首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
This study was conducted to investigate the effect of fish protein hydrolysate on growth performance, insulin‐like growth factor I (IGF‐I) levels and the expression levels of liver IGF‐I mRNA in juvenile Japanese flounder (Paralichthys olivaceus). Fish hydrolysate was produced by enzymatic (alcalase and flavourzyme) treatment and size‐fractionated by ultrafiltration. The permeate after ultrafiltration (UF) and the non‐ultrafiltered fish hydrolysate were tested as feed ingredients using high plant protein diets. Fish meal was used in the control diet (FM). The feeding trial lasted for 60 days, and fish fed with 37 g kg?1 UF showed the best growth, feed efficiency, digestibility and protein utilization. Plasma IGF‐I level was examined with radioimmunoassay, and the expression levels of liver IGF‐I mRNA were evaluated using real‐time PCR normalized against the 18S rRNA gene. Plasma IGF‐I levels were significantly increased by inclusion of fish protein hydrolysate. Liver IGF‐I mRNA expression was significantly higher in fish fed with 37 g kg?1 UF diet than fish fed with control diet. The results indicated that small molecular weight compounds from fish protein hydrolysate showed a positive effect on growth and feed utilization in juvenile Japanese flounder. Dietary fish protein hydrolysate could improve plasma IGF‐I levels and liver IGF‐I mRNA expression in Japanese flounder.  相似文献   

2.
A feeding trial was conducted to determine the amount of soybean meal (SBM) that could replace fish meal (FM) without compromising growth and health of Asian red‐tailed catfish (Hemibagrus wyckioides). Five isonitrogenous and isoenergetic diets (S0, S15, S30, S45 and S60) were formulated with SBM to replace 0%, 15%, 30%, 45% and 60% of FM. The replacement level up to 30% improved daily growth coefficient, plasma adenosine monophosphate deaminase (AMPD) and alanine aminotransferase (ALT) activities and IgM content, and hepatic ALT, aspartate aminotransferase (AST) and glutathione reductase activities, whereas these were depressed by a further inclusion. The highest protein efficiency ratio and lowest feed conversion ratio were observed in fish fed the S15 diet. Replacement of FM with SBM generally decreased plasma insulin and insulin‐like growth factor 1 (IGF‐1) contents and hepatic catalase activity, whereas no significant differences were observed among fish fed the S0, S15 and S30 diets. In contrast, replacing FM with SBM generally increased blood urea nitrogen content, and that was higher in fish fed the S60 diet compared to fish fed the S0 diet. The highest growth hormone (GH) and glutamate dehydrogenase (GDH) activities were observed in fish fed the S30 diet. Fish fed the S30 and S45 diets exhibited the highest hepatic AMPD, GDH, IGF‐1 and target of rapamycin mRNA levels and muscle AMPD and GDH mRNA levels, whereas those were lowest in fish fed the S60 diet. These results indicate that under the reported conditions SBM may be included in the diet up to 222 g/kg as a substitute for FM, replacing about 30% of FM protein in juvenile H. wyckioides.  相似文献   

3.
4.
The purpose of the study was to investigate whether dietary ration or diet composition influence the relationship between plasma growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) in Arctic charr (Salvelinus alpinus L.). The pattern of changes in plasma GH and IGF‐1 concentrations was examined in fish fed at different ration levels (0%, 0.35% and 0.70% BW day−1) for 5 weeks, and in fish fed diets containing different lipid:crude protein (LCP) ratios. Ration level significantly affected plasma GH and IGF‐1 concentrations; at 5 weeks the levels of both hormones in the food‐deprived group were significantly lower than in fish fed the 0.70% BW day−1 ration. Also, plasma IGF‐1 levels in fish of each ration treatment group were significantly correlated with individual final body weight; no such correlation was found for GH. To examine the effects of dietary LCP ratios, fish were fed for up to 18 weeks, with one of four formulated diets that had LCP ratios (dry matter basis) of 0.35 (Diet 1), 0.43 (Diet 2), 0.51 (Diet 3) or 0.59 (Diet 4), or a commercial diet (Diet 5) which had an LCP ratio of 0.38. Statistical differences in plasma GH and IGF‐1 concentrations were found only after 18 weeks. Growth hormone was significantly lower in fish fed Diets 1 and 2 compared with Diets 3 and 5, and IGF‐1 was significantly lower in fish fed Diet 1 compared with Diets 2 and 5. Significant correlations between plasma GH and IGF‐1 concentrations were found only for fish fed Diets 1 and 5, suggesting that the influence of diet composition on the relationship between GH and IGF‐1 varies with the dietary LCP ratio in this species. The decline in plasma IGF‐1 concentrations during food deprivation is similar to that described in other species; however, the unexpected decrease in plasma GH during food deprivation in this study may represent a species‐specific response.  相似文献   

5.
Four experimental diets with different inclusion levels of plant proteins and fish protein hydrolysates were compared with a commercial diet for meagre (Argyrosomus regius) ongrowing at optimal and suboptimal water temperature. Results in terms of growth in length and weight, conversion efficiency, dietary feed intake and utilization, body composition (whole fish and liver) as well as enzyme and immunological activities are presented. Fish growth was significantly reduced by the inclusion of plant proteins, although further addition of fish protein hydrolysates improved the results. Daily feed intake was not affected by plant protein inclusion in the diets, although the group fed the highest inclusion level showed lower ingestion than the rest of the groups, probably as a consequence of a reduced dietary palatability. The decrease in water temperature during the second part of the experiment had a negative effect on feed intake and fish growth. Gross visceral morphology of meagre fed the experimental diets was not affected, but muscle weight was significantly reduced. Whole body and liver composition was not affected with plant protein inclusion. However, the inclusion of fish protein hydrolysates resulted in a significant increase in fat content, especially in liver cholesterol and steryl esters, with a parallel reduction in protein. Brush border enzymes were affected by plant protein inclusion as well as serum lysozyme that significantly increased in the fish fed the highest inclusion level. As a conclusion, up to 315 g kg?1 plant protein (76.2% of total protein content) can be included in the diet for meagre without affecting growth or feed utilization. Higher inclusion levels can also be used if at least 5% fish protein hydrolysate is also included.  相似文献   

6.
The length of the photoperiod has been implicated as affecting growth of sunshine bass. This study was done to determine if photoperiod length might affect insulin‐like growth factor‐I (IGF‐I), which is a major hormonal regulator of growth in fish. Growth, feed conversion, peritoneal fat content, and plasma concentrations of IGF‐I of sunshine bass were compared on fish held on a short (8 h) or a long (16 h) photoperiod, or after the fish were switched from one photoperiod to the other. Fish were fed daily to apparent satiation for up to 5 wk and were not fed for the last 2 wk of the experiment. Body weight and intraperitoneal fat content increased for the first 2 wk of the experiment and then remained steady for the remainder of the experiment, and feed consumption decreased from 3.5% during the first 2 wk to about 1.5% for the second 2 wk and finally to only 1% during the last week of feeding. Plasma IGF‐I concentrations fell steadily during the entire experiment and was at the lowest level during the last 2 wk when the fish were not fed. There was no consistent effect of the photoperiod in any of the conditions; however, feeding and IGF‐I concentrations were affected by fish density.  相似文献   

7.
A 10‐week feeding experiment in indoor flow‐through seawater system was conducted to investigate the effects of dietary krill hydrolysate on the expression of growth‐related genes in juvenile turbot (Scophthalmus maximus L.; initial body weight 9.45 ± 0.01 g). Three isonitrogenous and isolipidic experimental diets containing high plant protein were formulated to contain 0 (control), 50 g/kg (LKH) and 100 g/kg (HKH) krill protein hydrolysate (KH) to replace fishmeal, respectively. Triplicate groups of 30 fish were fed for 10 weeks to apparent satiation twice daily. At the end of the feeding trial, the mRNA expressions of insulin‐like growth factor (IGF‐1) gene in liver, peptide transporters (PepT1) gene in pyloric caeca and proximal intestine and neuropeptide Y (NPY) gene in brain in all groups were determined. IGF‐1, PepT1 and NPY expression levels in HKH group were significantly increased compared with those of LKH and control (< 0.05), which was consistent with the SGR, feed efficiency, PER and PPV. These results indicated that dietary 100 g/kg krill hydrolysate could improve growth performance and upregulate the mRNA expression of IGF‐1, PepT1 and NPY genes in juvenile turbot.  相似文献   

8.
Seven isonitrogenous and isoenergetic experimental diets were formulated to investigate the effect of low molecular weight fish protein hydrolysate (FPH) in diets on growth performance, feed utilization and liver IGF‐I mRNA levels in Japanese flounder (38.80 ± 1.11 g) fed with high plant protein diets. Fish meal protein was, respectively, replaced by 6% (FPH6), 11% (FPH11), 16% (FPH16), 21% (FPH21), 26% (FPH26) FPH of total dietary protein. FPH diets contained a constant high level of plant protein (690 g kg?1) from soybean meal. As a positive control diet, FM2 contained about 590 g kg?1 plant protein and 410 g kg?1 fish meal protein, while negative control diet FM1 contained about 690 g kg?1 plant protein and 310 g kg?1 fish meal protein. The expression levels of liver IGF‐I mRNA were evaluated using real‐time PCR normalized against the 18S rRNA gene. The results showed that moderate low molecular weight FPH (FPH11) improved growth performance and protein retention. Fish fed with FPH11 and control diet FM2 had similar growth and feed utilization, while high‐level low molecular weight FPH did not improve growth performance and protein retention, and depressed liver IGF‐I mRNA expression in Japanese flounder.  相似文献   

9.
Camelina meal Camelina sativa (CM) is a potential protein source in aquaculture feeds, because of its crude protein level (39%) and essential amino acids. Two feeding experiments were conducted with Atlantic cod Gadus morhua. Cod in Experiment I (19.4 g fish?1) were fed diets with 0%, 12% or 24% CM for 9.5 weeks at 10°C; and cod in Experiment II (14.4 g fish?1) were fed diets with 0%, 15%, 30% or 40% CM for 13 weeks at 10°C. Growth, lipid and amino acid tissue composition were compared amongst cod fed varying levels of CM. In Experiment I, cod could tolerate the highest level of CM inclusion (24%) without affecting growth compared to cod fed the control diet. In Experiment II, growth performance was significantly affected at 30% CM inclusion compared to the control treatment, and cod fed 15% CM displayed some signs of depressed growth (reduced feed intake and weight gain). Both treatment and duration were interacting factors (P = 0.015) that determined growth performance when comparing both experiments. Muscle tissue composition was relatively unaltered with less than 30% CM inclusion; however, multivariate statistics revealed significant differences in muscle tissue fatty acid composition between cod fed 40% CM and the control diet. The tissue amino acid profile was generally unaltered because the dietary amino acid profile was consistent after CM inclusion. A few antinutritive compounds in CM may have affected palatability in diets with greater than 30% CM inclusion, which may have resulted in reduced growth performance.  相似文献   

10.
An 8‐week feeding trial was implemented to evaluate the effects of replacing fish meal (FM) with mussel (Cristaria plicata) meat (MM) on growth, digestive ability, antioxidant capacity and hepatic insulin‐like growth factor I (IGF‐I) gene expression of juvenile Ussuri catfish (Pseudobagrus ussuriensis). Three isonitrogenous and isolipidic diets were formulated to include 0, 177.5 and 355.1 g/kg of MM, accordingly, replacing 0% (M0, control), 50% (M1) and 100% (M2) of FM protein, respectively. The results showed that the final body weight, weight gain, specific growth rate and feed intake were gradually decreased with dietary MM protein levels increased, but there were no significant difference between M0 and M1 groups (p > 0.05). The protein efficiency ratio was increased significantly with dietary MM inclusion (p < 0.05). The apparent digestibility coefficient of dry matter, crude lipid and gross energy gradually increased with increasing dietary MM protein levels, but the apparent digestibility coefficient of crude protein was not significantly affected by MM protein supplementation (p > 0.05). Fish fed diet, M0 and M1 remained unaffected significantly on activities of alpha‐amylase and pepsin (> 0.05), but fish fed diet M2 had the highest activities of alpha‐amylase and pepsin. Fish fed diet M1 or M2 had significantly lower hepatic total antioxidant capacity, superoxide dismutase and the higher malondialdehyde level compared to fish fed diet M0. In addition, no significant difference was observed in hepatic IGF‐I gene expression level for fish fed diet M0 and diet M1, and fish fed diet M2 showed significantly lower hepatic IGF‐I gene expression level. Therefore, we can conclude that MM protein can successfully substitute 50% of FM protein without significantly negative effect on growth, nutrient utilization, and hepatic IGF‐I gene expression for juvenile Ussuri catfish, but the antioxidant capacity was negatively affected in the present study, what is more, the total replacement of FM by MM in diet may result in the inhibition of the growth and antioxidant capacity of fish.  相似文献   

11.
Atlantic salmon fed diets devoid of fishmeal but added 0.5 g  kg?1 fish protein concentrate (FPC) showed reduced growth and lipid deposition without affecting protein accretion as compared to fish fed a fishmeal‐based control diet. The aim of the current study was to assess whether higher inclusion of FPC improved the growth and lipid deposition of Atlantic salmon (initial body weight 380 g) fed high plant protein diets. Quadruplicate groups of fish were fed diets containing 200 g kg?1 fishmeal of which was replaced with FPC (150, 112, 75, 38 and 0 g kg?1) for a period of 79 days. The rest of the diet protein was a mixture of plant proteins. The lipid source used was fish oil. A fishmeal‐based diet was included as a positive control for growth performance. None of the test diets differed from the positive control‐fed fish in voluntary feed intake, growth performance or nutrient accretion. Thus, the test diets were found appropriate to assess the effect of FPC inclusion. Replacement of fishmeal with increasing concentration of FPC did not affect voluntary feed intake (P = 0.56), but growth performance decreased (P = 0.02) resulting in an increased feed conversion ratio (P = 0.003). Viscerosomatic index decreased as diet FPC inclusion increased (P = 0.012) without affecting the dress out weight (P = 0.08). Thus, the apparently improved growth in fish fed the diets with the low FPC inclusion was because of a higher visceral mass. Possible reasons for the reduced visceral mass following addition of FPC to high plant protein diets are discussed.  相似文献   

12.
This study investigates the effects of date palm extracts [DPE] (Phoenix dactylifera L. Arecaceae) on growth, immune function and antioxidant system in common carp fingerlings (Cyprinus carpio). One hundred and twenty fish (4.06 ± 0.13 g) were divided into six groups fed on control diet or diets containing 200 mL kg?1 DPE for 8 weeks. At the end of feeding trial, the expression of different genes was measured. Selected genes were grouped into three categories: growth factor genes in brain and liver [growth hormone (GH), insulin‐like growth factors I and II (IGF‐I and IGF‐II), antioxidant‐related genes in liver [glutathione S‐transferase‐alpha (GST‐α), glutathione reductase (GR) and glutathione peroxidase genes (GPX)] and immune‐related genes in head kidney [interleukin‐8 (IL‐8), interleukin‐10 (IL‐10) and transforming growth factor‐beta (TGF‐β) genes]. The relative expression of the growth‐related genes in fish fed DPE showed no significant increase compared to control group (> 0.05). On the other hand, DPE altered the expression of genes encoding antioxidants enzymes in liver of fingerlings which was statistically significant with respect to the control samples in case GPX (< 0.05). Also, DPE caused remarkable increases in the expression of the immune‐related genes (IL‐8, IL‐10 and TGF‐β) analysed on head kidney of common carp fingerlings compared to the control group (< 0.05). In conclusion, it can be suggested that administration of DPE in early stages of common carp culture can promote immune efficacy and increase the antioxidant activity.  相似文献   

13.
Two feeding trials examined the replacement of fishmeal (FM) with poultry by‐product meal (PBM) in the diet of juvenile Sparus aurata. In Feeding trial I (100 days), three diets were formulated, where FM protein was replaced by 50% (PBM50) and 100% (PBM100) PBM, while in Feeding trial II (110 days), four diets were formulated using the same FM control diet, but FM was replaced at lower levels: 25% (PBM25), and 25% (PBM25 + ) and 50% (PBM50 + ) with the supplementation of lysine and methionine amino acids. PBM protein can successfully replace 50% of FM protein in the diet of Saurata without adverse effects on survival, feed intake, growth performance and feed utilization, given that the diet is balanced with lysine and methionine. The proximate composition of body and muscle was unaffected by the diet, but the total FM replacement resulted in reduced lipid and energy contents in fish. A fifty per cent FM replacement by PBM did not affect haematological parameters indicating a good fish health. Similarities in trypsin and chymotrypsin activities with FM‐fed fish suggest a high digestibility of PBM. High dietary levels of PBM reduced the liver gene expression of GH/IGF axis and of cathepsin D suppressing fish growth and modulating the protein turnover.  相似文献   

14.
This study evaluated the use of hydrolysed rubber seed meal as a locally grown alternative feed ingredient to reduce the use of fishmeal within formulated feeds for tilapia. Five experimental diets were prepared by formulating different inclusion levels of hydrolysed rubber seed meal (0%, 25%, 50%, 75% and 100% of plant‐based protein contribution). Dried and defatted rubber seed meal was hydrolysed by adding rumen digesta liquid to the ingredient. For digestibility measurement, chromic oxide was added to each diet as an inert marker. The digestibility trial was conducted over a 14‐day period by collecting faecal matter from the rearing tanks. In addition, a growth trial was conducted over a period of 50 days using four replicates per dietary treatment. In both experiments, all fish were fed three times daily to apparent satiation. At the end of growth trial, the inclusion level of hydrolysed rubber seed meal up to 50% of plant‐based protein contribution did not give any significant difference compared to the control diet in terms of feed efficiency, specific growth rate and protein retention parameters. In the digestibility study, fish fed diets containing hydrolysed rubber seed meal up to a 50% of plant‐based protein inclusion level did not give any significant difference compared to the control diet in terms of protein and dry matter apparent digestibility. Based on the result of this growth and digestibility study, up to a 50% of plant‐based protein contribution of hydrolysed rubber seed meal can be used within formulated tilapia feeds without any adverse effect.  相似文献   

15.
This paper reports on the use of plant protein in cod diets, and where corn gluten meal, soybean meal, a mixture of these, or a mixture of wheat gluten meal and soy protein concentrate, substituted fish meal in a regression design up to 440 g kg?1 plant ingredients. Feeding lasted for a period of 20 weeks. High growth rates were obtained, and fish were able to maintain growth in all groups by increasing feed intake when plant proteins exerted high amounts of the protein fraction. This was confirmed by increased feed conversion ratio (FCR) values. The apparent digestibility measured by means of faecal stripping, showed high apparent digestibility coefficients (ADC) for fat, starch and protein. Small decreases in protein ADC and larger decreases in fat ADC were observed with high levels of plant protein ingredients. No histopathological changes were found, neither in liver nor in the different sections of the gastrointestinal (GI) tract, for any of the diet groups. Expression of stress genes (heat shock protein 70 and 90 (HSP70 and HSP90)) in liver showed no response to high levels of plant protein. Invasion of gut‐bacteria in the distal part of the GI tract was substantial, but independent of diet level of plant ingredients. Gut evacuation analysis showed that the time for a meal to pass through the stomach and the GI tract was more than 72 h, with no variation dependent on diet plant protein level. The major conclusion is that cod shows a high tolerance to the plant protein sources investigated in this experiment, and consequently that Atlantic cod safely can be fed diets holding up to 440 g kg?1 of the present investigated plant protein ingredients without any adverse effects on intestinal or liver function. There seems to be no gain if feeding frequency exceeds more than one large meal every 24 h at 6–7°C.  相似文献   

16.
The effects of fish protein hydrolysate (FPH) on growth, peptide and amino acid (AA) transporters, postprandial free AA and related gene expression of IGF‐1/AKT pathway were evaluated in turbot (Scophthalmus maximus). Three diets were formulated to contain the same low level of fishmeal; meanwhile 0, 45 and 180 g/kg FPH were, respectively, supplemented to the FF (FPH‐free), FL (FPH‐Low) and FH (FPH‐High) diets. Fish fed the FH diet improved the growth compared with the other groups. For peptide and AA transporters, PepT1, B0AT1, CAT1 and PAT1 mRNA levels in proximal or distal intestine decreased in fish fed the FH diet. The concentration of free total essential AAs in serum was higher in the FH treatment than that in the FF treatment at 2 and 6 hr after feeding. For IGF‐1/AKT pathway in muscle, IGF‐1, 4E‐BP1 and FoxO1 mRNA levels were the highest in the FH group, whereas IGF‐1R mRNA levels were the highest expression level in the FF group. In conclusion, down‐regulated AAs transport, alleviated the delayed postprandial peak of serum‐free AAs and increased muscle protein synthesis were observed to improve the growth when turbot was fed high FPH level diets containing a high plant protein.  相似文献   

17.
Despite considerable progress in the production of alternative diets, small concentrations of antinutrients remain common in aquaculture nutrition, resulting in a perpetual limitation with regard to the inclusion of plant ingredients in aquafeeds. These compounds are known to impair the general performance of fish when fed for a prolonged period of time, potentially affecting the animal's susceptibility to stress, too. Therefore, a 12‐week feeding trial was conducted to examine the chronic effects of purified rapeseed protein concentrate (RPC), containing low concentrations of glucosinolates and phytic acid, on the relative expression of multiple target genes in the liver of juvenile turbot (Psetta maxima, L.). Our results revealed divergent patterns of gene expression, suggesting different coping strategies dependent on the grade of RPC substitution. Data implies increased metabolic rate of turbot fed a 33% RPC‐substituted diet due to an upregulation of cytochrome c oxidase mRNA, accompanied by minor adjustments in metabolic pathways. While no signs of reduced welfare were found, data adumbrate a beneficial hormetic reaction. In the highest treatment level (66% RPC), diminished fish condition and reduced growth performance coincided with a downregulation of insulin‐like growth factor I, further indicating a potential impaired resistance to stress. An additional downregulation of transferrin hints towards an increased liability to bacterial infections.  相似文献   

18.
The present paper gives an overview on the use of plant protein and plant oils as replacers for fish meal and fish oil in diets for Atlantic cod Gadus morhua L. In focus are effects on growth, feed utilization, digestibility, gut health, muscle and liver uptake and retention of nutrients, and muscle quality. Plant oil can replace fish oil without affecting growth provided that the requirement of marine long chain (LC) n‐3 fatty acids is met, but the altered dietary fatty acid profile in diet will be reflected in both muscle and liver. This can reduce the value of cod liver as an oil source for cod liver oil production. For the fish itself, there are more challenges replacing fish meal than fish oil, due to the amount of fibre and antinutrients in plant protein meals. However, A. cod seems to tolerate a wide range of plant types and their inclusion levels provided that the amino acids requirements are met. It is our view that there is sufficient knowledge to be able to design an A. cod diet based on a mixture of plant and marine ingredients and be able to predict performance such as growth, feed utilization, digestibility, liver size and fish health in general.  相似文献   

19.
A feeding trial was conducted to evaluate the results of replacing soybean meal (SBM) with other blend plant protein (BP) (rapeseed meal, cottonseed meal and peanut meal) sources on growth, fish body composition, biochemical parameters, non‐specific immune index and gene expression of growth hormone/insulin‐like growth factor‐1 in Yellow River carp Cyprinus carpio. The results showed that the 600 g/kg replacement with BP in diet did not affect the growth performance of Yellow River carp, but the 800 g/kg SBM replacement diet could depress the growth of fish (p < .05). The 800 g/kg SBM replacement diet significantly impacted the superoxide dismutase, malondialdehyde contents, lysozyme, alanine aminotransferase and aspartate aminotransferase activities (p < .05). Fish fed 800 g/kg SBM replacement diet showed lowest insulin‐like growth factor 1 and highest growth hormone level than that of other diets (p < .05). Both gene expression levels of GH and IGF‐I in hepatic showed significant difference among dietary treatments (p < .05), and the lowest GH and IGF‐I mRNA level in liver were found in fish fed 800 g/kg SBM replacement diet (p < .05). In conclusion, no more than 600 g/kg SBM could be replaced by BP in diet of Yellow River carp without adverse effects on the growth performance. However, 800 g/kg SBM replacement with BP in diet inhibited the growth performance, affected some blood parameters and immune response index, and down‐regulated GH and IGF‐1 gene expression of liver in Yellow River carp. Further, GH level in serum was negatively correlated with GH mRNA level in liver; meanwhile, serum concentrations of IGF‐I were positively correlated with hepatic IGF‐I mRNA expressions.  相似文献   

20.
Atlantic cod were fed six diets where the ratio of protein from fish meal to vegetable protein were varied from 91%, 67% to 46%, respectively. The experimental groups were performed in triplicate in a 20 week growth trial, increasing fish weight from about 167 g to 690 g. The vegetable protein sources constituted full-fat soybean meal and corn gluten meal at a fixed ratio of 1:2, and replaced either a high quality fish meal (DCMink 92.3%) or a lower quality fish meal (DCMink 85.6%) in the diet. All diets were extruded and balanced to be equal in gross energy, crude protein, lipid, carbohydrate, lysine and phosphorus. No difference in growth (SGR 1%) was observed comparing the two fish meal qualities. However, feed intake was significantly higher (9%) and feed efficiency lower (10%) for lower quality fish meal compared to high quality fish meal. Protein and amino acid digestibility was significantly reduced in the lower quality fish meal, while unaffected by vegetable protein inclusion for both fish meal qualities. Protein utilization as measured by protein efficiency ratio and net protein value was not affected by fish meal inclusion, except in the diet using lower quality fish meal and high vegetable protein inclusion. Lipid and energy digestibility was significantly reduced by vegetable protein inclusion for both fish meals. The lower fish meal quality increased lipid deposition in the liver and affected slaughter quality of cod by increasing HSI and dressing out percentage at low and intermediate substitution levels. Muscle composition showed small dietary changes except for arginine, while liver fatty acid composition clearly reflected fatty acid profile of full-fat soya in the diets. Corn gluten meal and full-fat soybean meal (2:1) can replace approximately 50% of dietary protein without affecting feed intake, growth, protein digestibility or slaughter quality of cod when exchanging high quality fish meal. For the lower quality fish meal diets some lower inclusion of vegetable protein sources seem to be acceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号