三阶固有频率分别提高23.57%、31.74%和31.44%,为制动蹄的结构设计和优化提供一定的理论依据。  相似文献   

2.
以某公司25 t汽车起重机车架作为研究对象,运用ANSYS有限元分析软件,通过分析车架在不同作业工况下的应力及变形情况,对车架进行局部优化。比较优化前后车架应力云图可以发现,每个工况下最大应力值都有不同程度的降低、应力分布更加均匀、结构更加合理。优化后的整机投放市场23台套,经使用无一车架失效的质量反馈。经过优化,车架单台重量减少了180 kg左右,降低材料成本约900元,达到了轻量化的目的。  相似文献   

3.
对扭矩达到40 000 N·m重载传动轴进行优化设计。针对右端输出花键根部应力过大,裂纹从花键扩散到右侧光轴,进而导致断裂的情况,提出优化方案为减少右端光轴直径,采用等强度的抛物线回转体的形式,优化原传动轴,并通过研究用函数对其加以修正,进而得出最优的抛物线回转体形式。最后,进行了优化前后传动轴的模态分析结果对比。采用这种优化方式后,传动轴右端花键应力降低了25%,在满足疲劳寿命的同时,减少了传动轴整体质量,对车辆动力性和燃油经济性也产生提升。  相似文献   

4.
为降低三轴加速度计标定装置在工作时所需激振力,对其关键部件工作台进行结构优化设计。利用ANSYS分析了工作台的应力、变形和工作台的质量对工作台主要结构尺寸的结构灵敏度,得到各结构尺寸对工作台应力、应变和结构质量的影响程度;根据结构灵敏度分析的结果在保证工作台的最大应力和最大变形满足设计要求的前提下,以减轻工作台的结构质量为目标进行优化设计。根据优化后的结构参数,重新施加载荷和约束,进行求解,表明经过优化设计,工作台的质量降低35.05%,所需激振力同样降低35.05%,达到了降低标定加速度计时所需激振力目的。  相似文献   

5.
根据设计要求对异形内腔曲面加工装置导轨结构进行设计,建立了三维几何模型,然后利用ANSYS Workbench对其进行了有限元建模,并进行了强度分析,得到了导轨的最大挠度变形与最大应力。最后对导轨的截面尺寸进行了结构优化,优化后模型的静态特性较之前有了很大的改善,优化后的结果满足设计要求,在满足强度的要求下,降低了导轨的最大变形,减轻了导轨的总质量。  相似文献   

6.
根据用于长江中下游丘陵地区的大树移栽机的功能需求,设计了大树移栽机的曲面挖铲结构.分析了挖铲在挖掘大树土球过程中的受力情况,确定其危险工况,利用有限元法对挖铲进行应力和变形分析.仿真结果表明,在危险工况下,最大应力发生在挖铲架焊接处,最大变形位于挖铲两侧刀刃和铲尖处,而挖铲在挖掘土球至最深位置工况时的总体应力和变形都大...  相似文献   

7.
通过有限元软件ANSYS Workbench对公称直径DN150的弯头夹具模拟工况受压进行了静力学分析,绘出夹具受压下的应力云图、变形位移云图,并且得到最大等效应力、最大变形位移和最小安全系数。进一步对弯头夹具壁厚进行优化设计,对夹具最大半径尺寸参数化,利用ANSYS Workbench对其进行参数优化,在保证变形和强度要求的前提下找到了最优方案,最大程度减少夹具质量。  相似文献   

8.
冲压焊接离心泵叶轮有限元计算   总被引:4,自引:0,他引:4  
王洋  王洪玉  徐小敏  张翔 《排灌机械》2011,29(2):109-113
为计算叶轮的应力及变形情况,在ANSYS软件中采用流固耦合方法将流场计算得到的分布压力施加到叶轮结构上,对冲压焊接离心泵叶轮进行有限元分析.首先对不同网格密度的叶轮模型进行计算,在此基础上,分别计算了设计工况下叶轮在离心载荷、流场压力载荷及两者共同作用下的等效应力及变形情况,并分析了叶轮最大应力及最大总变形随流量的变化情况.结果表明:离心载荷引起的应力及变形明显小于流场压力载荷引起的应力及变形.叶轮在流场中的应力及变形主要由流场压力载荷引起,但在考虑离心载荷后叶轮的最大应力和变形均略有增大.各种载荷作用下叶轮的等效应力在小流量工况下最大,随流量的增大不断减小.叶轮的最大总变形在小流量工况下最大,随流量的增大先减小后增大,在最高效率工况下出现最小值.  相似文献   

9.
利用Ansys workbench平台建立数学模型,对联轴器膜片进行网格划分,并分析其最大等效应力和最大总变形的分布位置及大小,再根据其结构设置结构尺寸的变化范围,计算出有效区间的设计点,最终获得最优设计点,完成膜片的响应曲面优化。结果表明,最大等效应力减小20.3%,最大总变形减小24.7%。可见响应曲面优化后,可以提高膜片联轴器的结构强度,减小膜片联轴器工作中疲劳失效的几率。  相似文献   

10.
为减小香蕉茎秆纤维提取机刀片工作时的最大应力,增大其安全系数,利用SolidWorks软件对刀片进行三维建模,运用软件的Simulation插件分析刀片的应力、应变云图,并对刀片相关尺寸进行优化设计。优化结果显示,刀片的最大应力由68.58MPa下降到49.33MPa,下降约28%;刀片的最小安全系数由3.21上升到4.47,增加了约1.4倍;刀片的质量由0.702kg下降到0.698kg,达到了优化的目标。  相似文献   

11.
为了提高某重型自卸车副车架的可靠性,采用UG软件对自卸车卸货过程进行运动仿真,获得自卸车举升装置的加载曲线和副车架受最大载荷时推力油缸的位置;利用Hyper Mesh软件建立副车架的有限元分析模型,计算初始举升、货物下滑临界工况下副车架的应力分布和变形量。基于有限元仿真结果,以初始举升工况为设计工况对副车架进行尺寸优化,支撑梁的最大应力从477.2 MPa降至313.6 MPa。研究结果显示:通过对副车架进行尺寸优化,实现了满足强度前提下副车架轻量化的设计要求,为产品的后续设计提供了依据。  相似文献   

12.
李东福 《农业工程》2022,12(5):99-103
为了验证某新型农用车制动踏板的刚度特性与强度特性是否合格,采用Creo软件建立仿真分析模型,基于Abaqus软件对其进行材料设置、添加约束、加载集中力和划分网格,分析踏板在承受横向左右各100 N载荷和法向500、2 000和2 500 N载荷时的位移变形和应力分布。分析结果表明,其横向位移之和、承受法向500 N载荷时的位移量、2 000 N载荷产生的永久变形量及2 500 N载荷时的最大应力均满足工况要求。对制动踏板进行了拓扑优化分析,并对结构优化后的模型进行了静力学分析,结果表明,符合工况标准的要求,可以作为该型农用车制动踏板轻量化设计的依据。   相似文献   

13.
为了研究斜流泵转子系统的动力学特性,以某型号的斜流泵作为研究对象,采用计算流体力学软件CFX 2021R1和有限元分析软件ANSYS Workbench 2021R1平台,对斜流泵转子系统的干湿模态固有频率和振型、临界转速以及基于流固耦合的瞬态动力学进行了求解,研究了叶轮叶片不同位置的变形与应力分布,对比分析了不同流量工况对叶轮叶片变形与应力分布的影响。结果表明:湿模态下转子固有频率会下降,同时随着阶数的增加,固有频率下降程度逐渐明显,第3阶模态时下降程度最小,下降率Δf为9.82%,第6阶模态时下降程度最大,下降率Δf为44.31%。计算所得第2阶模态的临界转速为7.369r/min,远大于转子工作转速,说明转子系统在工作转速下运行时不会发生共振,符合转子动力学的设计要求,能够稳定运转。叶轮叶片背面与工作面总变形量的变化趋势和变形量基本一致,叶片工作面出口叶顶位置变形量最大,幅值达到2.6755mm,各个位置处工作面变形量都大于背面,最大变形量差值为0.0358mm,叶顶处变形量都大于叶根处,最大差值为1.0177mm;叶片工作面进口叶顶处与背面处应力变化趋势和应力幅值大致相似,叶片工作面进口叶顶处与出口叶根处应力幅值都大于相应背面处,而在叶片背面出口叶根处应力幅值大于工作面处。叶片出口处测点应力幅值明显大于进口处测点,叶片背面出口叶根处等效应力最大,最大幅值约6MPa。不同流量工况下叶片变形量的变化趋势相似,随着流量增大,叶轮叶片各位置处变形量逐渐减小。0.6Q时叶片变形量随时间变化波动最大,最大变形量为3.0672mm,出现在叶片出口叶顶位置;在叶片叶顶处,随流量增大,应力波动逐渐减小,叶片叶根处,Q时应力幅值波动最大,进口与出口应力波动最小处分别出现在0.6Q与0.8Q流量工况,各位置最大等效应力为12.456MPa,叶根处每一个应力波动结束后,0.6Q与0.8Q应力曲线会额外多一次小波动,因此应避免泵在小流量工况下运行,并且应加强叶轮叶根处叶片厚度。研究结果可以为斜流泵转子系统运行稳定性分析以及叶轮叶片的结构优化设计提供参考。  相似文献   

14.
为了研究蜗壳和超厚离心泵叶片匹配时的应力分布和变形,采用单向流固耦合方法对3种蜗壳结构产生的变形、等效应力和模态进行了数值分析和优化.蜗壳基圆直径与叶轮直径的比值(D3/D2)是蜗壳结构动力特性的主要影响因素,所以选取不同的D3/D2设计方案,进行数值模拟.当D3/D2较小时(方案A),超厚叶片出口的射流一尾迹现象导致蜗壳流道内压力分布不均匀,其诱导的蜗壳变形量较大;随着D3/D2逐渐增大(方案B,C),蜗壳的动力特性参数数值明显减弱,且数值趋于稳定.在设计工况下,方案A变形量最大值为544μm,等效应力最大值为15.7 MPa;方案B和方案C最大变形量分别降低为方案A的2.6%,2.8%,最大等效应力分别降为方案A的14.8%,22.9%.数值计算结果表明,3组对比方案中,方案B和方案C的结构动力特性相近,方案B的各指标最好,其运行可靠性更高.因此推荐具有超厚叶片的离心泵蜗壳D3/D2取1.13(方案B所取值)左右,以获得较优的结构动力特性.  相似文献   

15.
车架作为汽车总成的一部分,行驶过程中会承受复杂交变载荷的作用,所以,对其强度和刚度的设计尤其重要。运用有限元法对车架进行分析。利用UG建立了金龙XMQ6608NE1客车车架结构模型,运用UG中有限元模块对车架进行有限元静强度分析,得出车架应力分布云图和位移云图。分析结果表明:最大应力值为165.21MPa,最大位移为2.815mm,在弯曲工况中,最大应力发生在车架首、尾部,相对于车架的总长度而言,最大位移变形量和最大应力均满足设计要求。  相似文献   

16.
采用流固耦合及有限元方法对布放和混输等复杂工况下3级深海采矿混输泵进行强度计算,分析了泵内流场分布、转子部件应力应变及临界转速,并进行了500 m级深海采矿混输系统海上试验.结果表明:设计流量下,混输泵的计算扬程为124.30 m,相对误差为0.27%;布放工况时,混输泵最大变形仅为0.365 mm,最大应力为73.971 MPa;混输工况时,泵最大变形为0.315 mm,最大应力为58.86 MPa;转子部件前3阶模态仅沿泵轴方向变形,并未发生扭曲,而后3阶模态呈“S”形扭曲变形;转子部件1阶固有频率对应临界转速为2 476 r/min;海试布放过程中混输泵安全可靠,混输工况下泵稳定运行时长超过57 h,实现了2次24 h连续无故障运行,且矿石颗粒体积浓度达到11.7%.  相似文献   

17.
为提高4YZS-4型制种玉米收获机的稳定性,构建了典型工况下的果穗箱支架力学模型。通过有限元模拟,找到了最大应力和最大位移发生位置,进而对结构进行优化。优化后的结构承受的最大应力、最大位移以及Y方向最大位移分别减少了5.6%、6.8%和26%。该研究为今后玉米收获机果穗箱及支架的设计提供参考。   相似文献   

18.
罗欣  郑源  张新 《排灌机械》2014,(6):466-471
为了分析轴流泵不稳定运行马鞍区工况内叶轮的结构,并研究该结构的稳定性,采用雷诺时均离散方法和标准k-ε湍流模型对泵装置流场进行CFD数值模拟,利用ANSYS的Workbench平台,通过单向流固耦合模型对叶轮的应力和应变进行计算,得到了不同工况下叶轮受流体压力作用所产生的等效应力及变形量,研究了叶轮结构的应力和变形量随流量的变化特征.研究结果表明:在40%~75%设计流量下不稳定运行马鞍区,数值模拟能准确地计算轴流泵内部流场,泵装置内部流态随流量的减小逐渐紊乱.轴流泵叶片表面应力分布不均,集中分布在叶片根部,随着流量的减小最大应力逐渐增大,马鞍区工况叶片结构应力有较大的安全余量,满足强度要求;叶片进水边外缘叶尖处变形较大,振动现象明显,最大总变形量随着流量的减小先增大后减小,但大变形区域由叶尖向叶缘扩散.研究结果为轴流泵马鞍区安全稳定性研究提供了一定参考.  相似文献   

19.
为了解决采用传统方法对电驱动卷盘式喷灌机行星齿轮减速箱壳体壁厚设计不合理以及实体试验成本高的问题,对壳体几何建模及静力分析,发现传统设计壳体最大形变量为0.045 738 mm,对壳体影响较小;而最大应力为2.581 4 MPa,位于第三级行星齿轮的箱壁处,且壳体应力分布明显不均匀。采用SolidWorks对减速箱壳体进行参数化建模,选取壳体结构的4个关键尺寸参数作为设计变量,基于响应曲面方法,对数据拟合度、设计变量和目标参数灵敏度、目标参数间的关系以及设计变量对目标参数的响应线和响应面进行了分析,得到壳体中部壁厚对壳体质量影响最大,机体后端壁厚对最大形变量及最大应力影响最大,经过优化,壳体的质量从138.4 kg下降到127.6 kg,减轻了7.8%,最大变形量减少11.5%,箱体所受最大应力减少19.9%。为减速箱后续研制提供了有力的参考依据,降低了开发成本。  相似文献   

20.
部分泵站可进行反向发电工况运行,可以为泵站创造一定的经济效益。此时水泵转轮处于非设计工况,运用双向流固耦合对此时转轮的应力及变形规律进行研究,得出转轮最大应力发生在叶片进水侧叶片与转轮连接处,约为5.8 MPa,并从轮毂向轮缘处逐渐递减;最大形变发生在转轮叶片的进水口边缘处,约为0.013 mm,从轮缘向轮毂中心递减。根据转轮的应力分布情况进行理论计算,最小安全系数为9.24。利用workbench平台中的专业疲劳分析模块,利用疲劳分析工具Fatigue tools估算转轮的疲劳寿命,得出转轮根部为疲劳安全系数最小的部位为9.088 2,与转轮最大应力分布位置相同。两者的安全系数值均在转轮的疲劳寿命在材料安全范围内,在反向发电运行时满足安全稳定的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号