首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunodominant membrane protein Imp of several phytoplasmas within the ‘Candidatus Phytoplasma aurantifolia’ (16Sr‐II) group was investigated. Eighteen isolates from Iran (11), East Asia (5), Africa (1) and Australia (1) clustered into three phylogenetic subgroups (A, B and C) based on the 16S rDNA and imp genes, regardless of geographic origin. The imp gene sequences were variable, with more non‐synonymous than synonymous mutations (68 vs 20, respectively), even though many of the non‐synonymous ones (75%) produced conservative amino acid replacements. Eight codon sites on the extracellular region of the protein were under positive selection, with most of them (75%) coding for non‐conservative amino acid substitutions. Full‐length (21 kDa) and truncated (16 kDa) Imp proteins of two economically important Iranian phytoplasmas [lime witches’ broom (LWB) and alfalfa witches’ broom (AlWB‐F)] were expressed as His‐tagged recombinant proteins in Escherichia coli. An antiserum raised against full‐length recombinant LWB Imp reacted in western blots with membrane proteins extracted from LWB‐infected periwinkle and lime, indicating that Imp (19 kDa) is expressed in infected plants and is a membrane‐associated protein. The same polyclonal antibody also detected native Imp in proteins from periwinkles infected by phytoplasmas closely related to LWB (subgroup C) only, confirming phylogenetic clustering based on 16S rDNA and imp genes. Imp proteins of LWB and AlWB‐F isolates were also recognized by an antiserum raised against an enriched preparation of AlWB‐F phytoplasma cells, demonstrating the antigenic properties of this protein.  相似文献   

2.
This study determined the tuf gene sequence of the phytoplasma specific to paulownia witches’‐broom from Nanyang, China (hereby designated PaWB‐Ny). The PaWB‐Ny tuf gene was 1185 nucleotides in length and confirmed that the phytoplasma belongs to subgroup 16SrI‐D of aster yellows. Three characteristic GTP‐binding protein motifs were identified based on the peptide deduced from the tuf gene sequence. Results suggested that the elongation factor EF‐Tu was localized in the cytoplasm and lacked hydrophobic transmembrane domains. Antibodies against PaWB‐Ny EF‐Tu were prepared by rabbit immunization with glutathione‐S‐transferase (GST)‐tagged EF‐Tu fusion protein expressed in Escherichia coli. EF‐Tu exhibited a molecular weight of ~43 kDa and was detected in PaWB‐infected paulownia plants by western blot analysis. Indirect enzyme‐linked immunosorbent assays (ELISA) and dot blotting analyses were performed with freezing and thawing treatments during antigen preparation. Dilution of extracts to an appropriate scale significantly reduced non‐specific reactions. The resultant PaWB EF‐Tu antibody reacted with antigens from plants infected with periwinkle virescence and chinaberry tree witches’‐broom phytoplasmas, but not those infected with jujube witches’‐broom or bishopwood witches’‐broom phytoplasma. The EF‐Tu was characteristically localized within the phytoplasmal cytoplasm of infected plant phloem tissues.  相似文献   

3.
Witches’ broom disease (WBD), caused by ‘Candidatus Phytoplasma aurantifolia’, is a serious disease of acid lime (Citrus aurantifolia) in Oman and the UAE. However, little is known about the distribution of phytoplasma and the expression of WBD symptoms in different geographical locations. A survey was carried out in 18 districts in Oman and the UAE covering 143 orchards and 5823 acid lime trees. ‘Candidatus Phytoplasma aurantifolia’ was detected in acid lime in all the 18 surveyed districts. However, the development of typical symptoms of WBD was only observed in 12 districts. Districts in which the phytoplasma was present but symptoms were not expressed were located either in desert areas or in areas characterized by semitropical conditions. Phylogenetic analysis of 16 phytoplasma isolates from trees developing WBD symptoms and six phytoplasma isolates from trees with no WBD symptoms showed that all isolates share an identical 16S rRNA sequence, belonging to subgroup II‐B. Quantitative PCR analysis showed that the concentration of phytoplasma is significantly higher (8800–801 000 copies) in leaves developing WBD symptoms compared to 2–268 copies in symptomless leaves from the same trees and 8–874 copies in acid lime trees from areas where disease symptoms were not expressed. The lack of expression of WBD symptoms under certain environmental conditions may suggest that symptom development and phytoplasma are affected by certain unfavourable environmental conditions. These findings could provide a basis for managing WBD through encouraging lime cultivation under climatic conditions less conducive to WBD symptom expression.  相似文献   

4.
5.
The phloem‐sucking psyllid Cacopsylla picta plays an important role in transmitting the bacterium ‘Candidatus Phytoplasma mali’, the agent associated with apple proliferation disease. The psyllid can ingest ‘Ca. Phytoplasma mali’ from infected apple trees and spread the bacterium by subsequently feeding on uninfected trees. Until now, this has been the most important method of ‘Ca. Phytoplasma mali’ transmission. The aim of this study was to investigate whether infected C. picta are able to transmit ‘Ca. Phytoplasma mali’ directly to their progeny. This method of transmission would allow the bacteria to bypass a time‐consuming reproductive cycle in the host plant. Furthermore, this would cause a high number of infected F1 individuals in the vector population. To address this question, eggs, nymphs and adults derived from infected overwintering adults of C. picta were reared on non‐infected apple saplings and subsequently tested for the presence of ‘Ca. Phytoplasma mali’. In this study it was shown for the first time that infected C. picta individuals transmit ‘Ca. Phytoplasma mali’ to their eggs, nymphs and F1 adults, thus providing the basis for a more detailed understanding of ‘Ca. Phytoplasma mali’ transmission by C. picta.  相似文献   

6.
Occurrence of ‘Candidatus Liberibacter solanacearum’ (CLso) was studied in field‐grown carrots (Daucus carota) in different regions of Finland. In addition, the frequency of CLso in carrots and in field populations of its vector, the carrot psyllid (Trioza apicalis), was studied in southwestern Finland. CLso was detected in six of the seven regions where the main carrot cultivation areas are located. The highest disease incidence was found in southwestern Finland, in the area where this carrot pathogen was originally found. In the Tavastia Proper and Southwest Finland regions, CLso was detected in 26 out of 30 randomly chosen fields inspected in 2013 and 2014, and in a third of those fields more than 10% of plants showed symptoms. Of those carrots showing both psyllid feeding‐associated leaf curling and CLso infection‐associated leaf discolouration symptoms, 77% were CLso positive in the PCR test. Some symptomless carrots from the affected fields also tested positive. Of the carrot psyllid individuals collected from the same area, 60% were CLso positive. Elsewhere, disease incidence was variable in South Ostrobothnia in western Finland and low but established in South Savonia in eastern Finland. CLso was not detected in the North Ostrobothnia region. Sequencing of the amplified DNA fragments confirmed that the bacteria in the carrot samples from different areas within Finland all represented CLso haplotype C. The frequent occurrence and wide distribution of this pathogen, transmitted by a psyllid that does not migrate over long distances, suggest that it is persistent in Finland.  相似文献   

7.
Peach orchards in the northeast of Spain were severely affected in 2012 by a previously unreported disease in this area. The symptoms included early reddening, leaf curling, decline, abnormal fruits, and in some cases death of the peach trees. All the infected peach samples were positive for ‘Candidatus Phytoplasma pyri’, but none were infected by the ‘Ca. Phytoplasma prunorum’. In this work, potential vectors able to transmit ‘Ca. Phytoplasma pyri’ from pear to peach and between peach trees were studied and their infective potential was analysed at different times of the year. Transmission trials of the phytoplasma with potential vectors to an artificial feeding medium for insects and to healthy peach trees were conducted. Additionally, isolated phytoplasmas were genetically characterized to determine which isolates were able to infect peach trees. Results showed that the only insect species captured inside peach plots that was a carrier of the ‘Ca. Phytoplasma pyri’ phytoplasma was Cacopsylla pyri. Other insect species captured and known to be phytoplasma transmitters were present in very low numbers, and were not infected with ‘Ca. Phytoplasma pyri’ phytoplasma. A total of 1928 individuals of C. pyri were captured in the peach orchards, of which around 49% were phytoplasma carriers. All the peach trees exposed to C. pyri in 2014, and 65% in 2015, were infected by ‘Ca. Phytoplasma pyri’ 1 year after exposure, showing that this species is able to transmit the phytoplasma to peach. Molecular characterization showed that some genotypes are preferentially determined in peach.  相似文献   

8.
The objectives of this work were (i) to determine the influence of temperature on infection of citrus by ‘Candidatus Liberibacter asiaticus’ and ‘Candidatus Liberibacter americanus’, the two bacterial species associated with citrus huanglongbing (HLB) in Brazil, and (ii) to determine the influence of temperature on citrus colonization by ‘Ca. L. asiaticus’, which has taken over from ‘Ca. L. americanus’ as the predominant species in Brazil since 2008. Two experiments were carried out with graft‐inoculated Valencia oranges on Rangpur lime rootstocks. Immediately after inoculation the plants were maintained for 423 days in growth chambers under the following night/day temperature conditions: 17/22, 22/27 or 27/32°C, with a dark/light photoperiod of 8/16 h. Infection and colonization of plants were determined using quantitative PCR (qPCR). ‘Candidatus Liberibacter americanus’ did not infect the plants maintained at 27/32°C; however, infection by ‘Ca. L. asiaticus’ occurred at all studied temperatures. Two months after inoculation, ‘Ca. L. asiaticus’ was distributed throughout the inoculated plants, with mean Ct values in the range of 30–31 for leaves and 25–28 for roots. Over time, ‘Ca. L. asiaticus’ reached the highest titres in mature leaves (mean Ct value = 26·7) of citrus plants maintained at 22/27°C. ‘Candidatus Liberibacter asiaticus’ colonization of citrus plants was negatively affected by the daily temperature regime of 27/32°C (mean Ct value in mature leaves = 33·6).  相似文献   

9.
10.
During the summer 1996, twelve of twenty-eight leek plants located in a garden near eské Budjovice, South Bohemia exhibited symptoms typical of diseases associated with phytoplasmas. In summer 1998 similar symptoms were detected in leek plants in a field used for seed production located in Romagna, North Italy. In both cases the plants were established in the spring of the previous year. Plants showed flower abnormalities: stamen elongation, anther sterility, pistil proliferation, as well as poor, if any, seed production. Phytoplasma-like structures were detected by scanning and transmission electron microscopy in phloem sieve elements in the Czech diseased plants, but not in healthy ones. Nested-PCR amplifications of extracted DNA with phytoplasma-specific oligonucleotide primer pairs confirmed the presence of phytoplasmas in these plants at low concentrations. Restriction fragment length polymorphism analyses of amplified ribosomal sequences allowed the identification of detected phytoplasmas: all the samples from the Czech Republic contained aster yellows related phytoplasmas (16SrI-B) while in the Italian samples aster yellows related phytoplasmas (16SrI-B) together with stolbur related phytoplasmas (16SrXII-A) were identified. This is the first report of detection and identification of a phytoplasma disease of leek in the Czech Republic and Italy.  相似文献   

11.
A protocol for the specific detection and quantification of ‘Candidatus Liberibacter solanacearum’ in carrot seeds using real‐time PCR was developed. The bacterium was detected in 23 out of 54 carrot seed lots from 2010 to 2014, including seeds collected from diseased mother plants. The average total number of ‘Ca. L. solanacearum’ cells in individual seeds ranged from 4·8 ± 3·3 to 210 ± 6·7 cells per seed from three seed lots, but using propidium monoazide to target live cells, 95% of the cells in one seed lot were found to be dead. Liberibacter‐like cells were observed in the phloem sieve tubes of the seed coat and in the phloem of carrot leaf midrib from seedlings. The bacterium was detected as early as 30 days post‐germination, but more consistently after 90 days, in seedlings grown from PCR positive seed lots in an insect‐proof P2 level containment greenhouse. Between 12% and 42% of the seedlings from positive seed lots tested positive for ‘Ca. L. solanacearum’. After 150 days, symptoms of proliferation were observed in 12% of seedlings of cv. Maestro. ‘Candidatus Liberibacter solanacearum’ haplotype E was identified in the seeds and seedlings of cv. Maestro. No phytoplasmas were detected in seedlings with symptoms using a real‐time assay for universal detection of phytoplasmas. The results show that to prevent the entry and establishment of the bacterium in new areas and its potential spread to other crops, control of ‘Ca. L. solanacearum’ in seed lots is required.  相似文献   

12.
13.
The use of proper management strategies for citrus huanglongbing (HLB), caused by ‘Candidatus Liberibacter asiaticus’ (Las) and transmitted by Asian citrus psyllid (ACP) (Diaphorina citri), is a priority issue. HLB control is based on healthy seedlings, tolerant rootstock cultivars and reduction of ACP populations. Here, dynamic populations of Las in different citrus hosts and each instar of ACP were studied, together with the seasonal growth and distribution of Las in different tissues, using conventional and TaqMan real‐time PCR. Different levels of susceptibility/tolerance to HLB were seen, resulting in different degrees of symptom severity and growth effects on hosts or rootstocks. Troyer citrange, Swingle citrumelo and wood apple were highly tolerant among 11 rootstock cultivars. Regarding distribution and seasonal analysis of Las, mature and old leaves contained high concentrations in cool temperatures in autumn and spring. Las was detected earlier through psyllid transmission than through graft inoculation, and the amounts of Las (AOL) varied in different hosts. Thus, different AOL (104–107 copy numbers μL?1) and Las‐carrying percentages (LCP; 40–53.3%) were observed in each citrus cultivar and on psyllids, respectively. Furthermore, both AOL and LCP were lower in nymphs than in adult psyllids, whereas the LCP of psyllids were not affected by increasing the acquisition‐access time. The present study has significant implications for disease ecology. The combination of early detection, use of suitable rootstocks and constraint of psyllid populations could achieve better management of HLB disease.  相似文献   

14.
The aim of this work was to assess the effects of a combined inoculum of a rhizobacterium and an arbuscular mycorrhizal (AM) fungus on plant responses to phytoplasma infection, and on phytoplasma multiplication and viability in Chrysanthemum carinatum plants infected by chrysanthemum yellows phytoplasma (CY). Combined inoculation with Glomus mosseae BEG12 and Pseudomonas putida S1Pf1Rif resulted in some resistance to phytoplasma infection (about 30%), delayed symptom expression in nonresistant plants, improved growth of the aerial part of the infected plants (+68·1%), and altered root morphology (root tip number: +49·9%; branching degree: +82·8%). Combined inoculation with the two beneficial microorganisms did not alter CY multiplication and viability. In inoculated and infected plants, phytoplasma morphology was typical of senescent cells. A more active and efficient root system in double‐inoculated plants probably mediated the effects of the two rhizospheric microorganisms in the infected plants. The practical application of rhizospheric microorganisms for mitigating phytoplasma damage, following evaluation under field conditions, represents an additional tool for the integrated management of phytoplasmosis.  相似文献   

15.
Carrot psyllid Trioza apicalis was recently found to carry the plant pathogenic bacterium ‘Candidatus Liberibacter solanacearum’ (CLs). To confirm the transmission of bacteria by the psyllids and to dissect the symptoms caused in carrot plants by psyllid feeding and CLs infection, a greenhouse experiment with single psyllids feeding on separate plants was performed. A positive correlation was found between the amount of CLs bacteria in the psyllids and in the corresponding plants exposed to feeding, indicating CLs transmission. The female psyllid feeding caused more severe damage than male feeding, and resulted in a substantial decrease in the root weight. Female psyllid feeding also significantly reduced the carrot leaf weight and increased the number of curled leaves. The number of curled leaves was also increased by the nymphs when their number exceeded 10 per plant. A high titre of CLs bacteria significantly reduced root weight, while not affecting the weight or number of the leaves. However, the amount of CLs correlated with the number of leaves showing discolouration symptoms. Microscopy of infected carrot plants revealed that the phloem tubes throughout the whole plant, from leaf veins to the root tip, were colonized by bacteria. The bacterial cells appeared to be long and thin flexible rods with tapering ends and a transversally undulated surface. Microscopy also revealed collapsed phloem cells in the infected carrots. Damage in the phloem vessels is likely to reduce the sucrose transport from source leaves to the root, explaining the observed leaf discolouration and reduction in root weight.  相似文献   

16.
Huanglongbing (HLB), caused by ‘Candidatus Liberibacter asiaticus’ (Las), is a devastating disease of citrus trees in Florida. Previous work showed that the rootstock cultivar Cleopatra mandarin (Citrus reticulata) has a higher population of Las in roots than Swingle citrumelo (C. paradisi × Poncirus trifoliata). Las reduced fibrous root biomass and sucrose content in Cleopatra mandarin more than in Swingle citrumelo. To understand the mechanisms for susceptibility to Las infection, sucrose and hormone metabolism status were evaluated in Cleopatra mandarin and Swingle citrumelo. In fibrous roots of Cleopatra mandarin, higher expression of genes related to sucrose cleavage was consistent with lower sucrose content compared to noninoculated seedlings at 5 weeks post‐root trimming (wpt). In fibrous roots of Swingle citrumelo, both sucrose content and gene expression related to sucrose cleavage were less disrupted by Las infection compared to Cleopatra mandarin at 5 wpt. Genes associated with salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) synthesis, and ABA signalling, phospholipases D (PLD), and phospholipase A2 (PLA2) were activated by Las infection at 5 wpt in Cleopatra mandarin. Expression of downstream effectors of SA, i.e. NPR1, WRKY70 and PR1, did not change in Cleopatra mandarin, suggesting inhibition of the response to SA by the elevation of ABA, ET and PLD. In contrast, the up‐regulation of PR1, lower response of sucrose metabolism genes and down‐regulation of biosynthesis of phytohormones indicates that Swingle citrumelo activates a more effective defence against this biotrophic pathogen than Cleopatra mandarin.  相似文献   

17.
Huanglongbing (HLB), associated with the phloem‐limited bacterium ‘Candidatus Liberibacter asiaticus’ (Las), is devastating trees in citrus orchards of Florida. Additionally, Phytophthora nicotianae, omnipresent in citrus soils, causes root rot that reduces water and nutrient uptake by fibrous roots. To investigate fibrous root damage and replacement and canopy size in relation to infection of fibrous roots by Las and P. nicotianae, rootstock seedlings of Swingle citrumelo (Citrus paradisi × Poncirus trifoliata) were inoculated with Las or P. nicotianae in two greenhouse pot trials. Phytophthora nicotianae caused root damage within 5 weeks post‐inoculation, which led to greater reduction of canopy size than for Las‐infected seedlings by the end of the experiment. Las increased accumulation of fibrous root biomass at 5 weeks post‐root trimming (wpt) in the 2014 trial and at 11 wpt in the 2015 trial. New root length was not consistently increased by Las. Reduced total leaf area of symptomless Las‐infected seedlings compared to noninoculated controls might be due to the combined effect of altered carbohydrate allocation between shoots and roots and altered leaf morphology.  相似文献   

18.
19.
A stolbur‐type phytoplasma is the putative pathogen of grapevine yellows disease that causes economic damage to vineyards in most growing areas around the world. The pathogen is known to be transmitted to vines by two planthoppers, Hyalesthes obsoletus and Reptalus panzer; the latter is found in Europe but has not yet been observed in Israel. The establishment of a vector–pathogen–plant relationship requires that the pathogen and the vector meet on a shared host plant. This does not happen in the ecosystem examined here, where two different principal host plants for the obligate pathogen and its vector exist: the pathogen is established on vines, while its vector, H. obsoletus, develops on Vitex agnus‐castus. The present study verified that: (i) the vector cannot complete its life cycle on vines; (ii) V. agnus‐castus does not grow in the immediate vicinity of vines, and does not harbour the pathogen; and (iii) the pathogen is not vertically transmitted from mother to offspring. Moreover, in a thorough search of plants in vine growing areas, no other plants were found that host both the vector and the pathogen. However, it was found that the planthopper can acquire the phytoplasma from infected vines. Nonetheless, this does not prove the ability of the planthopper to further transmit the pathogen to vines and does not explain the presence of the vector on the non‐preferred vines. Thus, the enigma of the pathogen–vector–host triangle in this system remains unresolved.  相似文献   

20.
Huanglongbing (HLB) disease is seriously threatening and/or damaging the citrus industry worldwide. Accurate detection of the three species associated with HLB disease, ‘Candidatus Liberibacter asiaticus’, ‘Candidatus Liberibacter africanus’ and ‘Candidatus Liberibacter americanus’, is essential for the preventive control of the disease. Real‐time PCR is a useful tool for bacterial detection. However, nucleic acid purification steps limit the number of samples that can be processed by PCR. Universal detection of ‘Ca. Liberibacter’ species was achieved by direct tissue‐printing and spotting of plant leaf petiole extracts or squashing of individual psyllids onto paper or nylon membranes. Primers were designed and used with TaqMan chemistry for accurate detection of the bacterium in immobilized targets (prints of 10 overlapping leaf pedicels per tree, or squashed single vectors), by extraction with water and direct use for real‐time PCR. This simplified method was validated and could detect HLB‐liberibacters in 100% of leaves with symptoms and 59% of symptomless leaves collected from HLB‐infected trees. The use of direct assays as template showed good agreement with use of purified DNA (κ = 0·76 ± 0·052). The squash assay allowed detection of the bacterium in 40% of mature Diaphorina citri that fed on leaves of HLB‐infected trees with or without symptoms. A commercial ready‐made kit based on this technology showed 96% accuracy in intra‐laboratory performance studies. The simplified direct methods of sample preparation presented herein can be effectively adopted for use in rapid screening of HLB agents in extensive surveys, certification schemes or for epidemiological and research studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号