首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to quantify peach scab (Fusicladosporium carpophilum) lesion distribution relative to the point of maximum lesion number on the fruit surface, the relationship between lesion count and distance from the point of maximum lesion density, and establish whether the distribution of lesions was consistent with a splash dispersed pathogen, and to assess the effect of lesion number on fruit size. Fruit of four cultivars, Jerseyqueen, Jefferson, BY07-6428r and Dixiland were collected and the fruit (assumed spherical) sliced taking three horizontal planes across the axis from the point of maximum disease, such that each horizontal zone (Z1-Z4) had the same vertical height, and thus equal surface areas. Lesion counts were analysed using general linear modeling with a Poisson distribution and a log-link function. Zones on the fruit had different numbers of lesions (P < 0.0001), with most lesions found on Z1. Cvs differed in the number of lesions per fruit (P = 0.0042–<0.0001). An analysis of covariance showed that although fruit size varied among most cvs (P = 0.1614–<0.0001), the number of lesions on a fruit did not affect fruit size (P = 0.5654). Measurements of the point of maximum disease relative to the peduncle-flower scar axis of the fruit suggest that fruit are not always held upright when infection occurs, such that up to 40% of fruit showed maximum infection at an angle >90° to the peduncle. This pattern of disease is consistent with observations of the splash-borne nature of conidia, with the most exposed, easily wetted, uppermost portion of fruit developing most disease.  相似文献   

2.
Citrus canker, caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc), is a serious leaf and fruit spotting disease affecting many important citrus cultivars including grapefruit and certain sweet oranges. Currently, efficacious and economical disease control measures for highly susceptible citrus cultivars are lacking. Development of commercial cultivars with greater field resistance to citrus canker is the optimum strategy for effective disease management. In this study, we generated transgenic ‘Duncan’ grapefruit (DG) and ‘Hamlin’ sweet orange (Ham) expressing the Arabidopsis NPR1 gene (AtNPR1), which is a key positive regulator of the long-lasting broad-spectrum resistance known as systemic acquired resistance (SAR). Our results indicate that over-expression of AtNPR1 in citrus increases resistance to citrus canker and that the resistance is related with the expression levels of AtNPR1 in the transgenic plants. The line (DG 42-2) with the highest expression level of AtNPR1 was also the most resistant, which developed significant fewer lesions accompanied by a ten-fold reduction in Xcc population. The lesions developed on DG 42-2 were smaller and darker than those on the control and lacked callus formation. These lesion phenotypes resemble those on canker resistant kumquats and canker susceptible citrus trees treated with SAR-inducing compounds. Therefore, over-expression of AtNPR1 in citrus is a promising approach for development of more resistant cultivars to citrus canker.  相似文献   

3.
The effects of copper sprays on annual and polyetic progress of citrus canker, caused by Xanthomonas citri subsp. citri, in the presence of the Asian citrus leafminer (Phyllocnistis citrella), were evaluated in a study conducted in a commercial orchard in northwest Paraná state, Brazil, where citrus canker is endemic. Nonlinear monomolecular, logistic and Gompertz models were fitted to monthly disease incidence data (proportion of leaves with symptoms) for each treatment for three seasons. The logistic model provided the best estimate of disease progress for all years and treatments evaluated and logistic parameter estimates were used to describe polyetic disease dynamics. Although citrus canker incidence increased during each of the seasons studied, it decreased over the whole study period, more so in copper‐treated trees than in water‐sprayed controls. Copper treatment reduced disease incidence compared with controls in every year, especially 2004–2005, when incidence was ca. 10‐fold higher in controls than in treated plots (estimated asymptote values 0·82 and 0·07, respectively). Copper treatment also reduced estimated initial disease incidence and epidemic growth rates every year.  相似文献   

4.
Citrus canker (Xanthomonas citri subsp. citri (Xcc)) can cause yield loss and trade restrictions. The pathogen is dispersed in rain splash and spread is promoted by wind. The goal of this study was to gain some insight into the properties of short‐distance splash dispersal of Xcc from ~1·5 m‐tall cankered grapefruit canopies in turbulent wind, common during rainstorms in Florida. Turbulent wind up to 19·9 m s?1 was tested in five experiments. Bacteria flux density (BFD, bacteria cm?2 min?1) was quantified at heights of 30, 70, 110, 130 and 180 cm above ground, and at four horizontal points (17, 51, 85 and 119 cm) at each height across the direction of the wind 1 m downwind. BFD varied among experiments, but the lowest BFDs were consistently detected at the greatest sample height. Despite differences between experiments, the relationship between log BFD and sample height was consistently described by a linear function (P = 0·06–<0·0001, R2 = 0·75–>0·99). The BFD collected at the horizontal points across the wind path was variable. BFDs collected were sometimes significantly different, but no relationship was discernible. Stronger, turbulent wind resulted in greater BFD, with a linear function describing the relationship between log BFD and wind speed (P = 0·2–0·02, R2 = 0·94–0·96). Multiple regression analysis demonstrated predictability of the proportion of total bacteria collected (F = 141, P < 0·0001, d.f. = 3, R2 = 0·53).  相似文献   

5.
Young leaves of 62 citrus cultivars were inoculated with conidia of three Spanish isolates of Alternaria alternata pv. citri, the causal agent of brown spot of citrus. Hybrids with Dancy mandarin, King mandarin or their derivates as a parent, grapefruit cultivars and the mandarin cultivars Guillermina, Emperor, Clemenpons and Esbal were highly susceptible to the pathogen. Satsuma cultivar Clausellina and orange cultivars, with the exception of Sanguinelli, were slightly susceptible. Lemon and lime cultivars were not susceptible, with the exception of Mexican lime (Citrus aurantifolia), which was slightly susceptible. Although this study shows a range of potential hosts for this pathogen, to date the only affected cultivars in Spain are Fortune and Nova mandarins, and Minneola tangelo. The susceptibility of Fortune fruits decreased as diameter increased, being susceptible through the whole season. This was confirmed with field observations in autumn where fruit infections have been detected when the diameter reaches 6–7 cm.  相似文献   

6.
Citrus postbloom fruit drop (PFD) is caused by Colletotrichum acutatum and C. gloeosporioides. These pathogens attack the flowers and cause premature fruit drop and the retention of fruit calyces. This study was designed to characterize the spatial and temporal dynamics of PFD in commercial citrus‐growing areas to better understand the disease spread. Experiments were carried out in three young orchards (500 trees each) in two municipalities in Sao Paulo State, Brazil. Symptoms of PFD on the flowers and presence of persistent calyces were assessed in each of three orchards for three years. Logistic, Gompertz and monomolecular models were fitted to the incidence data over time from the trees with symptoms. The spatial pattern of diseased trees was characterized by a dispersion index and by Taylor′s power law. An autologistic model was used for the spatiotemporal analysis. The logistic model provided the best fit to the disease incidence data, which had a fast progress rate of 0·53 per day. During the early epidemic of PFD, the spatial pattern of diseased trees was random, which suggested that inoculum spread was due to mechanisms other than rain splash. As the disease incidence increased (up to 12·6%), the spatial pattern of diseased trees became aggregated. The rapid rate of disease progress and the distribution of PFD suggest that dispersal of the pathogen is possibly related to a mechanism other than splash dispersal, which is more typical of other fruit diseases caused by Colletotrichum spp.  相似文献   

7.
To investigate the hypothesis that disrupting pathogen movement within the plant canopy could slow the development of aschochyta blight, the effect of pea canopy architecture on splash dispersal of Mycosphaerella pinodes‐conidia was studied in controlled conditions using a rainfall simulator generating rain events (2 mm) in still air. In intra‐plant dispersal experiments, a source constituted by a semi‐leafless pea plant with a single infectious lesion (108 pycnidia per cm2 of lesion, 1685 conidia per pycnidium) was placed in the middle of eight healthy target plants. Spore deposition was estimated by the number of lesions that developed on each stipule of the source (auto‐deposition) and target (allo‐deposition) plants after incubation. Rates of deposition on the source and target plants were 0·53 and 0·47, respectively. On the source plant, most of the spores were splashed downwards, with few spores remaining at the infectious node and very few spores moving upwards. In inter‐plant dispersal experiments, potted plants were grouped to constitute 1‐m2 canopies. A range of canopy architectures was achieved by using different plant densities and growth stages. A suspension of conidia was placed in the centre of each canopy. Resulting horizontal dispersal gradients were generally described by a negative exponential model. Canopies with a leaf area index (LAI) greater than 0·48 produced gradients with slopes that were not significantly different. A less dense canopy (LAI 0·36) produced a significantly steeper slope. Half‐distances were short and ranged between 1·6 and 6·5 cm. The barrier rate, calculated as the ratio of the mean number of lesions assessed on isolated plants to the mean number of lesions assessed on plants in canopies, increased with increasing canopy LAI.  相似文献   

8.
The combined effect of temperature (15°C, 20°C, 25°C, 30°C, 35°C, 40°C and 42°C) and leaf wetness duration (0, 4, 8 12, 16, 20 and 24 h) on infection and development of Asiatic citrus canker (Xanthomonas citri subsp. citri) on Tahiti lime plant was examined in growth chambers. No disease developed at 42°C and zero hours of leaf wetness. Periods of leaf wetness as short as 4 h were sufficient for citrus canker infection. However, a longer leaf duration wetness (24 h) did not result in much increase in the incidence of citrus canker, but led to twice the number of lesions and four times the disease severity. Temperature was the greatest factor influencing disease development. At optimum temperatures (25–35°C), there was 100% disease incidence. Maximum disease development was observed at 30–35°C, with up to a 12-fold increase in lesion density, a 10-fold increase in lesion size and a 60-fold increase in disease severity.  相似文献   

9.
The consequence of 10 successive monocultural cycles involving different legume species/cultivars on the inoculum potential (IP) of soils naturally infested by Aphanomyces euteiches was investigated under greenhouse conditions. The results showed that the IP of a soil naturally infested by A. euteiches can be significantly modified not only by the non‐host or host status of crop species but also by the level of resistance of the cultivar. Susceptible species/cultivars (pea, lentil and susceptible cultivars of vetch and faba bean) are very favourable to pathogen multiplication, and continuous cultivation of each of these increased the IP values of a soil with a moderate initial IP (from 1·9 to 3·5 after 10 cycles). Conversely, non‐host species and resistant cultivars of vetch or faba bean contributed to reducing the IP values of soils irrespective of the initial IP (from 1·9 to 0·5 and from 4 to 2, respectively, after 10 cycles). Aphanomyces root rot severity values on the resistant legume species/cultivars were not affected by the successive cultural cycles. This study, which showed that the IP of A. euteiches in soil can be reduced by planting appropriate legume species and cultivars in greenhouse conditions, will be useful for defining better crop successions for legumes.  相似文献   

10.
Two surveys (2005/2006 and 2009) were conducted in the state of São Paulo, Brazil, to investigate the incidence of ‘Candidatus Liberibacter asiaticus’ and ‘Ca. L. americanus’, two liberibacters associated with citrus huanglongbing (HLB) disease and both transmitted by Diaphorina citri, in orange jasmine (Murraya exotica), a widespread ornamental tree in cities and villages. The graft‐transmissibility of the two species, and their DNA relatedness to citrus‐associated liberibacters, were also investigated. Quantitative PCR was applied to PCR‐positive orange jasmine and HLB‐positive citrus growing in backyards and orchards to assess their inoculum source potentials. Liberibacters were detected in 91 of 786 sampled orange jasmine plants in 10 of 76 sampled locations. PCR‐positive trees exhibited yellow shoots and/or dieback symptoms indistinguishable from those on PCR‐negative trees. ‘Candidatus Liberibacter americanus’ was more common in 2005/2006 (96·6%) and ‘Ca. L. asiaticus’ in 2009 (84·8%). rplJ nucleotide sequences were identical within all populations of either species. Graft transmission succeeded only in homologous host combinations, including ‘Ca. L. americanus’ (2/10) from/to orange jasmine and ‘Ca. L. americanus’ (5/18) and ‘Ca. L. asiaticus’ (5/9) from/to citrus. Symptoms were mild and developed less rapidly in orange jasmine than in citrus, probably as a result of lower liberibacter multiplication rates. Respective titres of ‘Ca. L. americanus’ and ‘Ca. L. asiaticus’ in orange jasmine averaged 4·3 and 3·0 log cells g?1 tissue, compared with 5·5 and 7·3 in citrus. The results indicate that orange jasmine does not favour liberibacter multiplication as much as citrus. However, its importance in HLB epidemics should not be underestimated as it is a preferred host of D. citri and is not under any strict tree‐eradication programme or measures for insect control.  相似文献   

11.
A single‐tube nested PCR was developed for detection of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. The assay targets the pthA gene of Xcc and utilizes different annealing temperatures for the two primer pairs. It reliably detected as few as 1·0 × 102 Xcc cells, and was unaffected by the presence of PCR inhibitors. It was 10‐fold and 8500‐fold more sensitive than standard PCR and ELISA, respectively. Increased sensitivity was also achieved via the use of a washing method for DNA extraction, as opposed to direct extraction from leaf tissue. When evaluated for Xcc detection in 90 samples collected from affected pomelo orchards, the single‐tube nested PCR was superior to standard PCR, detecting the pathogen in 67 vs. 54 samples. It was also able to detect Xcc from samples with and without symptoms. This assay can be used as a rapid and sensitive technique for routine Xcc detection in field samples for surveillance of citrus canker.  相似文献   

12.
The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important international pest of citrus because it transmits the bacteria that cause huanglongbing (HLB). HLB limits citrus production globally. We evaluated the toxicity of sulfoxalor against D. citri and its parasitoid, Tamarixia radiata Waterston. Sulfoxaflor was as toxic as imidacloprid to adult D. citri. The LC50 values for sulfoxaflor and imidacloprid were 8.17 and 5.7 µg AI mL?1, respectively. The LC50 of sulfoxaflor for T. radiata adults was 3.3 times greater than for D. citri adults. Treatment with sulfoxaflor resulted in reduced oviposition, development of nymphs, and emergence of adult D. citri on plants, as compared with controls. The lowest concentration that reduced adult emergence was 0.6 µg AI mL?1. There was reduced feeding by D. citri adults on leaves treated with sulfoxaflor. The residual toxicity of sulfoxaflor was equivalent to imidacloprid. Under field conditions, formulated sulfoxaflor reduced populations of D. citri compared with untreated controls. Sulfoxaflor is a novel mode of action and is an effective tool for D. citri management.  相似文献   

13.
Citrus canker is caused by Xanthomonas citri subsp. citri. Bacterial biofilm formation is important in the development of this disease because it is a factor in epiphytic bacterial survival on leaves and in infection. N‐acetylcysteine (NAC), in addition to having antibacterial properties, reduces biofilm formation by a variety of bacteria and was therefore tested for impairing biofilm formation by X. citri. Copper is currently the antimicrobial compound most commonly applied in agriculture to control citrus canker. Therefore, this study also evaluated a possible synergistic effect between NAC and copper to improve the strategy for controlling this phytopathogen. NAC was found to decrease biofilm formation, the production of extracellular polysaccharides and bacterial stickiness. Motility was also affected in the presence of NAC. The best combination of NAC and copper for controlling X. citri was application of NAC followed by copper 48 h later. The concentrations of 6 mg mL?1 of NAC and 3·5 μg mL?1 of copper were able to kill X. citri. NAC inhibited the epiphytic behaviour of X. citri on leaves, altering cell growth and the bacterial ability to form biofilms. The addition of copper to cells previously treated with NAC enhanced its bactericidal activity. In conclusion, NAC has antibacterial properties against X. citri, interfering with bacterial growth, motility and biofilm formation. Under epiphytic conditions, NAC made the cells more susceptible to copper by affecting X. citri biofilm formation. This study opens new possibilities for the use of NAC in combination with copper, possibly resulting in more sustainable management of citrus canker.  相似文献   

14.
West Asia has been recognized as a major centre for the diversification of Xanthomonas citri pv. citri, a citrus quarantine pathogen of considerable economic importance. However, little genotyping data is available mainly due to the paucity of microbial resources in this region. Using a comprehensive strain collection, several genotyping techniques and a pathogenicity assay, the status of strains causing Asiatic citrus canker in Iran, an internationally significant citrus‐producing country, was clarified. All strains were genetically related to X. citri pv. citri pathotype A* (i.e. strains with a host range restricted to Mexican lime and related species) but not to pathotype A (i.e. strains with a wide host range among rutaceous species). The findings were based on discriminant analysis of the principal components of MLVA‐31 data and were further confirmed by pathogenicity data. Two genetically, geographically and pathologically separate groups of strains in Iran were identified. One of the groups had never been previously reported anywhere in the world. A very strong genetic structure was found (RST = 0·938), consistent with their geographical isolation. Strains from these two groups also differed in terms of their type III effector repertoire. The atypical host range of one of these groups could explain why some Iranian strains had previously been mistakenly identified as pathotype A. This study suggests the absence of invasive pathotype A strains in Iran (known as DAPC 1), which account for most of the economically important outbreaks internationally.  相似文献   

15.
Citrus canker (Xanthomonas citri subsp. citri, Xcc) is one of the most serious diseases citrus in Florida, and elsewhere in the world. The disease causes yield loss and some fresh fruit trade restrictions may apply. Cultural management techniques such as windbreaks may work by not only reducing wind speed, but also reducing the period of exposure of susceptible foliage or fruit to those wind speeds that support infection from incoming inoculum. To investigate the effect of exposure period to inoculum of Xcc, seedlings of canker-susceptible Swingle citrumelo were exposed to sprayed inoculum for increasing periods at different wind speeds. The incidence and severity of citrus canker was assessed. In three experiments the incidence and severity of citrus canker most often increased with longer periods of exposure to inoculum, especially so at wind speeds of ≥16 m/s compared to wind speeds of ≤5 m/s (wind speed also increased disease incidence and severity). Regression analysis demonstrated relationships between period of exposure to inoculum and the percent infected leaves per plant, the number of lesions per plant, the number of lesions per infected leaf, and for the percent of infected leaves with lesions on the petioles at wind speeds of ≥16 m/s (R2?=?0.16–0.72). Due to the effect of inoculum exposure period and wind speed, attempts should be made to minimize exposure of canker-susceptible citrus when wind speed is highest and inoculum is available. Windbreaks should help minimize periods of exposure to splashed inoculum in high winds.  相似文献   

16.
BACKGROUND: Diaphorina citri populations in Florida are developing resistance to commonly used neurotoxic insecticides. Alternatives to neurotoxins, such as insect growth regulators, are needed to control this season-long subtropical pest to prevent or delay development of insecticide resistance. In the present investigation, two insect growth regulators (IGRs), buprofezin and diflubenzuron, were evaluated against various developmental stages of D. citri. RESULTS: The 0–1-day-old D. citri eggs were more susceptible to buprofezin and diflubenzuron than the 3–4-day-old eggs. Adult emergence was completely suppressed by treating first- or third-instar nymphs with buprofezin or diflubenzuron at 30–240 or 23–184 µg mL−1 rates respectively. Treatment of fifth-instar nymphs with diflubenzuron at a rate of 184 µg mL−1 and with buprofezin at 30–240 µg mL−1 rates resulted in approximately 20 and 15–80% reductions in adult emergence respectively. The mean number of eggs per plant was reduced at 5 days after topical treatment with diflubenzuron. Mean egg hatch per plant was reduced at 5 and 6–15 days after topical treatments with buprofezin and diflubenzuron respectively. CONCLUSION: Buprofezin and diflubenzuron effectively suppressed D. citri adult emergence. D. citri were more susceptible as early (first–third-instar) than late (fifth-instar) nymphs. Both IGRs inhibited egg production and egg hatch. Reduction in the number of subsequent offspring suggests reduced vertical transmission of Candidatus Liberibacter asiaticus, the pathogen thought to cause citrus greening disease. The present results indicate that both IGRs tested here should be effective tools for rotation in insecticide-based D. citri management programs. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
The use of proper management strategies for citrus huanglongbing (HLB), caused by ‘Candidatus Liberibacter asiaticus’ (Las) and transmitted by Asian citrus psyllid (ACP) (Diaphorina citri), is a priority issue. HLB control is based on healthy seedlings, tolerant rootstock cultivars and reduction of ACP populations. Here, dynamic populations of Las in different citrus hosts and each instar of ACP were studied, together with the seasonal growth and distribution of Las in different tissues, using conventional and TaqMan real‐time PCR. Different levels of susceptibility/tolerance to HLB were seen, resulting in different degrees of symptom severity and growth effects on hosts or rootstocks. Troyer citrange, Swingle citrumelo and wood apple were highly tolerant among 11 rootstock cultivars. Regarding distribution and seasonal analysis of Las, mature and old leaves contained high concentrations in cool temperatures in autumn and spring. Las was detected earlier through psyllid transmission than through graft inoculation, and the amounts of Las (AOL) varied in different hosts. Thus, different AOL (104–107 copy numbers μL?1) and Las‐carrying percentages (LCP; 40–53.3%) were observed in each citrus cultivar and on psyllids, respectively. Furthermore, both AOL and LCP were lower in nymphs than in adult psyllids, whereas the LCP of psyllids were not affected by increasing the acquisition‐access time. The present study has significant implications for disease ecology. The combination of early detection, use of suitable rootstocks and constraint of psyllid populations could achieve better management of HLB disease.  相似文献   

18.
A detached leaf protocol for rapid screening of germplasm for resistance to citrus canker (Xanthomonas citri subsp. citri, Xcc) and citrus bacterial spot (Xanthomonas alfalfae subsp. citrumelonis, Xac) was developed to evaluate limited quantities of leaf material. Bacterial inocula of Xcc or Xac at 104, 105, or 108 cfu ml−1 were injection-infiltrated into the abaxial surface of disinfested, immature leaves of susceptible and resistant genotypes. Inoculated detached leaves were placed on the surface of 0.5% water agar plates and incubated at 28°C under a 12 h photoperiod. Likewise, inocula were infiltrated into attached leaves of greenhouse plants. At high inoculum concentrations of Xcc or Xac (108 cfu ml−1), resistant cultivars of kumquat developed a hypersensitive-like reaction within 3 days post inoculation (dpi). At 105 cfu ml−1, populations 14 dpi were <104 per inoculation site. In canker-susceptible Citrus spp. (‘Duncan’ grapefruit and ‘Rough’ lemon), water-soaked areas occurred by 3 dpi and typical canker lesions developed by 7 to14 dpi. Concentration of Xcc recovered from inoculation sites was approximately 105 cfu ml−1 by 14 dpi. In citrus bacterial spot-susceptible citrus (‘Swingle’ citrumelo and grapefruit), symptoms developed within 7 dpi. Populations of Xac after inoculation at 105 cfu ml−1 were comparable to Xcc in susceptible hosts 14 dpi (>105). The detached leaf assay is useful for the characterization and differentiation of lesion phenotype for each Xanthomonas pathogen permitting rapid screening of germplasm resistance based on the quantification of number of lesions and bacterial concentration.  相似文献   

19.
Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus bacterial canker, an important disease for the citrus industry. Studies of Xac survival in environments outside of the lesion performed in the past may have underestimated the viable population because the recovery was based on the ability of the bacterium to grow on culture media. This study monitored survival of Xac that express green fluorescent protein (GFP) in two different forms: the native protein, and a protein that is unstable due to a specific oligopeptide tail targeted by proteases within the bacterium. Transformed strains of Xac were verified to be stable in their expression of GFP and to show no differences in virulence and fitness compared to wild type strains. Evaluation of protein stability confirmed that strains with unstable GFP only expressed and fluoresced in metabolically active cells, and not in dead bacteria. Fluorescence of unstable GFP strains under confocal microscopy was used to track bacterial survival and biofilm formation on leaf and fruit surfaces. After spray inoculation, aggregates of fluorescing cells of unstable GFP strains formed biofilms on leaves and fruit. Bacterial cells that aggregated on the surfaces only survived when protected from desiccation. Aggregation of viable bacteria in biofilms confirms their role in pathogen survival outside of lesions and protection from bactericide treatments in the field or in the fruit disinfection process.  相似文献   

20.
Citrus canker (caused by the bacterial pathogen Xanthomonas citri subsp. citri, Xcc) can cause severe damage to citrus. It is endemic in Florida, and occurs in other citrus growing regions. The bacterium is dispersed predominantly in rain splash. To simulate dispersal in splash, and to investigate the effect of wind speed on infection, young plants of Swingle citrumelo were exposed to sprayed inoculum at different wind speeds. Wind was generated using an axial fan, and a pressurized sprayer delivered the inoculum spray. In the five experiments, higher wind speeds (>10 m s−1) consistently resulted in higher incidence and severity of citrus canker developing. By 15 ms−1, there was a dramatic increase in disease. Visible injury to leaves of Swingle citrumelo due to wind was evident at wind speeds ≥ 13 m s−1. The relationship between wind speed and disease, and wind speed and injury was described by a logistic model. More disease was associated with visible injury as the wind speed increased, and disease not associated with visible injury also increased with wind speed. The petiole-leaflet junction was more often infected at higher wind speeds (≥17 m s−1). The concentration of the Xcc inoculum increased the incidence and severity of citrus canker in all experiments. Reducing wind speed in citrus groves with the aid of wind breaks may contribute to a reduction in the severity of an epidemic by reducing dispersal and infection events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号