首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted to explain the relative success of ‘Dickeya solani’, a genetic clade of Dickeya biovar 3 and a blackleg‐causing organism that, after recent introduction, has spread rapidly in seed potato production in Europe to the extent that it is now more frequently detected than D. dianthicola. In vitro experiments showed that both species were motile, had comparable siderophore production and pectinolytic activity, and that there was no antagonism between them when growing. Both ‘D. solani’ and biovar 1 and biovar 7 of D. dianthicola rotted tuber tissue when inoculated at a low density of 103 CFU mL?1. In an agar overlay assay, D. dianthicola was susceptible to 80% of saprophytic bacteria isolated from tuber extracts, whereas ‘D. solani’ was susceptible to only 31%, suggesting that ‘D. solani’ could be a stronger competitor in the potato ecosystem. In greenhouse experiments at high temperatures (28°C), roots were more rapidly colonized by ‘D. solani’ than by biovar 1 or 7 of D. dianthicola and at 30 days after inoculation higher densities of ‘D. solani’ were found in stolons and progeny tubers. In co‐inoculated plants, fluorescent protein (GFP or DsRed)‐tagged ‘D. solani’ outcompeted D. dianthicola in plants grown from vacuum‐infiltrated tubers. In 3 years of field studies in the Netherlands with D. dianthicola and ‘D. solani’, disease incidence varied greatly annually and with strain. In summary, ‘D. solani’ possesses features which allow more efficient plant colonization than D. dianthicola at high temperatures. In temperate climates, however, tuber infections with ‘D. solani’ will not necessarily result in a higher disease incidence than infections with D. dianthicola, but latent seed infection could be more prevalent.  相似文献   

2.
This study used a novel computational pipeline to exploit draft bacterial genome sequences in order to predict, automatically and rapidly, PCR primer sets for Dickeya spp. that were unbiased in terms of diagnostic gene choice. This pipeline was applied to 16 draft and four complete Dickeya genome sequences to generate >700 primer sets predicted to discriminate between Dickeya at the species level. Predicted diagnostic primer sets for both D. dianthicola (DIA‐A and DIA‐B) and ‘D. solani’ (SOL‐C and SOL‐D) were validated against a panel of 70 Dickeya reference strains, representative of the known diversity of this genus, to confirm primer specificity. The classification of the four previously sequenced strains was re‐examined and evidence of possible misclassification of three of these strains is presented.  相似文献   

3.
Dickeya strains isolated in Israel in 2006–2010 were characterized by dnaX sequence analysis, pulsed‐field gel electrophoresis (PFGE), biochemical assays and pectolytic activity, and found to be homogeneous: most of them could be classified as ‘Dickeya solani’. Of the 34 strains isolated from imported seed tubers or potato plants grown from imported seed, 32 were typed as ‘D. solani’ and only two were characterized as Dickeya dianthicola. Biovar typing indicated that all ‘D. solani’ strains were biovar 3. ‘Dickeya solani’ strains were most closely related to Dickeya dadantii subsp. dieffenbachiae according to PFGE and dnaX analyses and both species exhibited high pectolytic activity. Expression levels of two putative virulence genes, pelL (encoding a pectic enzyme) and dspE (encoding a type III effector) were significantly induced in ‘D. solani’ strains isolated from potato plants or tubers grown in hot climates such as the Negev region in Israel, compared to those isolated from seed tubers imported from the Netherlands, France or Germany. Results of this study support the hypothesis that ‘D. solani’ strains isolated in Israel are also clonal; however, they appear to be more virulent than strains isolated in Europe.  相似文献   

4.
In western Europe, Pectobacterium carotovorum subsp. brasiliense is emerging as a causal agent of blackleg disease. In field experiments in the Netherlands, the virulence of this pathogen was compared with strains of other Dickeya and Pectobacterium species. In 2013 and 2014, seed potato tubers were vacuum infiltrated with high densities of bacteria (106 CFU mL?1) and planted in clay soil. Inoculation with P. carotovorum subsp. brasiliense and P. atrosepticum resulted in high disease incidences (75–95%), inoculation with D. solani and P. wasabiae led to incidences between 5% and 25%, but no significant disease development was observed in treatments with P. carotovorum subsp. carotovorum, D. dianthicola or the water control. Co‐inoculations of seed potatoes with P. carotovorum subsp. brasiliense and D. solani gave a similar disease incidence to inoculation with only P. carotovorum subsp. brasiliense. However, co‐inoculation of P. carotovorum subsp. brasiliense with P. wasabiae resulted in a decrease in disease incidence compared to inoculation with only P. carotovorum subsp. brasiliense. In 2015, seed potatoes were inoculated with increasing densities of P. carotovorum subsp. brasiliense, D. solani or P. atrosepticum (103–106 CFU mL?1). After vacuum infiltration, even a low inoculum density resulted in high disease incidence. However, immersion without vacuum caused disease only at high bacterial densities. Specific TaqMan assays were evaluated and developed for detection of P. carotovorum subsp. brasiliense, P. wasabiae and P. atrosepticum and confirmed the presence of these pathogens in progeny tubers of plants derived from vacuum‐infiltrated seed tubers.  相似文献   

5.
Nine bacteriophages infecting Dickeya spp. biovar 3 (‘Dickeya solani’) were isolated from soil samples collected in different regions in Poland. The phages have a typical morphology of the members of the order Caudovirales, family Myoviridae, with a head diameter of c. 90–100 nm and tail length of c. 120–140 nm. In host range experiments, phage ?D5 expressed the broadest host range, infecting members of all Dickeya spp., and phage ?D7 showed the narrowest host range, infecting isolates of Dickeya dadantii and ‘D. solani’ only. None of the phages was able to infect Pectobacterium spp. isolates. All phages were prone to inactivation by pH 2, temperature of 85°C and by UV illumination for 10 min (50 mJ cm?2). Additionally, phages ?D1, ?D10 and ?D11 were inactivated by 5 m NaCl and phage ?D2 was inactivated by chloroform. Phages ?D1, ?D5, ?D7 and ?D10 were characterized for optimal multiplicity of infection and the rate of adsorption to the bacterial cells. The latent period was 30 min for ?D1, 40 min for ?D5, 20–30 min for ?D7 and 40 min for ?D10. The estimated burst size was c. 100 plaque‐forming units per infected cell. The bacteriophages were able to completely stop the growth of ‘D. solaniin vitro and to protect potato tuber tissue from maceration caused by the bacteria. The potential use of bacteriophages for the biocontrol of biovar 3 Dickeya spp. in potato is discussed.  相似文献   

6.
Detailed studies were conducted on the distribution of Pectobacterium carotovorum subsp. carotovorum and Dickeya spp. in two potato seed lots of different cultivars harvested from blackleg-diseased crops. Composite samples of six different tuber sections (peel, stolon end, and peeled potato tissue 0.5, 1.0, 2.0 and 4.0 cm from the stolon end) were analysed by enrichment PCR, and CVP plating followed by colony PCR on the resulting cavity-forming bacteria. Seed lots were contaminated with Dickeya spp. and P. carotovorum subsp. carotovorum (Pcc), but not with P. atrosepticum. Dickeya spp. and Pcc were found at high concentrations in the stolon ends, whereas relatively low densities were found in the peel and in deeper located potato tissue. Rep-PCR, 16S rDNA sequence analysis and biochemical assays, grouped all the Dickeya spp. isolates from the two potato seed lots as biovar 3. The implications of the results for the control of Pectobacterium and Dickeya spp., and sampling strategies in relation to seed testing, are discussed.  相似文献   

7.
Plant pathogenic enterobacteria in the genera Pectobacterium and Dickeya (formerly classified as Erwinia) were isolated from diseased potato stems and tubers. The isolated bacteria were identified as P. atrosepticum, P. carotovorum and pathogens in the genus Dickeya with PCR tests. Furthermore, Dickeya strains were isolated from river water samples throughout the country. Phylogenetic analysis with 16S-23S rDNA intergenic spacer sequences suggested that the Dickeya strains could be divided into three groups, two of which were isolated from potato samples. Phylogenetic analysis with 16S rDNA sequences and growth at 39°C suggested that one of the groups corresponds to D. dianthicola, a quarantine pathogen in greenhouse cultivation of ornamentals, while two of the groups did not clearly resemble any of the previously characterised Dickeya species. Field trials with the strains indicated that D. dianthicola-like strains isolated from river samples caused the highest incidence of rotting and necrosis of potato stems, but some of the Dickeya strains isolated from potato samples also caused symptoms. The results showed that although P. atrosepticum is still the major cause of blackleg in Finland, virulent Dickeya strains were commonly present in potato stocks and rivers. This is the first report suggesting that Dickeya, originally known as a pathogen in tropical and warm climates, may cause diseases in potato in northern Europe.  相似文献   

8.
Pectinolytic bacteria from the genus Dickeya (former Erwinia chrysanthemi), belonging to Dickeya dianthicola and Dickeya solani species, are causative agents of blackleg and soft rot diseases in Europe. Recently, D. solani have been isolated most frequently from potato plants with the symptoms of blackleg and soft rot. D. solani strains were shown to cause more severe disease symptoms on potato plants than D. dianthicola especially at the higher temperature. They are also able to develop blackleg disease from lower inoculum levels. In the presented study we not only compared phenotypic features of fifteen D. solani strains isolated in countries having different climatic conditions, Poland, Finland and Israel, but also we examined three D. dianthicola strains. The comparison was performed to determine the influence of the strain origin and the temperature of incubation on the ability of the strains to macerate potato tissue and on their major virulence factors such as: pectinolytic, cellulolytic and proteolytic activities, siderophore production and motility. Polish D. solani strains showed higher activities of cell wall degrading enzymes than the Finnish and Israeli strains at all the tested temperatures: 18, 27, 37 °C. This observation is correlated with the higher ability of Polish D. solani strains to cause soft rot. In addition, D. solani strains exhibited higher activity of the above mentioned enzymes and caused more severe potato tuber maceration in laboratory tests than the tested D. dianthicola strains. The collected results indicate that although D. solani strains from different climatic conditions have identical Pulse Field Gel Electrophoresis (PFGE) profiles in addition to the same fingerprint profiles obtained by the repetitive sequence-based polymerase chain reaction (REP, ERIC and BOX repetitive sequences), they differ in the examined phenotypic features, especially in the activities of pectinolytic, cellulolytic and proteolytic enzymes and their capacity to macerate potato tuber tissue.  相似文献   

9.
Dickeya and Pectobacterium are responsible for causing blackleg of plants and soft rot of tubers in storage and in the field, giving rise to losses in seed potato production. In an attempt to improve potato health, biocontrol activity of known and putative antagonists was screened using in vitro and in planta assays, followed by analysis of their persistence at various storage temperatures. Most antagonists had low survival on potato tuber surfaces at 4 °C. The population dynamics of the best low-temperature tolerant strain and also the most efficient antagonist, Serratia plymuthica A30, along with Dickeya solani as target pathogen, was studied with TaqMan real-time PCR throughout the storage period. Tubers of three potato cultivars were treated in the autumn with the antagonist and then inoculated with D. solani. Although the cell densities of both strains decreased during the storage period in inoculated tubers, the pathogen population was always lower in the presence of the antagonist. The treated tubers were planted in the field the following growing season to evaluate the efficiency of the bacterial antagonist for controlling disease incidence. The potato endophyte S. plymuthica A30 protected potato plants by reducing blackleg development on average by 58.5% and transmission to tuber progeny as latent infection by 47–75%. These results suggest that treatment of potato tubers with biocontrol agents after harvest can reduce the severity of soft rot disease during storage and affect the transmission of soft rot bacteria from mother tubers to progeny tubers during field cultivation.  相似文献   

10.
TaqMan assays were developed for the detection of seven Dickeya species, namely D. dianthicola, D. dadantii, D. paradisiaca, D. chrysanthemi, D. zeae, D. dieffenbachiae and D. solani. Sequences of the gene coding for dnaX were used for the design of primers and probes. In studies with axenic cultures of bacteria, the assays were highly specific and only reacted with strains of the target species, and not with non-target bacteria, including those belonging to other Dickeya species and other genera. The detection thresholds for DNA extracted from pure cultures of target strains ranged from 10 to 100 fg. The TaqMan assays for D. dianthicola and D. solani were more extensively evaluated as part of a method validation procedure. The threshold level for target bacteria added to a potato peel extract diluted ten-times in a semi-selective broth, was strain dependent and ranged from 1,000 to 100,000 cfu/ml. The coefficients of variation for repeatability and reproducibility were low and results were largely independent of the type of substrate, i.e. potato tuber or carnation leaf extracts. However, during routine testing of seed potatoes, false-positive reactions were found with the assay for D. solani. The use of the TaqMan assays for inspection of plant propagation material, ecological studies and studies on the effect of control strategies in disease management strategies is discussed.  相似文献   

11.
Suspected Dickeya sp. strains were obtained from potato plants and tubers collected from commercial plots. The disease was observed on crops of various cultivars grown from seed tubers imported from the Netherlands during the spring seasons of 2004–2006, with disease incidence of 2–30% (10% in average). In addition to typical wilting symptoms on the foliage, in cases of severe infection, progeny tubers were rotten in the soil. Six strains were characterised by biochemical, serological and PCR-amplification. All tests verified the strains as Dickeya sp. The rep-PCR and the biochemical assays showed that the strains isolated from blackleg diseased plants in Israel were very similar, if not identical to strains isolated from Dutch seed potatoes, suggesting that the infection in Israel originated from the Dutch seed. The strains were distantly related to D. dianthicola strains, typically found in potatoes in Western Europe, and were similar to biovar 3 D. dadanti or D. zeae. This is the first time that the presence of biovar 3 strains in potato in the Netherlands is described. One of the strains was used for pathogenicity assays on potato cvs Nicola and Mondial. Symptoms appeared 2 to 3 days after stem inoculation, and 7 to 10 days after soil inoculation. The control plants treated with water, or plants inoculated with Pectobacterium carotovorum, did not develop any symptoms with either method of inoculation. The identity of Dickeya sp. and P. carotovorum re-isolated from inoculated plants was confirmed by PCR and ELISA.  相似文献   

12.
Potato blackleg, caused by Pectobacterium and Dickeya species, is one of the most significant bacterial diseases affecting potato production globally. Although it is generally accepted to be a seedborne disease, the processes underlying the spread of disease largely remain unknown. Spatial point pattern analysis was applied to blackleg occurrence in seed potato crops in Scotland during the period of 2010–2013 (approximately 8000 blackleg‐affected crops), to assess whether its distribution was random, regular or aggregated, and the spatial scales at which these patterns occurred. Blackleg‐affected crops derived from mother stocks with symptoms were omitted from the analyses in order to examine the statistical evidence for horizontal transmission of blackleg. The pair correlation function was used to test for global spatial autocorrelation, and results indicated significant (< 0·05) clustering of incidence at a wide range of spatial scales. Strength of clustering (degree of aggregation) among blackleg‐affected crops was notably larger at spatial scales of 25 km or less. A hot‐ and coldspot analysis was performed to test for local spatial autocorrelation, and statistically significant clusters of high and low values of disease were found across the country. These analyses provide the first quantitative evidence of localized and large‐scale spatial clustering of potato blackleg. Understanding the mode(s) of inoculum dispersal will be important for developing new management strategies that minimize host–pathogen contacts in potato and numerous other crops affected by pathogenic Pectobacterium and Dickeya species.  相似文献   

13.
Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing six Dickeya species which included the type strains. A group of twenty-two potato strains isolated between 2005-2007 in the Netherlands, Poland, Finland and Israel were characterised as belonging to biovar 3. They were 100% identical in REP-PCR, dnaX and 16S rDNA sequence analysis. In a polyphasic analysis they formed a new clade different from the six Dickeya species previously described, and may therefore constitute a new species. The strains were very similar to a Dutch strain from hyacinth. On the basis of dnaX sequences and biochemical assays, all other potato strains isolated in Europe between 1979 and 1994 were identified as D. dianthicola (biovar 1 and 7), with the exception of two German strains classified as D. dieffenbachia (biovar 2) and D. dadantii (biovar 3), respectively. Potato strains from Peru were classified as D. dadantii, from Australia as D. zeae and from Taiwan as D. chrysanthemi bv. parthenii, indicating that different Dickeya species are found in association with potato.  相似文献   

14.
This paper briefly reviews research on the causative agents of blackleg and soft rot diseases of potato, namely Pectobacterium and Dickeya species, and the disease syndrome, including epidemiological and aetiological aspects. It critically evaluates control methods used in practice based on the avoidance of the contamination of plants, in particular the use of seed testing programmes and the application of hygienic procedures during crop production. It considers the perspective of breeding and genetic modification to introduce resistance. It also evaluates the application of physical and chemical tuber treatments to reduce inoculum load and examines the possibility of biocontrol using antagonistic bacteria and bacteriophages.  相似文献   

15.
Pectolytic bacteria, including Pectobacterium spp. and Dickeya spp., are best isolated on crystal violet pectate (CVP), a semiselective medium containing pectin. The source of pectin is essential, because pectolytic bacteria are not able to degrade all of them. The aims of this study were to identify a new pectin source and to perfect formulations of semiselective CVP media to isolate the pectolytic bacteria Pectobacterium spp. and Dickeya spp. from different environmental compartments (plants, soil and water). The AG366 pectin, selected after screening six different formulations, was incorporated into single‐layer (SL‐CVPAG366) and double‐layer (DL‐CVPAG366) CVP media. Both media were compared with those based on Bulmer, Sigma‐Aldrich and Slendid‐Burger pectins, using 39 Pectobacterium and Dickeya strains. All strains formed deep cavities on AG366‐CVPs, whereas nine did not produce cavities on Bulmer or Sigma‐Aldrich media. Recovery rates were similar on DL‐CVPAG366, Sigma‐Aldrich and Bulmer CVPs for a given taxon, and did not differ significantly between SL‐ and DL‐CVPAG366. Pectolytic bacteria were successfully isolated on both media from field samples of diseased potatoes, carrots, tobacco, onions, radishes and ornamentals. AG366 is thus a high‐performance pectin source for the elaboration of CVP media suitable to isolate Dickeya and Pectobacterium. It is also efficient for enrichment purposes in liquid medium. The validation of AG366 as an improved source of pectin to recover the polyphagous Pectobacterium and Dickeya in different environmental compartments is essential given the current worldwide emergence and recrudescence of these bacteria.  相似文献   

16.
Over a 5‐year period (2006–2010), 277 certified, visually healthy potato seed lots, imported from Europe to Israel for commercial use, were tested for Dickeya spp. latent infection by PCR analysis (277 seed lots) and ELISA (154 seed lots). Seeds from these lots were grown in commercial potato fields which were inspected twice a season by Plant Protection and Inspection Services (PPIS). Stem samples were tested for the presence of Dickeya spp. by PCR analysis. PCR and ELISA results from seed lot testing correlated with disease expression in 74 and 83·8% of the cases, respectively. Positive laboratory results with no disease symptoms in the field (‘+lab/?field’ results) comprised 24·7 and 9·7% of the PCR and ELISA analyses, respectively, whereas negative laboratory results with disease symptoms in the field results (‘?lab/+field’) were obtained in 1·3 and 6·5%, of cases respectively. Maximum disease incidence, as well as the number of cultivars expressing disease symptoms, increased over the years of this study, indicating an increase in the prevalence of the disease. Severe disease incidence was observed on cvs Dita, Rodeo, Desiree, Mondial, Tomensa and Jelly. Of the 55 imported seed lots from which disease was recorded in the field, 49 originated from the Netherlands, four from Germany and two from France. None originated from Scotland.  相似文献   

17.
Dickeya spp. and Pectobacterium atrosepticum are major pathogens of potato. Current methods to detect these soft-rotting bacteria require separate identification steps. Here we describe a simple method allowing simultaneous detection of both pathogens based on multiplex PCR. The sensitivity of the primer sets was first examined on purified genomic DNA of the type strains Dickeya chrysanthemi 2048T and P. atrosepticum 1526T. The specificity and detection limits of the primer sets were successfully tested on 61 strains belonging to various Dickeya and Pectobacterium species, on artificially inoculated and on naturally contaminated potato plants. This new method provides a gain in time and materials, the main advantages for large-scale processes such as pathogen-free seed certification.  相似文献   

18.
Pectobacterium brasiliense (Pbr) infects a wide range of crops worldwide, causing potato blackleg and soft rot and vegetable soft rots. This study aimed to characterize the genetic diversity and virulence variability among 68 Pbr strains isolated from either symptomless potato progeny tubers, diseased potato plants, ware potatoes wash water, or vegetables grown in Israel, as well as strains isolated from symptomless seed tubers grown in Europe, or diseased potato plants grown in France. The collection was typed using PCR and TaqMan real-time PCR analyses, dnaX sequence analysis, pulsed-field gel electrophoresis (PFGE), and pectolytic activity. dnaX phylogeny grouped almost all strains in a common genetic clade related to Pbr, which was distinct from the other Pectobacterium species. PFGE analysis identified two main clusters, including one major group of 47 strains with 95%–100% similarity. Maceration assays on two potato cultivars showed significant differences between strains but with no correlations with the source of the strains nor the status of the host (with/without symptoms). Molecular (dnaX sequences and PFGE profiles) and phenotypic analyses (tuber maceration tests) showed that the tested Pbr strains are not a homogeneous group. Analysis of the tested Pbr strains isolated from potato and vegetables grown in fields with a history of potato cultivation suggests that seed tubers imported from Europe may be the main source for Pbr in Israel. To the best of our knowledge, this is the first study that describes biodiversity and population structure of P. brasiliense isolated from potato and vegetables under hot climate conditions.  相似文献   

19.
Amplified fragment length polymorphism (AFLP) markers and multilocus sequence analysis (MLSA) were used to analyse 63 bacterial strains, including 30 soft‐rot‐causing bacterial strains collected from Syrian potato fields and 33 reference strains. For the MLSA, additional sequences of 41 strains of Pectobacterium and Dickeya, available from the NCBI GenBank, were included to produce a single alignment of the 104 taxa for the seven concatenated genes (acnA, gapA, proA, icd, mtlD, mdh and pgi). The results indicate the need for a revision of the previously classified strains, as some potato‐derived Pectobacterium carotovorum strains were re‐identified as P. wasabiae. The strains that were classified as P. carotovorum during the analyses demonstrated high heterogeneity and grouped into five P. carotovorum highly supported clusters (PcI to PcV). The strains represented a wide range of host plants including potatoes, cabbage, avocados, arum lilies, sugar cane and more. Host specificity was detected in PcV, in which four of the six strains were isolated from monocotyledonous plants. The PcV strains formed a clearly distinct group in all the constructed phylogenetic trees. The number of strains phylogenetically classified as subspecies ‘P. c. subsp. brasiliensis’ in PcIV dramatically increased in size as a result of the characterization of new isolates or re‐identification of previous P. carotovorum and P. atrosepticum strains. The P. carotovorum strains from Syria were grouped into PcI, PcII and PcIV. This grouping indicates a lack of correlation between the geographical origin and classification of these pathogens.  相似文献   

20.
Biochemical characterisation of Dickeya strains isolated from potato plants and river water samples in Finland showed that the majority of the strains were biovar 3. They thus resembled the strains recently isolated from potato in the Netherlands, Poland and Israel and form a new clade within the Dickeya genus. About half of the Finnish isolates resembling strains within this new clade were virulent and caused wilting, necrotic lesions and rotting of leaves and stems. Similar symptoms were caused by D. dianthicola strains isolated from one potato sample and from several river water samples. Frequently, the rotting caused by the Dickeya strains was visible in the upper parts of the stem, while the stem base was necrotic from the pith but hard and green on the outside, resulting in symptoms quite different from the blackleg caused by Pectobacterium atrosepticum. The presence of Dickeya in the symptomatic plants in the field assay was verified with a conventional PCR and with a real-time PCR test developed for the purpose. The virulent Dickeya strains reduced the yield of individual plants by up to 50% and caused rotting of the daughter tubers in the field and in storage. Management of Dickeya spp. in the potato production chain requires awareness of the symptoms and extensive knowledge about the epidemiology of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号