首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
J Rasmussen 《Weed Research》2003,43(6):393-403
Punch planting is introduced as a new method to reduce weeds within rows in organically grown crops. In this method a hole is punched in the soil, and a seed is dropped into it, without seedbed preparation and soil disturbance outside the hole. In 2 years, punch planting with flame weeding, normal planting with flame weeding and normal planting without flame weeding were compared in fodder beet for five planting dates. Each planting date represented a lag‐period since establishment of the stale seedbed. Over all planting times and years, punch planting with flame weeding reduced intra‐row weed densities by 30% at the two to four leaf stage of fodder beet compared with normal drilling with flame weeding. Punch planting with flame weeding also reduced intra‐row weed densities by 50% compared with normal drilling without flame weeding. In general, there was no improved performance of punch planting with flame weeding over years by later planting, but delayed planting reduced intra‐row weed densities significantly. Over 2 years, 240 day degrees Celsius (4 weeks) planting delay reduced intra‐row weed densities in the range of 68–86% depending on plant establishment procedure. Punch planting with flame weeding offers a promising method of weed control in organic farming.  相似文献   

2.
3.
Field experiments were conducted in northern Greece in 2003 and 2004 to evaluate effects of tillage regimes (moldboard plowing, chisel plowing, and rotary tilling), cropping sequences (continuous cotton, cotton‐sugar beet rotation, and continuous tobacco) and herbicide treatments with inter‐row hand hoeing on weed population densities. Total weed densities were not affected by tillage treatment except that of barnyardgrass (Echinochloa crus‐galli), which increased only in moldboard plowing treated plots during 2003. Redroot pigweed (Amaranthus retroflexus) and black nightshade (Solanum nigrum) densities were reduced in continuous cotton, while purple nutsedge (Cyperus rotundus), E. crus‐galli, S. nigrum, and johnsongrass (Sorghum halepense) densities were reduced in tobacco. A. retroflexus and S. nigrum were effectively controlled by all herbicide treatments with inter‐row hand hoeing, whereas E. crus‐galli was effectively reduced by herbicides applied to cotton and tobacco. S. halepense density reduction was a result of herbicide applied to tobacco with inter‐row hand hoeing. Yield of all crops was higher under moldboard plowing and herbicide treatments. Pre‐sowing and pre‐emergence herbicide treatments in cotton and pre‐transplant in tobacco integrated with inter‐row cultivation resulted in efficient control of annual weed species and good crop yields. These observations are of practical relevance to crop selection by farmers in order to maintain weed populations at economically acceptable densities through the integration of various planting dates, sustainable herbicide use and inter‐row cultivation; tools of great importance in integrated weed management systems.  相似文献   

4.
5.
The efficacy of cyhalofop‐butyl with tank‐mixed adjuvants on barnyardgrass (Echinochloa crus‐galli [L.] Beauv.), as well as the physico‐chemical properties, absorption and translocation, was evaluated and compared. The efficacy experiment showed that the treatments with tank‐mixed adjuvants were approximately twofold more effective than with cyhalofop‐butyl alone at 2% (v/v) (silwet 625 at 0.05%). The surface tension decreased and the droplets could spread automatically on the leaves after adding the adjuvants. The spreading speed increased significantly with the adjuvants. The epidermal cells and wax layer were damaged by the adjuvants. The absorption of cyhalofop‐butyl was increased significantly after adding the tank‐mixed adjuvants. GY‐T12 and silwet 625 were conducive to upward translocation and all six tank‐mixed adjuvants promoted the downward translocation of the herbicide. The results demonstrate that adjuvants can have a considerable influence on the efficiency of cyhalofop‐butyl on barnyardgrass.  相似文献   

6.
This review examines viral degeneration in sweetpotato in different regions of the World, particularly that caused by Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV), comparing impacts on yield in single and complex infections of all the major viruses affecting the crop. How cultivars are generated and virus resistance are also covered, especially for Africa. The synergistic (SPCSV + SPFMV) sweet potato virus disease (SPVD) is amongst the most dramatic diseases of sweetpotato but its overall yield impacts may not be as high as is generally assumed. It is constrained by resistance, roguing and selection of symptomless planting material. Instead, the cumulative impact of individual and combinations of symptomless viruses may be globally greater. These include sweepoviruses and various potyviruses, of which the commonest is SPFMV. A number of aspects of virus‐cleaned planting stocks are identified, including reinfection rates, that need investigating before their use is considered as sustainable in developing countries. Popular East African cultivars appear to sustain their long‐term survival by reverting from symptomless infection. The likely biochemistry of this is discussed, and parallels are drawn with other crops. It is concluded that breeding for this attribute will be the best strategy for achieving long‐term control of most sweetpotato viruses.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号