首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, the putative phytoplasma species causing coconut lethal yellowing disease in Mozambique and Tanzania were characterized. The 16S rRNA and secA genes were sequenced. Phylogenetic analysis revealed that Mozambican coconut phytoplasmas belong to three different types: ‘Candidatus Phytoplasma palmicola’ 16SrXXII‐A, a second strain that was previously isolated in Tanzania and Kenya (16SrIV‐C), and a third strain that was different from all known lethal yellowing phytoplasma species. The third strain potentially represents a novel species and is closely related to pine phytoplasma. Co‐infection with ‘Ca. Phytoplasma pini’‐related and ‘Ca. Phytoplasma palmicola’ 16SrXXII‐A strains was observed. Furthermore, sequence variation in ‘Ca. Phytoplasma palmicola’ at the population level was consistent with purifying selection and population expansion.  相似文献   

3.
4.
The presence of phytoplasmas in seven coniferous plant species (Abies procera, Pinus banksiana, P. mugo, P. nigra, P. sylvestris, P. tabuliformis and Tsuga canadensis) was demonstrated using nested PCR with the primer pairs P1/P7 followed by R16F2n/R16R2. The phytoplasmas were detected in pine trees with witches’ broom symptoms growing in natural forest ecosystems and also in plants propagated from witches’ brooms. Identification of phytoplasmas was done using restriction fragment length polymorphism analysis (RFLP) of the 16S rDNA gene fragment with AluI, MseI and RsaI endonucleases. All samples showed RFLP patterns similar to the theoretical pattern of ‘Candidatus Phytoplasma pini’, based on the sequence of the reference isolate Pin127S. Nested PCR‐amplified products, obtained with primers R16F2n/R16R2, were sequenced. Comparison of the 16S rDNAs obtained revealed high (99·8–100%) nucleotide sequence identity between the phytoplasma isolates. The isolates were also closely related to four other phytoplasma isolates found in pine trees previously. Based on the results of RFLP and sequence analyses, the phytoplasma isolates tested were classified as members of the ‘Candidatus Phytoplasma pini’, group 16SrXXI.  相似文献   

5.
Phytoplasma-induced floral malformations such as virescence, phyllody, and proliferation were observed on hydrangeas in Gunma Prefecture, Japan. Phylogenetic analyses based on 16S rRNA, secY, groEL, and amp gene sequences indicated that the affected hydrangea plants were associated with phytoplasmas belonging to ‘Candidatus Phytoplasma asteris’, but not to ‘Ca. P. japonicum’, which occurs in hydrangeas showing phyllody in Japan. This is the first molecular evidence of an association of ‘Ca. P. asteris’ with hydrangea plants in Japan.  相似文献   

6.
In several European countries apple trees are affected by apple proliferation disease, which is usually associated with the presence of ‘Candidatus Phytoplasma mali’. During 2010, samples from several apple trees displaying proliferation symptoms were collected throughout the Czech Republic to verify identity of phytoplasmas detected in association with the disease. The majority of the 74 apple trees examined using molecular tools were positive for ‘Ca. P. mali’ presence. The 16S–23S ribosomal genes, the ribosomal protein genes and the nitroreductase and rhodonase like genes were then studied to verify phytoplasma strain variability on multigenic bases. Two RFLP profiles and correspondingly two genetic lineages were found in the PCR-amplified fragments covering the 16S–23S rDNA spacer region. ‘Ca. P. mali’ strains belonging to rpX-A subgroup were identified in the majority of the apple tree sampled, whereas phytoplasmas belonging to the rpX-B subgroup were distributed sporadically. The apple proliferation subtypes AP-15 and AT-2 exhibited nearly equal occurrence; the AT-1 subtype and a mixture of the two or all three of the AP subtypes were infrequently found. The PCR/RFLP results were confirmed by nucleotide sequence analyses of selected ‘Ca. P. mali’ strains.  相似文献   

7.
An outbreak of Spartium witches’ broom (SpaWB) in Sicily prompted us to identify and characterize associated phytoplasmas. Over 80 samples of Spanish broom (Spartium junceum) and around 270 individuals of the potential vector Livilla spectabilis were collected and analysed. Single and mixed infections of 16SrV and ‘Candidatus Phytoplasma spartii’ were detected in Spanish broom samples and for the first time in L. spectabilis. The 16SrV isolates were further characterized by multilocus sequence typing (MLST) to determine their phylogenetic relationship with flavescence dorée phytoplasma (FDp) and to evaluate the risk of host-jumping to grapevine. Phylogenetic analysis of most of the analysed genes using the MLST approach grouped S. junceum 16SrV-C isolates with FDp isolates infecting grapevine and Scaphoideus titanus. Notably, phylogenetic analysis of the vmpA gene clustered the S. junceum isolates with FDp genotypes transmitted by S. titanus. This study extends the knowledge of SpaWB epidemiology, focusing on the possible risk of a 16SrV host jump from Spanish broom to grapevine. Spanish broom was identified as a reservoir and potential inoculum source of phytoplasmas that cause severe disease in cultivated crops. Furthermore, the L. spectabilis psyllid may be involved in the epidemiology of this 16SrV-C phytoplasma, although in the absence of in vivo transmission trials. The study further confirms the strong ability of phytoplasmas to adapt to new hosts and vectors, thus leading to potential phytosanitary emergencies.  相似文献   

8.
 本研究对山东省11个地区的枣疯病样品进行了鉴定和分子变异分析。以样品总DNA为模板,经扩增和序列测定,分别得到16S rRNA (1 432 bp)、核糖体蛋白基因rp (1 196 bp)、转运蛋白基因secA (836 bp) 和secY (1 421 bp) 的序列,secA基因序列是首次从枣疯病植原体中扩增获得。对获得的序列与NCBI数据库中相关植原体序列进行聚类和核苷酸变异分析,结果显示山东省枣疯病植原体属于16SrⅤ-B、rpⅤ-C、secYⅤ-C亚组,相对于16S rRNA基因,rp,secAsecY变异更大,非同义突变更多,更利于对国内不同来源的枣疯病植原体的精细系统进化分析。  相似文献   

9.
Three experimental treatments consisting of inoculation with an arbuscular mycorrhizal fungus, application of a synthetic antimicrobial peptide or application of a resistance inducer, were evaluated in Madagascar periwinkle as control methods for rubus stunt and stolbur diseases caused by ‘Candidatus Phytoplasma rubi’ and ‘Candidatus Phytoplasma solani’, respectively. Two experiments were conducted under controlled environment conditions. In the first experiment, 4 months after graft‐inoculating the phytoplasmas, the root colonization achieved by Rhizophagus irregularis significantly reduced both disease symptoms and the frequency of detection of the pathogens by real‐time PCR. In the second experiment, the antimicrobial peptide BP100 totally prevented disease symptoms, despite the molecular detection of the phytoplasmas in 75% and 50% of the plants inoculated with ‘Ca. Phytoplasma rubi’ and ‘Ca. Phytoplasma solani’, respectively, and was more effective than benzothiadiazole (BTH) at increasing resistance against the pathogenic infections. A potential combination of early mycorrhizal inoculation and BP100 antimicrobial peptide application is envisaged as a future control strategy for phytoplasma diseases.  相似文献   

10.
The phytoplasmas of groups 16SrI (‘Candidatus Phytoplasma asteris’) and 16SrVII (‘Ca. Phytoplasma fraxini’) have been associated with phytoplasma diseases in several urban tree species in Bogotá, Colombia and surrounding areas. The insect vectors responsible for this phytoplasma transmission are unknown. The objectives of this study were to test for the presence of phytoplasmas in leafhopper species (Cicadellidae) collected in areas with diseased trees and to determine the phytoplasma transmission ability of two of these species. Leafhoppers of nine species were collected at two sampling sites and tested by nested or double nested PCR using primers for the 16S rRNA gene. The amplicons were subjected to RFLP and/or sequencing analysis. Phytoplasmas of group 16SrI were detected in morphospecies MF05 (Haldorus sp.), group 16SrVII in MF07 (Xestocephalus desertorum), MF08 (Empoasca sp.) and MF09 (Typhlocybinae), and both groups 16SrI and 16SrVII in MF01 (Empoasca sp.), MF02 (Typhlocybinae), MF03 (Scaphytopius sp.), MF04 (Amplicephalus funzaensis) and MF06 (Exitianus atratus). Transmission tests to uninfected bean plants (Phaseolus vulgaris) were performed using field collected A. funzaensis and E. atratus individuals in separate assays. After 5 weeks, the test plants exposed to individuals of both species of leafhoppers showed symptoms, suggesting phytoplasma infection. Phytoplasma groups 16SrI and 16SrVII were detected in the two groups of exposed plants, indicating that A. funzaensis and E. atratus were able to transmit both groups of phytoplasmas. This is the first report of insect vectors for phytoplasmas of group 16SrVII in the world and of 16SrI in South America.  相似文献   

11.
The phloem‐sucking psyllid Cacopsylla picta plays an important role in transmitting the bacterium ‘Candidatus Phytoplasma mali’, the agent associated with apple proliferation disease. The psyllid can ingest ‘Ca. Phytoplasma mali’ from infected apple trees and spread the bacterium by subsequently feeding on uninfected trees. Until now, this has been the most important method of ‘Ca. Phytoplasma mali’ transmission. The aim of this study was to investigate whether infected C. picta are able to transmit ‘Ca. Phytoplasma mali’ directly to their progeny. This method of transmission would allow the bacteria to bypass a time‐consuming reproductive cycle in the host plant. Furthermore, this would cause a high number of infected F1 individuals in the vector population. To address this question, eggs, nymphs and adults derived from infected overwintering adults of C. picta were reared on non‐infected apple saplings and subsequently tested for the presence of ‘Ca. Phytoplasma mali’. In this study it was shown for the first time that infected C. picta individuals transmit ‘Ca. Phytoplasma mali’ to their eggs, nymphs and F1 adults, thus providing the basis for a more detailed understanding of ‘Ca. Phytoplasma mali’ transmission by C. picta.  相似文献   

12.
樱桃花变绿病植原体的分子鉴定   总被引:1,自引:0,他引:1  
 植原体(phytoplasma)是一类没有细胞壁,不能人工培养,存在于植物筛管细胞中的类似植物病原细菌的原核生物。迄今为止,世界各地报道的1 000余种植物病害与植原体有关,引起的症状主要包括丛枝、黄化、花变绿、花变叶、花器退化等。  相似文献   

13.
The immunodominant membrane protein Imp of several phytoplasmas within the ‘Candidatus Phytoplasma aurantifolia’ (16Sr‐II) group was investigated. Eighteen isolates from Iran (11), East Asia (5), Africa (1) and Australia (1) clustered into three phylogenetic subgroups (A, B and C) based on the 16S rDNA and imp genes, regardless of geographic origin. The imp gene sequences were variable, with more non‐synonymous than synonymous mutations (68 vs 20, respectively), even though many of the non‐synonymous ones (75%) produced conservative amino acid replacements. Eight codon sites on the extracellular region of the protein were under positive selection, with most of them (75%) coding for non‐conservative amino acid substitutions. Full‐length (21 kDa) and truncated (16 kDa) Imp proteins of two economically important Iranian phytoplasmas [lime witches’ broom (LWB) and alfalfa witches’ broom (AlWB‐F)] were expressed as His‐tagged recombinant proteins in Escherichia coli. An antiserum raised against full‐length recombinant LWB Imp reacted in western blots with membrane proteins extracted from LWB‐infected periwinkle and lime, indicating that Imp (19 kDa) is expressed in infected plants and is a membrane‐associated protein. The same polyclonal antibody also detected native Imp in proteins from periwinkles infected by phytoplasmas closely related to LWB (subgroup C) only, confirming phylogenetic clustering based on 16S rDNA and imp genes. Imp proteins of LWB and AlWB‐F isolates were also recognized by an antiserum raised against an enriched preparation of AlWB‐F phytoplasma cells, demonstrating the antigenic properties of this protein.  相似文献   

14.
In November 2008 in Himachal Pradesh and Chandigarh regions in India, toon trees and periwinkles were observed to have formed short internodes, small leaves and witches’-broom symptoms, typical of phytoplasma infection. The symptomatic toon and periwinkle samples were tested with universal PCR tests, and the 16S rRNA, rplB-rpsC, secA and secY genes were sequenced. The causal agents belonged to subgroup 16SrI-B of ‘Candidatus Phytoplasma asteris’, based on 16S rDNA, ribosomal protein gene, secA and secY phylogenetic analysis.  相似文献   

15.
Peach orchards in the northeast of Spain were severely affected in 2012 by a previously unreported disease in this area. The symptoms included early reddening, leaf curling, decline, abnormal fruits, and in some cases death of the peach trees. All the infected peach samples were positive for ‘Candidatus Phytoplasma pyri’, but none were infected by the ‘Ca. Phytoplasma prunorum’. In this work, potential vectors able to transmit ‘Ca. Phytoplasma pyri’ from pear to peach and between peach trees were studied and their infective potential was analysed at different times of the year. Transmission trials of the phytoplasma with potential vectors to an artificial feeding medium for insects and to healthy peach trees were conducted. Additionally, isolated phytoplasmas were genetically characterized to determine which isolates were able to infect peach trees. Results showed that the only insect species captured inside peach plots that was a carrier of the ‘Ca. Phytoplasma pyri’ phytoplasma was Cacopsylla pyri. Other insect species captured and known to be phytoplasma transmitters were present in very low numbers, and were not infected with ‘Ca. Phytoplasma pyri’ phytoplasma. A total of 1928 individuals of C. pyri were captured in the peach orchards, of which around 49% were phytoplasma carriers. All the peach trees exposed to C. pyri in 2014, and 65% in 2015, were infected by ‘Ca. Phytoplasma pyri’ 1 year after exposure, showing that this species is able to transmit the phytoplasma to peach. Molecular characterization showed that some genotypes are preferentially determined in peach.  相似文献   

16.
During 2010 and 2011, typical phytoplasma disease symptoms such as little leaves, phyllody and witches’ brooms were observed on black gram, green gram, long bean, shaggy button weed and sesame plants from different regions of Myanmar. The symptomatic samples were analyzed by PCR using universal phytoplasma primers and characterized by sequencing 16S rRNA, ribosomal protein and translocase protein genes. Based on sequence and phylogenetic analysis of the three genes, the phytoplasmas associated with those plants belonged to members of ‘Candidatus Phytoplasma aurantifolia’. To our knowledge, black gram and shaggy button are new hosts for ‘Ca. P. aurantifolia’.  相似文献   

17.
Chinese scholar tree (Sophora japonica) with witches’ broom symptoms was observed in Shandong Province in China. Phytoplasmas were detected in the diseased plants using 16S rDNA amplification with phytoplasma-specific universal primer pairs. On the basis of the results of 16S rDNA sequencing, virtual restriction fragment length polymorphism patterns and phylogenetic analyses, the phytoplasma found in S. japonica with witches’ broom symptoms was confirmed as a ‘Candidatus Phytoplasma ziziphi’-related strain belonging to the Elm yellows group 16SrV. This is the first report of ‘Ca. P. ziziphi’ infecting S. japonica plant with witches’ broom symptoms.  相似文献   

18.
Symptoms of shoot proliferation characteristic of phytoplasma diseases were observed on nectarine (Prunus persica var. nucipersica) and peach (P. persica) trees in the Sarada plain, south of Lebanon. The presence of phytoplasmas in the two orchards visited was confirmed by nested polymerase chain reaction using universal primers. The amplified DNA fragments were cloned and sequenced. Blast analysis of over 1000 nucleotides demonstrated the presence of ‘Candidatus Phytoplasma phoenicium’ which is considered to be the causal agent of Almond witches’ broom. This phytoplasma which belongs to the pigeon pea witches’ broom group (16SrIX) can be devastating since Almond witches’ broom has killed thousands of almond trees in Lebanon and Iran. Previous reports indicated that Almond witches’ broom may be transmitted by grafting to peach and nectarine under experimental conditions. This is the first report of a natural and epidemic spread of ‘Ca. Phytoplasma phoenicium’ in peach and nectarine. Farmers in the region were advised to eradicate the infected trees immediately. Further studies on the epidemiology of ‘Ca. Phytoplasma phoenicium’ and its vector(s) are recommended in order to develop successful eradication or disease management programmes.  相似文献   

19.
榆树黄化病植原体的分子检测与鉴定   总被引:5,自引:0,他引:5  
 利用植原体16SrRNA基因的通用引物R16rrLF2/R16mR1和R16F2n/R16R2对山东泰山上发生的榆树(Ulmus parvifolia)黄化病感病植株总DNA进行巢式PCR扩增,得到了约1.2kb的特异性片段,从分子水平证实了榆树黄化病的病原(EY-China)为植原体。将扩增到的片段测序,并进行一致性和系统进化树分析。结果表明,该分离物属于植原体榆树黄化组(Candidatus Phytoplasma ulmi),与该组成员16SrRNA序列的一致性均在98.2%以上,其中与16SrV-B亚组中的纸桑丛枝(Paper mulberry wiches'-broom)和枣疯病(Jujube witches'-broom)植原体一致性最高,达到99.4%,在系统进化树中与该亚组成员聚类到同一个分支,说明该分离物属于植原体16SrV-B亚组。本研究首次对在中国引致榆树黄化病的植原体进行了分子检测,并通过核酸序列分析将其鉴定到亚组水平。  相似文献   

20.
A European quarantine organism ‘Candidatus Phytoplasma pyri’ causing devastating pear decline disease has been reported to affect pear trees in several European countries. In this study a multilocus sequence analysis was successfully used to gain detailed insight into the molecular diversity of thirty closely related ‘Candidatus Phytoplasma pyri’ isolates from different orchards in Slovenia. Among three genomic regions analyzed, the 16S/23S rRNA intergenic spacer region was the most conserved among Slovenian isolates with 99.7 % sequence identity, yielding only three distinct genotypes. On the other hand, five different genotypes were detected when analyzing secY and aceF genomic regions that shared sequence identity of 94.8 and 97.2 %, respectively. Six of the detected genotypes, specifically four in the secY region and one in each of the two other analyzed genomic regions, were unique for Slovenia. At least eight different haplotypes were found with multilocus sequence analysis, indicating high molecular diversity among Slovenian ‘Ca. P. pyri’ isolates. Haplotypes were clustered into two major clusters, separated by at least 45 mutations. No connection was established between haplotype occurrence and cultivar type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号