首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
Proto-imogolite sols can be considered as highly dispersed forms of proto-imogolite allophane, the most widespread type of allophane in volcanic and non-volcanic soils world-wide. The solubility characteristics of such sols define the conditions of precipitation of allophanes in soils, and the maximum concentrations of aluminium released during acidic episodes from soils, such as podzols, that contain allophane. Direct measurement of Al, Si and pH values in equilibrium with proto-imogolite sols, approached from higher and lower pH, indicated a solubility equation: where log*Kso lay in the range 7.14 to 7.23 after equilibration for 4–24 weeks at 22 + 2°C in 17 of the 20 systems studied. The mean value of log *KSO at 298 K was calculated as 7.02. This value indicates that proto-imogolite will be more stable than amorphous aluminium hydroxides at H4SiO4 concentrations above 5 × 10?6m , but less stable than bayerite below 10?3m H4SiO4, and than gibbsite below 10?2m . Proto-imogolite is more stable than micro-crystalline gibbsite in 10?4m H4SiO4, a typical minimum concentration in soil solutions and streams in landscapes where podzols are present. The rapid formation of proto-imogolite effectively prevents the formation of gibbsite seeds in soil, except in highly leached and warm environments, i.e. in older landscapes in the tropics. Although the presence of 10?4m silicic acid has been found to eliminate the acute toxicity to fish exhibited by solutions containing 6–7 μm Al at pH 4.96, little or no proto-imogolite would form under these conditions. Silicic acid would, however, prevent the precipitation of aluminium hydroxides, and could inhibit the formation of the A113 polycation. These polymeric species are a likely cause of the increased toxicity exhibited by partially neutralized aluminium solutions.  相似文献   

2.
It is shown that Al-humate and fulvate precipitates in Bs horizons of pH > 4.6 can be the source of the soluble aluminium which is rapidly released in equilibrium studies to give log10{Al3+} + 3pH values near 9.4 at 8°C, so that it is not necessary to postulate an anomalously reactive but sparingly soluble Al(OH)3 phase. These Al-organic precipitates will have reached equilibrium in the natural soil environment with the more slowly reacting hydroxy-aluminium precipitates present, including proto-imogolite allophane, but can release Al3+ much more rapidly than the inorganic precipitates in laboratory equilibrations and soil leaching episodes that yield lysimeter waters. Equilibrium concentrations of Al reported in a range of Bs horizons indicate that the allophanes present are less soluble than proto-imogolite sols prepared in the laboratory and matured for up to 2 years.  相似文献   

3.
EDTA extracts (pH 7.5–10.5) from a Danish sandy loam showed no significant (95% level) increase in amounts of aluminium, calcium, iron, and magnesium between three and nine months' shaking. The amounts were independent of the soil: solution ratio (1:10–1:50), the EDTA concentration (0.01 M–0.2 M), and crushing the soil (< 0.25 mm or < 2 mm). IR spectroscopy and X-ray diffraction showed no change in the mineral composition of the soil during the extraction. The extracted iron was equal to that extracted after 2 h by ammonium oxalate at pH 3.0. EDTA extraction at pH > 7.5 seems to extract selectively iron oxides with solubility products > ~ 10?41.  相似文献   

4.
The kinetics and heats of phosphate adsorption were measured on the <2 μm Na-saturated fractions of three allophanc-rich soils from Japan. Between 50 and 2250 μmol P g?1 as sodium phosphate were added to the soil fractions at pH 5 and pH 7, and at initial concentrations of 5 and 25 × 10?4m to avoid aluminium phosphate precipitation. An initial ‘instantaneous’ adsorption associated with exposed sites and, simultaneously, two inverse exponential rates of adsorption on internal and freshly forming external sites were observed. These rates are attributed to changes in the microstructure of allophane and to the desorption of organic matter held on allophanic surfaces. This interpretation is strongly supported by corresponding changes in the heats of adsorption with time. Calorimetry clearly indicates that when very large amounts of phosphate are added, new and very reactive surfaces are progressively exposed. More phosphate was adsorbed when the soil was acid and when the soil contained less organic matter.  相似文献   

5.
Calculation of [Al3+] is necessary to understand geochemical processes involving aluminium. Quickly reacting aluminium is a quantity from which [Al3+] can be calculated. We have modified the method used to determine quickly reacting aluminium in soil leachates. The modifications consist of changing the reaction pH from 5·0 to 4·5 and increasing the reagent concentration from 4 to 12 mmol 1?1. The range of concentrations for which Beer's law applies has been increased up to 40 mg Al l?1 using a 20 μl injection volume. The sample throughput is 69–88 injections per hour, depending on concentration. A slight improvement in the buffering capacity has been obtained. The fractionation obtained is similar to that of the original method, except that a clearer separation is obtained for the complex AlHPO4+, enabling easier calculation of [Al3+].  相似文献   

6.
Two hydroponic experiments were carried out to investigate the effects of nitrogen (N) levels and forms on the oxalate concentrations of different form in edible parts of spinach. Nitrogen was supplied at five levels (4, 8, 12, 16, 20 mM) in Experiment 1 and five ratios of nitrate (NO3 ?) to ammonium (NH4 +) (100/0, 75/25, 50/50, 25/75, 0/100) at a total N of 8 mM in Experiment 2. Biomass of spinach increased markedly from 4 mM to 8 mM N and reached the flat with further increase in N. The total oxalate and soluble oxalate in leaves and shoots (edible parts) increased significantly with increasing N levels from 4 to 12 mM, while the total oxalate and insoluble oxalate decreased markedly when N level was further increased from 12 to 20 mM. Oxalates of different forms in petioles increased first and then decreased and elevated again with increasing nitrogen levels. In the second experiment, decreasing NO3 ?/NH4 + ratios markedly increased at first and then significantly decreased the biomass of spinach plants and the maximum biomass was recorded in the treatment of the NO3 ?/NH4 + ratio of 50:50. The oxalate concentrations of different form in leaves and shoots were all decreased obviously as the ratio of NO3 ?/NH4 + decreased from 100:0 to 0:100. Concentrations of total oxalate and soluble oxalate in petioles could be reduced by increasing ammonium proportion and were the lowest as the ratio of NO3 ?/NH4 + was 50:50 and insoluble oxalate decreased as nitrate/ammonium ratio decreased. The concentrations of oxalate forms in leaves were all higher than those in petioles and soluble oxalate was predominant form of oxalates in both trials. It is evident that high biomass of spinach can be achieved and oxalate concentrations of different forms can be reduced by modulating N levels and NO3 ?/NH4 + ratio, so this will benefit for human health especially for those people with a history of calcium oxalate kidney stones.  相似文献   

7.
Solution concentrations of total Al and of mononuclear Al ions were determined as a function of pH for two acid soils. Polynuclear hydroxy-Al was taken as the difference between total and mononuclear Al. Salt concentration at 1 : 5 soil: solution ratio was varied from 0·008 to 1·o equiv/l, for CaCl2, KCl, and NH4OAc at pH 4·8. Polynuclear hydroxy-Al concentrations increased with electrolyte concentration and the valency of the desorbing cation, and rose to 0·2 mM (equivalent to 3 meq/kg soil) in unbuffered salt suspensions, and to 1·0 mM in NH4OAc at pH 4·8. Polynuclear hydroxy-Al thus behaves like a normal exchangeable cation. I.0M NH4OAc released much more total A1 from some of the more acid samples than might have been expected from its pH of 4·8.  相似文献   

8.
The influence of divalent cations at concentrations of 10-6.0 to 10-4.0 M on the colloidal stability of partially deflocculated allophane by gum xanthan (GX) polysaccharide at pH 6.5 was investigated at two GX concentrations. Experiment in the presence of 10-2.0 g L-1 GX showed that the stability decreased by the addition of divalent cations and the effect of the decrease due to the cationic species was evident in a higher concentration range, i.e., 10-5.0 to 10-4.0 M. The order of the effect was Pb >Zn > Cd > Mg. Experiment in a 10-4.5 g L-1 GX solution revealed that (i) the stability increased by the addition of heavy metal cations at 10-5.0 M (the order of the effect was Pb > Zn > Cd) and decreased at a concentration above 10-4.5 M, (ii) whereas the stability decreased by the addition of Mg ion. The striking difference in the stability behavior due to the difference between the two GX-concentrations was attributed to the (i) degree of GX-adsorption (and hence negative charge from the carboxyl group in GX) onto allophane based on the electrophoretic mobility, (ii) complexation of heavy metal cations by organic ligand (carboxyl group) in GX which was adsorbed onto allophane, and (iii) surface complexation by heavy metal cations and hydroxyl groups on allophane. The results were discussed in relation to the characteristics of the particles of allophane, viz., (i) polymer-coated soft particles, and (ii) semi-soft particles on which the rigid (hard) surface of allophane substantially remained.  相似文献   

9.
The usefulness of Mehlich 3 (M3) reagent was evaluated as a method to extract numerous elements from coalmine soils in As Pontes (Spain) showing a wide range of physicochemical properties. Critical levels (deficiency and/or toxicity) were established for plant available elements extracted by this reagent. The M3 method was compared to 1M NH4Cl, Olsen, acid oxalate, and DTPA methods as extractants for exchangeable Ca, Mg and K, available P, non-crystalline aluminium, and available heavy metals, respectively. The M3 method correlated significantly to NH4Cl for Ca, Mg and K (r=0·76, 0·84 and 0·87, respectively), to Olsen P (r=0·77) and to oxalate Al (r=0·77). Significant correlations were found between Fe, Cu, Zn and Cd extracted by M3 and DTPA; for Mn, Ni, Co and Pb different relationship between methods were obtained for acid and alkaline samples, so that critical levels were established for M3 metals as a function of soil pH. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The objective was to evaluate phosphate desorption characteristics of synthetic hematite, goethite, and allophane and commercial alumina after loading at maximum adsorbed phosphate levels to determine their potential to release phosphate at a constant, low level to sustain plant growth in soilless media and reduce phosphate leaching. Desorption isotherms were measured at pH 6.4 ± 0.1 using a continuously stirred-flow reactor. The time period during which dissolved phosphate was maintained within the range of 5–0.2 mg·L?1 phosphate-P decreased in the order: allophane (12.4 d) > alumina (4.6 d) > goethite (3.6 d) > hematite (1.9 d). Allophane released the most phosphate during the desorption process (40% of maximum adsorbed phosphate; 12.7 mg?g?1) followed by alumina and goethite (19–20%; ≈2.5 mg?g?1) and lastly hematite (5%; 0.1 mg?g?1). Allophane demonstrated the greatest potential as a phosphate-charged source for soilless root media, in amount and duration of phosphate release.  相似文献   

11.
The ability of buckwheat (Fagopyrum esculentum) roots to acquire phosphorus (P) was characterized by investigating P uptake, morphological features, and chemical changes in the rhizosphere. Over a range of nutrient solution P concentrations (5–500 μmol · L?1), maximum shoot growth was achieved with a P supply between 5 and 100 μmol · L?1. Root weight and root length, as well as length and frequency of root hairs, were higher at low P levels. Root surface and the root surface/shoot dry weight ratio reached high values. Though P uptake rates were only moderate (0.15 pmol · cm?1 root · sec?1), shoot P concentrations were high (1.8% of dry weight with 100 μM P) predominantly being inorganic (80%). Phosphorus efficiency was characterized by a high specific absorption rate (810 mmol P · kg?1 root dry wt · d?1) rather than by an efficient utilization for dry weight production. Root exudates of low-P plants had lower pH values than exudates of high-P plants and increased the solubility of FePO4 and MnO2 to a greater extent. Amounts of exuded organic acids and phenolics were low and could not account for the observed solubilization of FePO4 and MnO2. Enhanced hydrolysis of glucose-6-phosphate by exudates from low-P plants was due to an increased “soluble” acid phosphatase activity, and root surface phosphatase activity was also slightly enhanced with P deficiency. In the rhizosphere soil of buckwheat, some depletion of organic P forms was observed, and in pot trials with quartz sand, buckwheat utilized glucose- 6-phosphate as a P source at the same rate as inorganic P.  相似文献   

12.
ABSTRACT

A hydroponic experiment was conducted to study the effects of nitrogen (N) and calcium (Ca) nutrition on oxalate contents of different forms in spinach tissues. Results showed that leaves were the main locations of oxalates in spinach. Total oxalate, soluble oxalate, and insoluble oxalate contents were highest in leaves, followed by petioles and then roots. Soluble oxalate was the dominant form of oxalate in spinach. Nitrogen and Ca2+ (calcium ion) concentrations could markedly affect oxalate contents. Soluble oxalate contents in leaves increased obviously with the increase of N concentration until 8 mmol L?1, above which oxalate content started to decrease. Supplied with the same amount of N, increasing Ca2+ concentration reduced soluble oxalate content in leaves. Total oxalate reached the lowest with 5 mmol L?1 of Ca2+ supply. Leaves and petioles had lower total oxalate and lower proportion of soluble oxalate when N and Ca2+ concentrations were 8 and 5 mmol L?1.  相似文献   

13.
We prepared five samples of pure goethite and three samples of aluminous goethite with mole fractions of aluminium ranging from 0·05 to 0·20. One of the samples of pure goethite was repeatedly heated in an autoclave at 150°C. We studied the samples using transmission electron microscopy and XRD and we measured the surface area (BET), rate of dissolution of the samples in acid, the surface charge in four concentrations of sodium nitrate from pH 4–10, and the sorption of calcium and chloride from a dilute solution of calcium chloride. Surface areas ranged from 18 to 132 m2 g?1. The BET adsorption-desorption isotherms had hysteresis loops which increased as the surface area increased. These showed that there were pores present with diameters smaller than 2 nm and that the number of pores increased as the surface area increased. All samples of goethite showed typical X-ray diffraction patterns but with peak heights decreasing, and width increasing, as surface area increased. Mean coherence lengths, as determined by XRD line broadening, were smaller than those determined by transmission electron microscopy. This was because each crystal was composed of several domains, and the XRD data reflect the size of the domains. Heating one of the goethite samples in an autoclave caused most of the domains to coalesce and slightly decreased the surface area. As the surface area of the eight goethite samples increased, the mean coherence length in the direction of the a, b and c axes decreased. The better crystallized samples dissolved more slowly in acid and the dissolution curves were sigmoid because the acid was able to penetrate between the domains allowing access to a larger surface area and consequently accelerated dissolution. The points of zero charge increased with increasing surface area of the goethite. The charge carried by the goethite at pH values distant from the point of zero charge increased as the surface area increased. This may indicate movement of protons or hydroxyl ions into pores or other defects in the crystal. The effects of pH and of salt concentration on surface charge were closely described by the variable-charge/variable-potential model. This model also closely described adsorption of Ca2+ and Cl? from calcium chloride solutions requiring only the allocation of constants for these ions. The substitution of aluminium for iron did not affect the charge properties of goethite.  相似文献   

14.
A simple method to assay inorganic pyrophosphatase activity in soils is described. It involves extraction and colorimetric determination of the orthophosphate (Pi) released when 1 g soil is incubated with buffered (pH 8) pyrophosphate (PPi) solution at 37°C for 5 h. The 1 n H2SO4 used to extract Pi gives quantitative recovery of Pi added to soils, and the colorimetric method used to determine the Pi extracted in the presence of PPi is specific for Pi. The inorganic pyrophosphatase activity of the six soils studied ranged from 50 to 450 μg Pi released·g?1 soil·5 h?1. Steam sterilization (121°C for l h), formaldehyde, fluoride, oxalate, and carbonate inhibited and toluene, Na+, K+, NH+4, Cl?, NO?3, NO?2, SO2?4, and EDTA had no effect on the activity of this enzyme in soils. The initial rates of Pi released obeyed zero-order kinetics. The temperature dependence of the rate constant conformed to the Arrhenius equation up to the point of enzyme inactivation (55°C). The activation energy of pyrophosphatase activity of the six soils studied ranged from 32.5 to 43.2 (av 36.1) kJ·mole?1. Application of the three linear transformations of the Michaelis-Menten equation indicated that the Km values of PPi for pyrophosphatase in four soils ranged from 20 to 51 (avg. 35) mM and that the Vmax ranged from 130 to 830 (av 500) μg Pi released g?1 soil·5 h?1. Studies of other properties of inorganic pyrophosphatase activity in soils are reported.  相似文献   

15.
The adsorption of As(V) on alumina, hematite, kaolin and quartz has been measured as a function of pH (2 to 10), and As concentrations (10?4 to 10 ?8 M; in the alumina and kaolin systems only). The effects of sulfate (0 to 80 mg L?1) and fulvic acid (0 to 25 mg L?1) were studied. The charge of the solid surface and the As speciation in solution (determined by pH) were the most important chemical parameters affecting the sorption behavior. At pH below PZC of the solid, there was a qualitative correlation between the adsorption and the anion exchange capacity of the solid. For hematite at low pH (below 5) there was a reduction of the adsorption possibly related to the formation of positively charged species. The presence of sulfate or fulvic acid reduced the adsorption.  相似文献   

16.
The influence of atmospheric fluoride deposits on the soil microbial biomass and its enzyme activities was investigated near the aluminium smelter at Ranshofen, Upper Austria. Soil samples at various distances from the emission source were analyzed for water-extractable F and microbial activity. The water-extractable F contents at the sites examined reflected the gradient of F exposure (10 to 189 mg F kg?l dry soil). The microbial activities increased with distance from the emission source and were inversely correlated with the degree of F contamination. The linear correlation coefficients between the water-extractable F concentrations and the microbial biomass, dehydrogenase and arylsulphatase activity were r=?0·8, ?0·86 and ?0·84, respectively. In the most contaminated soil (up to 189 mg F kg?1), the microbial activities were only 5–20% of those in the unpolluted soil. The microbial biomass and dehydrogenase activity decreased substantially where the concentration of F exceeded 100mgkg?1, whereas arylsulphatase activity was already inhibited at 20 mg kg?1. The accumulation of organic matter near the smelter (123 mg F kg?1) also indicated severe inhibition of the microbial activity by F. Our investigations show that the ratio of arylsulphatase to microbial biomass can be used as a sensitive index for evaluating environmental stress such as F Contamination.  相似文献   

17.
In soil carbon dynamics, the role of physicochemical interactions between organic matter and minerals is not well understood nor quantified. This paper examines the interactions between soil organic matter and poorly crystalline aluminosilicates in a volcanic ash soil on La Réunion in the southern tropics. The soil examined is a profile composed of a surface soil (L-Ao-E-Bh) overlying four buried horizons (horizons 2Bw, 3Bw, 4Bw, 5Bw) that have all developed from successive tephra deposits. Non-destructive spectroscopy (XRD, FTIR and NMR of Si and Al) showed that the mineralogical composition varies from one buried horizon to another. Further, we show that buried horizons characterized by large amounts of crystalline minerals (feldspars, gibbsite) have the least capacity to store organic matter and the fastest carbon turnover. In contrast, buried horizons containing much poorly crystalline material (proto-imogolite and proto-imogolite allophane, denoted LP-ITM) store large amounts of organic matter which turns over very slowly. To understand the mechanism of interactions between LP-ITM and organic matter better, we focused on a horizon formed exclusively of LP-ITM. We demonstrate, using Δ14C and δ13C values, that even though LP-ITM is extraordinarily effective at stabilizing organic matter, C linked to LP-ITM is still in dynamic equilibrium with its environment and cycles slowly. Based on Δ14C values, we estimated the residence time of organic C as ∼ 163 000 years for the most stabilized subhorizon, a value that is comparable to that for organic carbon stabilized in Hawaiian volcanic soils. However, this calculation is likely to be biased by the presence of microcharcoal. We characterized the organo-mineral binding between organic matter and LP-ITM by 27Al NMR, and found that the organic matter is not only chelated to LP-ITM, but it may also limit the polymerization of mineral phases to a stage between proto-imogolite and proto-imogolite allophane. Our results demonstrate the important role of poorly crystalline minerals in the storage of organic C, and show that mineral and organic compounds have to be studied simultaneously to understand the dynamics of organic C in the soil.  相似文献   

18.
Abstract

The use and disposal of biosolids, or wastewater treatment sludge, as a fertilizer and soil amendment is becoming increasingly widespread. We evaluated the multiyear use of biosolids in apricot (Prunus armeniaca L.) production, grown on productive agricultural soils. Class A biosolids were initially applied annually at rates of 0, 1.9, 5.8, and 11.7 Mg · ha?1 (dry basis) to a 2‐year‐old apricot orchard on the USDA‐ARS research site on the eastern side of the San Joaquin Valley, CA. These application rates provided estimated rates of 0 (control), 57, 170, and 340 kg total N · ha?1 yr?1, respectively. Compared to the control treatment, the applications of biosolids significantly increased soil salinity (electrical conductivity from 1:1 soil–water extract) and total concentrations of nutrients [e.g., calcium (Ca), magnesium (Mg), sulfur (S), phosphorus (P), zinc (Zn), and copper (Cu)] after 7 years but did not increase the concentrations of selected metals [cadmium (Cd), chromium (Cr), cobalt (Co), nickel (Ni), and lead (Pb)] between 0‐ and 60‐cm soil depths. Mean concentrations of total nitrogen (N) and carbon (C) in soils (0‐ to 15‐cm depth) ranged from a low of 1.3 g kg?1 to a high of 5.2 g · kg?1 and from 14.1 g · kg?1 to 45.7 g · kg?1 for the control and high biosolids treated soils, respectively.

Biosolids applications did not lead to fruit yield reductions, although fruit maturation was generally delayed and more fruits appeared at picking times at the high rate of application. Yellow fruits collected from all biosolids applications were significantly firmer than were fruit collected from control trees, and they had higher concentrations of Ca, potassium (K), S, iron (Fe), and Zn in the fruit. Among the fruit quality parameters tested, the juice pH, total acidity, and fruit skin color were not significantly affected by biosolids applications. Malic acid concentrations decreased most of the time, while citric acid concentrations increased with increasing rates of biosolids applications. Overall, our results suggest that nonindustrial biosolids applied at an annual rate at or less than 11.7 Mg N · ha?1 (340 kg N · ha?1) can be safely used for apricot production on sandy loam soils.  相似文献   

19.
FLUORIDE ADSORPTION BY ILLINOIS SOILS   总被引:8,自引:0,他引:8  
Fourteen surface and 6 subsurface horizons of Illinois soils adsorbed significant amounts of F? with release of OH?. At low concentrations, adsorption was described by both Langmuir and Freundlich isotherms. The calculated Langmuir adsorption capacities were related to pH, clay, organic carbon, and amorphous aluminum contents. Two soils with different gross chemical properties behaved in essentially the same manner, with adsorption maxima occuring between pH 5.5 and 6.5. The similarity between adsorption at different pH values for the soils and those for bauxite, allophane and synthesized ‘soil chlorite’, and the lack of adsorption maxima between pH 5.5 and 6.5 for pure kaolinite and montmorillonite, suggest that F? adsorption in the soils is due primarily to the presence of amorphous aluminum oxyhydroxides which are common weathering products in these soils.  相似文献   

20.
Abstract

Signal molecules are among the major factors required for the legume–bacteria symbiosis. The excretion of signal molecules by plants stimulates the bacterial Nod genes resulting in the production of lipochitooligosacharides (LCOs). LCOs cause root hair deformation (RHD) and induction of nodule cells division, leading to the formation of nodules. The chemical structure of LCOs determines their biochemical activities; for example, removal of the sulfate group can significantly reduce the morphogenic activities of LCOs. Stressful conditions interrupt the excretion of signal molecules by the legumes' roots and consequently the inhibition of LCO production by the bacteria. This research has studied the effect of different concentrations of LCOs on RHD of two soybean [Glycine max (L.) Merr] cultivars, AC Bravour and Maple Glen, under acidity stress. In the first experiment, two different concentrations of LCO (10?7 and 10?6M) and in the second experiment, three different concentrations of LCO (10?7, 10?6, and 10?5M) were added to the soybean roots subjected to the pH levels of 4, 5, 6, and 7 for 24 h. By microscopy observation, the ratios of RHD were determined. Addition of LCOs resulted in RHD in both cultivars. Maple Glen roots responded similarly to different concentrations of LCO, whereas roots of AC Bravour responded differently. The concentration of 10?5M LCO could inhibit the stressful effect of pH 4 on RHD compared with pH 7 in both cultivars. The significant interaction between LCO and pH suggests that the effect of LCO on RHD may be more significant under higher levels of acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号