首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify relationships between year‐class strength and larval growth of walleye pollock (Gadus chalcogrammus), and oceanographic conditions in the Pacific stock off Hokkaido and Tohoku, Japan, we undertook conductivity/temperature/depth (CTD) observations and investigated larval densities, larval otolith increment widths and larval prey densities (of copepod nauplii) of the 2008, 2009, 2010 and 2011 yr classes in Funka Bay. Oyashio Coastal Water (OCW) flowed into the bay in late February in 2008, 2010 and 2011, and the mean water temperatures decreased to 1.9–3.1 °C in March. OCW was not observed in 2009, and it was warm in late February (≥3.4 °C). Increment widths of lapillar otoliths during the yolk‐sac stage were wide in 2009 and 2011, medium in 2010 and narrow in 2008. Increment widths during the first‐feeding stage tended to become wider as the hatch month progressed, and the annual variation during the first‐feeding stage was larger than that of the yolk‐sac stage. The densities of the primary food for the larvae were high in 2008 when larval increment widths were narrowest, so the effect of prey abundance on larval growth appeared to be small. The ranking of the larval abundance in March was nearly coincident with that of the increment width during the larval stage. We, therefore, suggest that the larval growth rate is associated with the mortality rate and that the growth–mortality hypothesis may be applicable to walleye pollock in Funka Bay. Feeding success under warm water conditions may be an important factor that contributes towards high growth rates.  相似文献   

2.
Abstract – Stable oxygen isotopes (δ18O) derived from otoliths were used to estimate mean annual water temperatures experienced by individual Svalbard Arctic charr, Salvelinus alpinus (L.), during their first four growth seasons. The analysed Arctic charr experienced a high variety of temperatures, indicating the use of different thermal habitats. A higher proportion of the juveniles experienced warmer temperatures during their first summer compared with later summers, suggesting the selective use of the shallowest littoral areas of the lake. Although the estimated temperatures were consistent with water temperatures found in High Arctic rivers and lakes during summer, they did not represent the annual variation in air temperature registered over the 20 years of otolith measurement. Furthermore, summer otolith increment width did not correlate with the experienced temperature. However, after the second year, otolith increment width was highly dependent on increment width during the previous summer. This study estimated mean summer water temperatures experienced by individual Arctic charr during the first four growth seasons providing additional evidence that stable oxygen isotope analysis can be used to provide insight into the thermal habitat use by juvenile Arctic charr.  相似文献   

3.
Otolith increment width and larval fish data (length and weight) were used to develop an individual‐based model (IBM) to describe daily resolved growth rates of North Sea herring (Clupea harengus) larvae (Autumn Spawners) caught during International Herring Larvae Surveys in the ICES area IVa from 1990 to 1998. The model combines sagittal otolith readings (core and individual increment measurements), larval standard length and weight data, and solves an over‐determined set of linear system equations for all parameters using the method of least square residuals. The model consists of a matrix, which describes the increment width formation of 119 larvae, a vector containing their length/weight measurements, and a vector describing residuals. The solution vector yields age‐dependent maximum somatic growth rates of herring larvae up to an age of 41 days with sizes ranging from 10 to 25 mm. The observed environmental temperature in which larvae dwelled was relatively uniform. Therefore, measured increment width was individually used to determine daily growth from any single larva in relation to their potential maximum growth under optimal feeding conditions. The results are discussed with respect to the spatial and temporal variability of larval occurrence. Finally, an analysis of error estimation of the larval growth characteristics is presented.  相似文献   

4.
We studied the otolith microstructure and growth of sardine, Sardina pilchardus, in the North Aegean Sea (eastern Mediterranean Sea), using samples of larvae and juveniles that had hatched in winter (November–January) and winter–spring (February–May), respectively. The juveniles had developed during an extended period coinciding with marked pelagic ecosystem changes (from winter, mixed conditions to summer, stratified waters). To examine the relationship between environmental changes and the observed variability in their otolith increment–width trajectories (width‐at‐age), we summarized the shape of trajectories with a four‐parameter set estimated from a growth model fit to each width trajectory. The individual parameter sets were then related to the potential oceanographic conditions that fish experienced during their development, derived from a hydrodynamic–biogeochemical model (POM‐ERSEM), implemented in the sampling area. Substantial seasonal effects were demonstrated on the otolith microstructure (platykurtic versus leptokurtic trajectories in winter‐mixed versus summer‐stratified conditions), which were related to the progressive sea surface warming. In a subsequent step, in order to study the effect of oceanographic conditions on larval and juvenile daily growth rates, a GAM (Generalized Additive Model) analysis of otolith increment widths was carried out, using model‐derived oceanographic parameters and taking into account the ‘inherent otolith growth’, expressed by the explanatory variables ‘previous increment width’ and ‘Age’. Results showed a strong and positive, linear effect of temperature on the growth rate of winter‐caught larvae, whereas in juveniles, which had developed within a wide range of temperatures, an optimum temperature for growth was observed at around 24°C.  相似文献   

5.
Dendrochronology (tree‐ring analysis) techniques have been increasingly applied to generate biochronologies from the otolith growth‐increment widths of marine and freshwater fish species. These time series strongly relate to instrumental climate records and are presumed to reflect interannual variability in mean fish condition or size. However, the relationship of these otolith chronologies to fish somatic growth has not been well described. Here, this issue was addressed using yellowfin sole (Limanda aspera) in the eastern Bering Sea, for which a 43‐yr otolith chronology was developed from 47 otoliths and compared with body size for 6943 individuals collected in 1987, 1994, and 1999 through 2006. Among several metrics of size normalized for age and sex, average body mass index (defined as weight/length) had the strongest relationship to the otolith chronology, especially when the chronology was averaged over the 5 yr preceding fish capture date (R2 = 0.88; < 0.001). Overall, sample‐wide anomalies in otolith growth reflected sample‐wide anomalies in body size. These findings suggest that otolith chronologies could be used as proxies of body size in data‐poor regions or to hind‐cast somatic growth patterns prior to the start of fisheries sampling programs.  相似文献   

6.
Microstructures of lapilli were examined for reared larvae and juveniles of black-spot tuskfish Choerodon schoenleinii. Lapilli of larvae at 1 day after hatching have one diffuse and obscure ring with an otolith radius of 4.3 ± 0.50 μm (mean ± SD, N = 8). The slope and intercept of the regression between the number of days after hatching and increment counts did not differ significantly from one and zero, respectively, indicating that lapillus increments were formed on a daily basis after hatching. There was an ontogenetic shift in the relative values of somatic and otolith growth, which corresponded to the transition from pelagic larvae to settlement stage. Simultaneously, the daily increment width reached the maximum value. These findings suggest that age at maximum value of increment width can be used as an indicator of the planktonic larval duration while settlement mark is not found. Since ontogenetic shift in the relationship between otolith radius and body size was observed, back-calculation of somatic growth in black-spot tuskfish using the otolith radius during the early life stages should be analyzed with caution, and the method requires further validation.  相似文献   

7.
We examined variability in growth rate during the larval stage of northern anchovy (Engraulis mordax) in response to physical and biological environmental factors in 2005 and 2006. The onset of spring upwelling was anomalously delayed by 2–3 months until mid‐July in 2005; in contrast, spring upwelling in 2006 began as a normal year in the northern California Current. Larval and early juvenile E. mordax were collected in August, September, and October off the coast of Oregon and Washington. Hatch dates ranged from May to September, with peaks in June and August in 2005 and a peak in July in 2006, based on the number of otolith daily increments. Back‐calculated body length‐at‐age in the June 2005 hatch cohort was significantly smaller than in the August 2005 cohort, which had comparable growth to the July 2006 cohort. Standardized otolith daily increment widths as a proxy for seasonal variability in somatic growth rates in 2005 were negative until late July and then changed to positive with intensification of upwelling. The standardized increment width was a positive function of biomass of chlorophyll a concentration, and neritic cold‐water and oceanic subarctic copepod species sampled biweekly off Newport, Oregon. Our results suggest that delayed upwelling in 2005 resulted in low food availability and, consequently, reduced E. mordax larval growth rate in early summer, but once upwelling began in July, high food availability enhanced larval growth rate to that typical of a normal upwelling year (e.g., 2006) in the northern California Current.  相似文献   

8.
Countergradient variation (CGV) is defined as genetic variation that counteracts the negative influences of the physical environment, minimising phenotypic variability along an environmental gradient. CGV is thought to have relevance in predicting the response of organisms to climate variability and change. To test the hypothesis that growth rate increased with latitude, consistent with CGV, young‐of‐the‐year (YOY) Arctic charr, Salvelinus alpinus, were examined along a ~27° latitudinal gradient in central and eastern Canada. Growth rates were estimated from fork lengths standardised by the thermal opportunity for growth based on experienced water temperatures derived using otolith oxygen stable isotopes. Results demonstrated patterns consistent with CGV, where northern populations demonstrated faster growth rates. A secondary aim was to test for similar geographical patterns in otolith‐inferred metabolic rates, which reflect the energetic costs of standard metabolic rate (SMR) and other processes such as feeding, locomotion, thermoregulation, reproduction and growth. Results demonstrated a significant, positive relationship between otolith‐inferred metabolic rate and latitude, which may reflect an increase in one, or a combination, of the above‐noted physiological processes. The similar latitudinal pattern in growth and otolith‐inferred metabolic rates suggests greater intake of food per unit of time by northern fish. The phenotypic variation in physiological traits observed here demonstrates the significant adaptability of Arctic charr to different thermal regimes with different growing season lengths. Determining the relative contributions of phenotypic plasticity and genetic variation to the observed latitudinal variation will be critical to predicting the responses of Arctic charr to climate change more accurately.  相似文献   

9.
Low density in natural populations of salmonids has predominantly been managed by stocking of non‐native conspecifics. Due partly to domestication, introduced non‐native fish may be maladapted under natural conditions. Interbreeding between introduced and wild individuals may therefore impair local adaptation and potentially population viability. Brown trout (Salmo trutta L.) from three headwaters (with stocked fish) and three interconnected lakes (with native fish) on the Hardangervidda mountain plateau, southern Norway, were tested for differences in thermal effects on scale and otolith growth. Otolith and scale annuli widths from immature brown trout showed positive correlation with mean annual summer temperature for all six sampled populations. In mature individuals, a similar positive thermal correlation was evident for the otoliths only. Interannuli width measurements from scales indicate a halt in somatic growth for brown trout in this alpine environment when reaching ages between 7 and 9 winters, coinciding with age at maturity. Our study indicates that otolith growth follows summer temperature even when individuals do not respond with somatic growth in these populations and that introduced brown trout and introgressed populations have similar thermal growth responses. Due to the continued otolith growth after stagnation in somatic growth and the impact of fluctuations in summer temperature, the utilisation of otolith annuli widths for back calculation of length at age should be treated with caution.  相似文献   

10.
Seasonal variation in daily growth rates in the early and middle larval stages of round herring Etrumeus teres were largely determined by the sea temperatures experienced by hatch-date cohorts in the Pacific coastal waters off southern Japan. Round herring larvae were collected by purse seining in the coastal waters of central Tosa Bay. A total of 451 larvae were aged by reading daily rings in otoliths. Individuals within a range of 2–5 hatch dates were grouped as hatch-date cohorts. We selected 16 cohorts that hatched during September 2000 and March 2002 and calculated mean widths of otolith growth increments for each cohort during the first feeding stage (W FF, increments 1–5) and the maximum increment width in the middle larval stage (W MAX). Seasonal variation in mean W FF and W MAX among the 16 cohorts was largely (80–90 %) explained by the sea temperature in the bay. These results indicate that temperature was a predominant determinant of larval growth rates; other environmental factors, such as food availability, did not substantially affect growth rates of round herring larvae in coastal waters along the subtropical Kuroshio Current off southern Japan.  相似文献   

11.
Dendrochronology (tree‐ring analysis) techniques were applied to develop chronologies from the annual growth‐increment widths of red snapper (Lutjanus campechanus) and gray snapper (Lutjanus griseus) otoliths sampled from the northern Gulf of Mexico, USA. Growth increment widths showed considerable synchrony within and across species, indicating that some component of environmental variability influenced growth. The final, exactly dated red snapper chronology continuously spanned 1975 through 2003, while the gray snapper chronology continuously spanned 1975 through 2006. To determine baseline climate‐growth relationships, chronologies were compared to monthly averages of sea surface temperatures, U winds (west to east), V winds (south to north), and Mississippi River discharge. The gray snapper chronology significantly (P < 0.01) correlated with winds and temperature in March and April, while the red snapper chronology correlated with winds in March. Principal components regression including springtime winds and temperature accounted for 28 and 52% of the variance in the red and gray snapper chronologies, respectively. These results indicate that snapper growth was favored by warm sea surface temperatures and onshore winds from the southeast to the northwest in March and April. Overall, this study provides preliminary, baseline information regarding the association between climate and growth for these commercially important snapper species.  相似文献   

12.
ABSTRACT: The surface-migratory myctophid fish, Myctophum asperum , of the western North Pacific was found to have daily growth increments of its sagittal otolith, which also exhibited lunar periodicity in the deposition of increments. Daily deposition of the otolith increments was verified because the width of the marginal increment increased during the night and early morning between 20.00 h and 08.00 h and its growth stopped during the day. An autocorrelation analysis of the increment widths, which were measured consecutively in 11 specimens covering 33 synodic months, also showed a lunar periodicity in increment deposition. The mean increment widths during five days around the time of a full moon were significantly narrower than those around a new moon in 18 of the 33 full moon cases ( P < 0.01: Student's t -test) and, on average, tended to be narrow in 29 cases. The cause of this tendency is thought to be slower growth caused by staying in deeper and colder habitat due to the suppression of diel vertical migration and/or lower food availability resulting from the possible dispersion of zooplankton during the full moon period.  相似文献   

13.
14.
Plankton sampling was conducted in the Baltic to obtain sprat larvae. Their individual drift patterns were back‐calculated using a hydrodynamic model. The modelled positions along the individual drift trajectories were subsequently used to provide insight into the environmental conditions experienced by the larvae. Autocorrelation analysis revealed that successive otolith increment widths of individual larvae were not independent. Otolith increment width was then modelled using two different generalized additive model (GAM) analyses (with and without autocorrelation), using environmental variables determined for each modelled individual larval position as explanatory variables. The results indicate that otolith growth was not only influenced by the density of potential prey but was controlled by a number of simultaneously acting environmental factors. The final model, not considering autocorrelation, explained more than 80% of the variance of otolith growth, with larval age as a factor variable showing the strongest significant impact on otolith growth. Otolith growth was further explained by statistically significant ambient environmental factors such as temperature, bottom depth, prey density and turbulence. The GAM analysis, taking autocorrelation into account, explained almost 98% of the variability, with the previous otolith increment showing the strongest significant effect. Larval age as well as ambient temperature and prey abundance also had a significant effect. An alternative approach applied individual‐based model (IBM) simulations on larval drift, feeding, growth and survival starting as exogenously feeding larvae at the back‐calculated positions. The IBM results revealed optimal growth conditions for more than 97% of the larvae, with a tendency for our IBM to slightly overestimate larval growth.  相似文献   

15.
Environmental variability and growth‐rate histories from hatching to capture were investigated for larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus). Larvae collected around the front of the Kuroshio Current were examined using otolith microstructure analysis, and their movement was estimated from numerical particle‐tracking experiments. Sardine larvae collected inshore of the Kuroshio front originated from a coastal area near the sampling site, while those collected in the offshore area originated from an area 500–800 km west‐southwest of the sampling site. Anchovy larvae collected both inshore and offshore had been transported from widely distributed spawning areas located west of the sampling area. At the age of 13–14 days for sardine and 19–20 days for anchovy, the offshore group exhibited significantly higher mean growth rates than did the inshore group. Although the offshore area was generally warmer than the inshore area, temporal variations in growth rate are not attributable solely to fluctuations in environmental temperature. While previous studies have examined the relationship between larval growth rates and environment based solely on data at capture, the methods used in the present study, combining otolith analysis and numerical particle‐tracking experiments, utilize data up until hatching. Although the relationship between growth rate and environment was not fully confirmed, this approach will greatly advance our understanding of fish population dynamics.  相似文献   

16.
To apply otolith microstructure to examination of age and growth of juvenile chum salmon Oncorhynchus keta inhabiting coastal waters, formation of otolith increments was investigated for juveniles reared in a seawater aquarium and in net pens. In all otoliths examined, a distinctive check was formed at the time of sea entry of the fish. The deposition of otolith increments after the check was daily for rearing both in the aquarium (57 days) and in the net pens (26 days). Check formation associated with sea entry was also observed in otoliths of juvenile salmon collected 1 km off the coast of Shari, Hokkaido, Japan. Transmitted light observation of otoliths of those fish revealed a transition in otolith increment appearance from dark to light. Otolith Sr: Ca ratio remarkably changed from a low to a high level, coinciding with the transition in otolith appearance. It is suggested that the transition was associated with individual sea entry. This study demonstrated that the check and/or transition associated with sea entry are applicable to a benchmark for otolith increment counts of juvenile chum salmon inhabiting coastal waters.  相似文献   

17.
Martin J, Daverat F, Pécheyran C, Als TD, Feunteun E, Réveillac E. An otolith microchemistry study of possible relationships between the origins of leptocephali of European eels in the Sargasso Sea and the continental destinations and relative migration success of glass eels.
Ecology of Freshwater Fish 2010: 19: 627–637. © 2010 John Wiley & Sons A/S Abstract – Little is known about the extent to which Atlantic eels coming from different European rivers converge on the same spawning site. Our aim was to evaluate the spatial homogeneity of eel spawning area(s) with an otolith microchemistry approach. This work compared the elemental signatures of otolith’s core region of Anguilla anguilla leptocephali caught in the Sargasso Sea in 2007 with those of glass eels and elvers sampled in European estuaries during 2006, 2008 and 2009. Using laser ablation inductively coupled plasma mass spectrometry, the same annular ablation trajectory along the first feeding mark was applied on otoliths of glass eels, elvers and leptocephali. The concentrations of thirteen isotopes in the otoliths of glass eels/elvers did not vary among three annual cohorts collected in eleven European locations. However, otolith elemental fingerprints of leptocephali differed significantly from glass eels otolith’s signature. Although the mechanisms that regulate the differences in trace element signatures among leptocephali and glass eels/elvers are unknown, we propose that the sampled glass eels/elvers were born in a spawning site or region where favourable transport and/or feeding conditions occurred. Conversely, the leptocephali may have been sampled in a less favourable region in the Sargasso Sea, with a low probability of reaching continental growth areas.  相似文献   

18.
Research programmes that monitor and evaluate the impact of stocking activities are essential to quantify effects of stocking and provide information for adaptive management of future releases. The consumer communities in two estuaries stocked with 5.8 million post‐larvae eastern king prawn Penaeus plebejus (Hess) were monitored, both before and after stocking, and relative to two similar reference estuaries. Following stocking, there was evidence of increases in the abundances of prawns within stocked estuaries. Communities in all four estuaries showed significant levels of variation over time as well as among the systems themselves. Changes in overall diversity were similarly observed. The presence or absence of vegetation and other seasonal effects were found to explain most of the observed variation in the community assemblage, while prawn stocking appeared to have a little detectable influence. While this study points to minimal impacts of prawn stocking on the consumer community at the densities used, research into potential shifts in resource use by competitors and the growth and survival of prawns is required to fully understand post‐release changes in stocked systems.  相似文献   

19.
Chemical signatures in the otoliths of teleost fishes represent natural tags that may reflect differences in the chemical and physical characteristics of an individuals' environment. Otolith chemistry of Atlantic bluefin tuna (Thunnus thynnus) was quantified to assess the feasibility of using these natural tags to discriminate juveniles (age 0 and age 1) from putative nurseries. A suite of six elements (Li, Mg, Ca, Mn, Sr and Ba) was measured in whole otoliths using solution‐based inductively coupled plasma mass spectrometry. Otolith chemistry of age‐1 T. thynnus collected from the two primary nurseries in the Mediterranean Sea and western Atlantic Ocean differed significantly, with a cross‐validated classification accuracy of 85%. Spatial and temporal variation in otolith chemistry was evaluated for age‐0 T. thynnus collected from three nurseries within the Mediterranean Sea: Alboran Sea (Spain), Ligurian Sea (northern Italy), and Tyrrhenian Sea (southern Italy). Distinct differences in otolith chemistry were detected among Mediterranean nurseries and classification accuracies ranged from 62 to 80%. Interannual trends in otolith chemistry were observed between year classes of age‐0 T. thynnus in the Alboran Sea; however, no differences were detected between year classes in the Tyrrhenian Sea. Age‐0 and age‐1 T. thynnus collected from the same region (Ligurian Sea) were also compared and distinct differences in otolith chemistry were observed, indicating ontogenetic shifts in habitat or elemental discrimination. Findings suggest that otolith chemistry of juvenile T. thynnus from different nurseries are distinct and chemical signatures show some degree of temporal persistence, indicating the technique has considerable potential for use in future assessments of population connectivity and stock structure of T. thynnus.  相似文献   

20.
  • 1. Zingel asper (a percid) is a highly endangered endemic fish of the Rhone catchment (France). Scale reading was used to estimate age and growth rates in one of the two last remaining populations that are still present in relatively high densities (River Beaume).
  • 2. Scale reading was validated for the first time in Z. asper by comparing back‐calculated lengths from scale annual increment to actual lengths obtained by individual mark–recapture monitoring. The impacts of age or sampling site on individual growth rates were explored using generalized linear models.
  • 3. No major discrepancy was observed between actual and back‐calculated lengths. Longevity of Z. asper was inferred from the age data and did not exceed 3 years. Results showed variation in growth rates among ages (20 times higher for 1+ fish than for 2+ or 3+ fish) and also among sampling sites.
  • 4. The present work provided the first estimates of annual growth rates in the Beaume population. This study also showed that scale reading allowed a valuable trade‐off between accuracy and conservation imperatives that often imply avoiding invasive techniques such as the implantation of passive integrative transponders.
  • 5. Scale reading will be a valuable tool for future ecological studies in Z. asper and will help in developing conservation strategies for this species as longevity and growth patterns are two life‐history traits of major importance for the management of endangered populations.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号