首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND: Septoria leaf blotch is the most important disease of wheat in Europe. To control this disease, fungicides of the 14α‐demethylase inhibitor group (DMIs) have been widely used for more than 20 years. However, resistance towards DMIs has increased rather quickly in recent years. The objective of this study was to evaluate, on plants and under controlled conditions, the protective and curative efficacy of the DMI fungicide prothioconazole against three current isolates of M. graminicola, chosen to belong to different DMI‐resistant phenotypes. Fungicide efficacy was assessed by visual symptoms and by quantitative real‐time polymerase chain reaction (PCR). RESULTS: With a protective fungicide application, prothioconazole was always effective against each isolate. This was in accordance with the EC50 results. However, curative efficacy differed between the isolates. It remained at a good level, between 60 and 70% against one isolate, whereas it was strongly affected by late applications from 7 days post‐inoculation with the two other isolates. CONCLUSION: A protective application of prothioconazole in wheat crops could be the best strategy to keep a high efficacy against Septoria leaf blotch. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
In France, as in many other European countries, Mycosphaerella graminicola (Fuckel) Schr?ter in Cohn (anamorph Septoria tritici), the causal agent of wheat leaf blotch, is controlled by foliar applications of fungicides. With the recent generalization of resistance to strobilurins (QoIs), reliable control is mainly dependent upon inhibitors of sterol 14 alpha-demethylation (DMIs). To date, strains with reduced sensitivity to DMIs are widespread, but disease control using members of this class of sterol biosynthesis inhibitors has not been compromised. In this study, sensitivity assays based on in vitro effects of fungicides towards germ-tube elongation allowed the characterization of seven DMI-resistant phenotypes. In four of them, cross-resistance was not observed between all tested DMIs; this characteristic concerned prochloraz, triflumizole, fluquinconazole and tebuconazole. Moreover, the highest resistant factors to most DMIs were found only in recent isolates; according to their response towards prochloraz, they were classified into two categories. Molecular studies showed that DMI resistance was associated with mutations in the CYP51 gene encoding the sterol 14 alpha-demethylase. Alterations at codons 459, 460 and 461 were related to low resistance levels, whereas, at position 381, a valine instead of an isoleucine, in combination with the previous changes, determined the highest resistance levels to all DMIs except prochloraz. Mutations in codons 316 and 317 were also found in some isolates exhibiting low resistance factors towards most DMIs.  相似文献   

4.
This review summarises recent investigations into the molecular mechanisms responsible for the decline in sensitivity to azole (imidazole and triazole) fungicides in European populations of the Septoria leaf blotch pathogen, Mycosphaerella graminicola. The complex recent evolution of the azole target sterol 14α‐demethylase (MgCYP51) enzyme in response to selection by the sequential introduction of progressively more effective azoles is described, and the contribution of individual MgCYP51 amino acid alterations and their combinations to azole resistance phenotypes and intrinsic enzyme activity is discussed. In addition, the recent identification of mechanisms independent of changes in MgCYP51 structure correlated with novel azole cross‐resistant phenotypes suggests that the further evolution of M. graminicola under continued selection by azole fungicides could involve multiple mechanisms. The prospects for azole fungicides in controlling European M. graminicola populations in the future are discussed in the context of these new findings. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
The hemibiotrophic fungus Cercospora beticola causes leaf spot of sugar beet. Leaf spot control measures include the application of sterol demethylation inhibitor (DMI) fungicides. However, reduced sensitivity to DMIs has been reported recently in the Red River Valley sugar beet-growing region of North Dakota and Minnesota. Here, we report the cloning and molecular characterization of CbCyp51, which encodes the DMI target enzyme sterol P450 14α-demethylase in C. beticola. CbCyp51 is a 1,632-bp intron-free gene with obvious homology to other fungal Cyp51 genes and is present as a single copy in the C. beticola genome. Five nucleotide haplotypes were identified which encoded three amino acid sequences. Protein variant 1 composed 79% of the sequenced isolates, followed by protein variant 2 that composed 18% of the sequences and a single isolate representative of protein variant 3. Because resistance to DMIs can be related to polymorphism in promoter or coding sequences, sequence diversity was assessed by sequencing >2,440 nucleotides encompassing CbCyp51 coding and flanking regions from isolates with varying EC(50) values (effective concentration to reduce growth by 50%) to DMI fungicides. However, no mutations or haplotypes were associated with DMI resistance or sensitivity. No evidence for alternative splicing or differential methylation of CbCyp51 was found that might explain reduced sensitivity to DMIs. However, CbCyp51 was overexpressed in isolates with high EC(50) values compared with isolates with low EC(50) values. After exposure to tetraconazole, isolates with high EC(50) values responded with further induction of CbCyp51, with a positive correlation of CbCyp51 expression and tetraconazole concentration up to 2.5 μg ml(-1).  相似文献   

6.
A survey of fungicide resistance in Mycosphaerella graminicola and Tapesia acuformis, two major pathogens of winter wheat in France, respectively responsible for speckled leaf blotch and eyespot, led to the characterization of two types of resistant strains to sterol 14α-demethylation inhibitors (DMIs). Most of the strains of M. graminicola collected in France in 1997–1998 were resistant to all DMIs, and only in a few strains was the resistance to several triazoles associated with increased susceptibility to pyrimidine derivatives (i.e., fenarimol, nuarimol) and triflumizole. On the other hand, in T. acuformis the most prevalent strains were those which exhibited negative-cross resistance between DMIs. In both fungi such a phenomenon could be related to changes in cytochrome P450 sterol 14α-demethylase, the target site of these fungicides. For Botryotinia fuckeliana, the causal agent of grey mould, the extensive monitoring conducted in French vineyards before the marketing of fenhexamid revealed the presence of highly resistant strains to this promising botryticide (only in tests involving mycelial growth measurements). Negative cross-resistance to edifenphos and several sterol biosynthesis inhibitors, such as prochloraz and fenpropimorph, was observed in fenhexamid resistant strains. Synergism of the antifungal action of fenhexamid by cytochrome P450 inhibitors, such as the DMI fungicides, was only recorded in fenhexamid resistant strains. These data and those previously obtained with edifenphos resistant strains of Magnaporthe grisea (rice blast pathogen) suggest that in fenhexamid resistant strains of B. fuckeliana the same cytochrome P450 monooxygenase could be involved in detoxification of fenhexamid and activation of edifenphos. Received 6 September 1999/ Accepted in revised form 13 September 1999  相似文献   

7.
BACKGROUND: Management of grapevine powdery mildew Erysiphe necator Schw. requires fungicide treatments such as sterol demethylation inhibitors (DMIs) or mitochondrial inhibitors (QoIs). Recently, reduction in the efficacy of DMIs or QoIs was reported in Europe and the United States. The aim of the present study was to develop real‐time qPCR tools to detect and quantify several CYP51 gene variants of E. necator: (i) A versus B groups (G37A) and (ii) sensitive versus resistant to sterol demethylase inhibitor fungicides (Y136F). RESULTS: The efficacy of the qPCR tools developed was better than the CAPS method, with a limit of 2 pg for E necator DNA, 0.06 ng for genetic group A and 1.4 ng for the DMI‐resistant allele. The detection limits of qPCR protocols (LOD) ranged from 0.72 to 0.85%, and the quantification limits (LOQ) ranged from 2.4 to 2.85% for the two alleles G47A and Y136F respectively. The application of qPCR to field isolates from French vineyards showed the presence of DMI‐resistant and/or QoI‐resistant alleles in French pathogen populations, linked to genetic group B. CONCLUSION: The real‐time PCR assay developed in this study provides a potentially useful tool for efficient quantification of different alleles of interest for fungicide monitoring and for population structure of E. necator. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Septoria tritici blotch (STB) caused by the ascomycete Zymoseptoria tritici (Z. tritici) is currently the most prevalent foliar disease in wheat in the Nordic-Baltic region. Fungicide availability in this region differs greatly and is generally more limited than in other European regions. Monitoring of fungicide sensitivity is an essential tool to survey changes in fungal populations in order to react and be able to adapt recommendations for fungicide use. In this study the authors give an overview of the current situation of 14α-demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) sensitivity of Z. tritici from Scandinavia and the Baltic countries. A total of 985 isolates from the Nordic-Baltic region were investigated for EC50 of DMI epoxiconazole and prothioconazole. Fungicide sensitivity remains at a high level with values ranging from 0.07 to 0.48 mg L?1 for epoxiconazole and 1.17 to 9.47 mg L?1 for prothioconazole. Point mutation I381V in the DMI target gene CYP51 was dominant throughout the region, but mutations D134G, V136A/C and S524T were also detected in the population in 2014. Screening for inserts in the CYP51 promoter region revealed that a ~ 1000 bp insert is predominant in the entire region. Only a single isolate was found in Denmark, harbouring the 120 bp insert, known to reduce fungicide sensitivity. Two Danish isolates which had elevated resistance levels were associated with an enhanced efflux. Significant differences were found across the area for the presence of G143A, conferring QoI resistance. As there is only limited access to results from this area, these findings can serve as reference for future fungicide sensitivity investigations and for evaluation of changes in the Northern European Z. tritici population.  相似文献   

9.
There has been a recent rapid decline in the efficacy of some, but not all, azole fungicides in controlling the Septoria leaf blotch pathogen of wheat, Mycosphaerella graminicola. Hans J. Cools and Bart A. Fraaije ask the question: can widespread resistance to all azoles develop in this pathogen? Copyright © 2008 Society of Chemical Industry  相似文献   

10.
Azole resistance in human fungal pathogens has increased over the past twenty years, especially in immunocompromised patients. Similarities between medical and agricultural azoles, and extensive azole (14α‐demethylase inhibitor, DMI) use in crop protection, prompted speculation that resistance in patients with aspergillosis originated in the environment. Aspergillus species, and especially Aspergillus fumigatus, are the largest cause of patient deaths from fungi. Azole levels in soils following crop spraying, and differences in sensitivity between medical and agricultural azoles (DMIs), indicate weaker selection in cropping systems than in patients receiving azole therapy. Most fungi have just one CYP51 paralogue (isozyme CYP51B), but in Aspergillus sp. mutations conferring azole resistance are largely confined to a second paralogue, CYP51A. Binding within the active centre is similar for medical and agricultural azoles but differences elsewhere between the two paralogues may ensure selection depends on the DMI used on crops. Two imidazoles, imazalil and prochloraz, have been widely used since the early 1970s, yet unlike triazoles they have not been linked to resistance in patients. Evidence that DMIs are the origin, or increase the frequency, of azole resistance in human fungal pathogens is lacking. Limiting DMI use would have serious impacts on disease control in many crops, and remove key tools in anti‐resistance strategies. © 2017 Society of Chemical Industry  相似文献   

11.
BACKGROUND: The long‐term preservation of interesting phenotypes in plant pathogenic fungi allows for follow‐up studies in the future. Twelve storage approaches were investigated to determine their effects on instability of propiconazole resistance for three demethylation inhibitor (DMI) fungicide‐resistant and two DMI‐sensitive isolates of Monilinia fructicola. They included mycelium in PDA slants under mineral oil, in PDA plugs under 10% glycerol, on dried filter paper and conidia on silica gel, each stored for 36 weeks at 4, ? 20, and ? 80 °C. RESULTS: None of the storage approaches prevented the rapid decline of EC50 values for propiconazole in the three resistant isolates, and no significant differences were found among storage approaches (P = 0.787) or between storage approaches and consecutive transfers (P = 0.053). Most of the decline in resistance occurred during the first 4 weeks of storage. The DMI resistance‐associated genetic element Mona, located in the immediate upstream region of the MfCYP51 gene, was still present in the three resistant isolates after 36 weeks of storage and weekly transfers. Furthermore, the Mona element and a portion of the MfCYP51 gene, which encodes the target enzyme for DMIs, did not reveal signs of DNA methylation. Resistance to propiconazole was partially regained in resistant isolates after two growth cycles on fresh peach fruit. CONCLUSIONS: Obtained data indicate that the decline of DMI resistance in M. fructicola cannot be prevented using commonly employed storage methods at various temperatures. The number of consecutive transfers and the storage duration prior to fungicide sensitivity tests in M. fructicola should be indicated in scientific papers. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Septoria tritici blotch caused by the fungus Zymoseptoria tritici (formerly Mycosphaerella graminicola) is one of the most yield-reducing diseases worldwide. Effective disease management involves the use of resistant cultivars and application of fungicides. In this study, the population structure and genetic diversity of 183 Z. tritici isolates from Denmark, Sweden, Finland and the Baltic countries were analysed by molecular markers. In population structure analysis, isolates from Denmark and Sweden were grouped together, whereas isolates from the Baltics and Finland were grouped together. Analysis of genetic diversity and ?-values confirmed the division of Nordic and Baltic regions. Danish isolates sampled from different regions and different varieties were not genetically different. However, significant genetic differences were detected between isolates sampled from different years in Denmark and for isolates sampled from specific cultivars in different years. Additionally, the frequency of several known point mutations in the gene cyp51, conferring decreased sensitivity to DMI fungicides, was investigated. Several of the examined mutations were detected at a lower frequency in Baltic isolates compared to Danish and Swedish isolates. Analysis of the Danish population revealed a significant increase in specific mutations over the years. Lastly, some mutations were significantly more frequent in isolates derived from certain varieties. By using different resistance sources in breeding programmes and application of a wide range of fungicides, a sustainable and efficient disease management can be obtained.  相似文献   

13.
ABSTRACT The intensive use of site-specific fungicides in agricultural production provides a potent selective mechanism for increasing the frequency of fungicide-resistant isolates in pathogen populations. Practical resistance occurs when the frequency and levels of resistance are great enough to limit the effectiveness of disease control in the field. Cherry leaf spot (CLS), caused by the fungus Blumeriella jaapii, is a major disease of cherry trees in the Great Lakes region. The site-specific sterol demethylation inhibitor fungicides (DMIs) have been used extensively in the region. In 2002, CLS control failed in a Michigan orchard that had used the DMI fenbuconazole exclusively for 8 years. That control failure and our observations from around the state suggested that practical resistance had developed in B. jaapii. Field trial data covering 1989 to 2005 for the DMIs fenbuconazole and tebuconazole supported observations of reduced efficacy of DMIs for controlling CLS. To verify the occurrence of fungicide-resistant B. jaapii, monoconidial isolates were collected in two surveys and tested using a fungicide-amended medium. In one survey, 137 isolates from sites with different DMI histories (no known history, mixed or alternated with other fungicides, and exclusive use) were tested against 12 concentrations of fenbuconazole, tebuconazole, myclobutanil, and fenarimol. Isolates from sites with no prior DMI use were DMI sensitive (DMI(S) = no colony growth at 0.2 mug/ml a.i.) whereas the isolates from the site with prior exclusive use showed growth at DMI concentrations 3 to >100 times higher, and were rated as DMI resistant (DMI(R)). A second survey examined 1,530 monoconidial isolates, including 1,143 from 62 orchard sites in Michigan, where DMIs had been used to control CLS. Resistance to fenbuconazole was detected in 99.7% of the orchard isolates. All isolates from wild cherry trees were sensitive and isolates from feral and dooryard trees showed a range of sensitivities. A polymerase chain reaction (PCR)-based detection method for identifying B. jaapii and DMI(R) was developed and tested. The species-specific primer pair (Bj-F and Bj-R) based on introns in the CYP51 gene of B. jaapii, and the DMI(R)-specific primer pair (DMI-R-Bj-F and DMI-R-Bj-R) based on an insert found upstream of CYP51 in all DMI(R) isolates, provided an accurate and rapid method for detecting DMI(R) B. jaapii. The PCR-based identification method will facilitate timely decision making and continued monitoring of DMI(R) subpopulations in response to management programs.  相似文献   

14.
The occurrence of fungicide resistance in Mycosphaerella graminicola populations from Tunisia was investigated by examining mutations known to be associated with strobilurin and azole resistance. Few mutations associated with fungicide resistance were detected. No evidence for strobilurin resistance was found among 357 Tunisian isolates and only two among 80 sequenced isolates carried mutations associated with azole resistance. A network analysis suggested that these mutations emerged independently from mutations found in previously described European populations. The population genetic structure of M. graminicola in Tunisia was analyzed using variation at 11 microsatellite loci. Populations in Tunisia were characterized by high gene and genotype diversity. All populations were in gametic equilibrium and mating type proportions did not deviate from the 1:1 ratio expected under random mating, consistent with regular cycles of sexual reproduction. In combination with a high degree of gene flow among sampling sites, M. graminicola must be considered a pathogens with high evolutionary potential. Thus, control strategies against Septoria blotch in Tunisia should be optimized to reduce the emergence and spread of resistant isolates.  相似文献   

15.

BACKGROUND

A new generation of more active succinate dehydrogenase (Sdh) inhibitors (SDHIs) is currently widely used to control Septoria leaf blotch in northwest Europe. Detailed studies were conducted on Zymoseptoria tritici field isolates with reduced sensitivity to fluopyram and isofetamid; SDHIs which have only just or not been introduced for cereal disease control, respectively.

RESULTS

Strong cross‐resistance between fluopyram and isofetamid, but not with other SDHIs, was confirmed through sensitivity tests using laboratory mutants and field isolates with and without Sdh mutations. The sensitivity profiles of most field isolates resistant to fluopyram and isofetamid were very similar to a lab mutant carrying SdhCA84V, but no alterations were found in SdhB, C and D. Inhibition of mitochondrial Sdh enzyme activity and control efficacy in planta for those isolates was severely impaired by fluopyram and isofetamid, but not by bixafen. Isolates with similar phenotypes were not only detected in northwest Europe but also in New Zealand before the widely use of SDHIs.

CONCLUSION

This is the first report of SDHI‐specific non‐target site resistance in Z. tritici. Monitoring studies show that this resistance mechanism is present and can be selected from standing genetic variation in field populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

16.
BACKGROUND: Management of strawberry powdery mildew, Podopshaera aphanis (Wallr.), requires numerous fungicide treatments. Limiting epidemics is heavily dependent on sterol demethylation inhibitors (DMIs) such as myclobutanil or penconazole. Recently, a noticeable reduction in the efficacy of these triazole fungicides was reported by strawberry growers in France. The goal of this study was to investigate the state of DMI sensitivity of French P. aphanis and provide tools for improved pest management. RESULTS: Using leaf disc sporulation assays, sensitivity to myclobutanil and penconazole of 23 isolates of P. aphanis was monitored. Myclobutanil EC50 ranged from less than 0.1 to 14.67 mg L?1 and for penconazole from 0.04 to 4.2 mg L?1. A cross‐analysis and a Venn diagram showed that there was reduced sensitivity and a positive correlation between the less sensitive myclobutanil and penconazole isolates; 73.9% of isolates were less sensitive to a DMI and 47.8% exhibited less sensitivity to both fungicides. CONCLUSION: The results show that sensitivity to myclobutanil and, to a lesser extent, penconazole has become less efficient in strawberry powdery mildew in France. Therefore, urgent action is required in order to document its appearance and optimise methods of control. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
甾醇脱甲基抑制剂 (DMI) 可通过抑制病原真菌的14α-去甲基化酶(CYP51)而干扰或阻断细胞膜麦角甾醇的生物合成,造成有毒甾醇积累,从而影响细胞膜的结构及功能,进而发挥抗菌作用。随着DMI类杀菌剂的广泛应用,病原菌对其的抗性问题日益严重。本文从抗药性分子机制出发,总结出病原菌对DMI类杀菌剂产生抗性的主要原因为:CYP51氨基酸突变引起其与杀菌剂间的亲和力下降;启动子区域基因片段的插入引起CYP51基因过表达;转录因子激活突变或启动子区域基因片段插入导致外排蛋白基因过表达。本文基于杀菌剂的作用方式及病原菌抗性机制研究展开综述,可为杀菌化合物的结构修饰与优化、新靶点改进和研发以及病原真菌的抗药性治理提供参考。  相似文献   

18.
BACKGROUND: The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α‐demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown. RESULTS: Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7‐16‐fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10‐ and 40‐fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51. CONCLUSIONS: The identification of an insertion in the predicted MgCYP51 promoter in azole‐resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target‐site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
Cereal eyespot fungi Tapesia acuformis and Tapesia yallundae are closely related species which show different behaviours upon treatment with sterol 14-demethylase inhibitors (DMIs). T. acuformis is naturally resistant to DMIs belonging to the triazole family and susceptible to the imidazole ones, whilst T. yallundae is sensitive to both inhibitors. Cloning of the target enzyme gene, CYP51, from the two species revealed an important polymorphism between them. Further sequencing of CYP51 from sixteen T. acuformis and eleven T. yallundae strains with different phenotypes with regards to resistance to DMIs confirmed that at least eleven variations are species related. Among them, a conserved phenylalanine residue at position 180, found both in T. yallundae and in all known CYP51 proteins from filamentous fungi and yeast, was replaced in T. acuformis by a leucine. Therefore, a leucine at 180 could be possibly involved in natural resistance of T. acuformis to triazoles. Other mutations were observed in some resistant strains, sometimes simultaneously, but in contrast to what was reported for other filamentous fungi, where a mutation at the 136 position of the CYP51 gene product seemed to correlate with resistance to DMIs, we did not find a clear relationship between a given mutation and a particular phenotype. This result suggests that resistance to DMIs could have a polygenic nature in Tapesia. We took advantage of species-related variations to develop a PCR-based assay allowing rapid and easy discrimination between field strains of the two species.  相似文献   

20.
The disease septoria tritici blotch of wheat is initiated by ascospores of the teleomorph Mycosphaerella graminicola or pycnidiospores of the anamorph Septoria tritici. We report for the first time the presence of the teleomorph, M. graminicola, in Denmark. With the objective of elucidating the importance of the teleomorph for the development of septoria tritici blotch, data on the occurrence of fruit bodies of the anamorph (pycnidia) and the teleomorph (pseudothecia) stages were collected over three growing seasons. Pseudothecia were present in the springs, however, high numbers of pseudothecia compared to pycnidia were not observed until July, too late to influence the epidemic. On an individual leaf layer, pycnidia were observed well before pseudothecia. As the leaves aged, progressively higher proportions of fruit bodies were observed to be pseudothecia. The period from the appearance of pycnidia to detection of pseudothecia was estimated as 29–53 days. At harvest, high proportions of sporulating fruit bodies in the crop were pseudothecia, suggesting that the primary source of inoculum for new emerging wheat crops in autumn is likely to be ascospores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号