首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A molecular‐based assay was employed to analyse and accurately identify various root‐knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa. Using the intergenic region (IGS) and the 28S D2–D3 expansion segments within the ribosomal DNA (rDNA), together with the region between the cytochrome oxidase subunit II (COII) and the 16S rRNA gene of the mtDNA, 78 composite potato tubers collected from seven major potato growing provinces were analysed and all Meloidogyne species present were identified. During this study, Mincognita, M. arenaria, M. javanica, M. hapla, M. chitwoodi and M. enterolobii were identified. The three tropical species M. javanica, M. incognita and M. arenaria were identified as the most prevalent species, occurring in almost every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu‐Natal, respectively, while M. chitwoodi was isolated from two growers located within the Free State. Results presented here form part of the first comprehensive surveillance study of root‐knot nematodes to be carried out on potatoes in South Africa using a molecular‐based approach. The three genes were able to distinguish various Meloidogyne populations from one another, providing a reliable and robust method for future use in diagnostics within the potato industry for these phytoparasites.  相似文献   

2.
Ochradenus baccatus is a widely distributed shrub in desert regions of the Middle East and North Africa. This plant's nematicidal activity against the root‐knot nematode Meloidogyne javanica was evaluated because it has been found to contain exceptionally high levels of glucosinolates. In in vitro assays with aqueous extracts of the plant, 100% of second‐stage juveniles were immobilized after exposure to 4% root‐core extract for 48 h; 8% root‐core extract suppressed their hatching by 87%, whereas stem, flower and root bark showed lower activity. Incorporation of root core or bark into the soil, as fresh or dry powder at 1 and 0·5% (w/w), respectively, reduced the number of nematodes recovered from the soil by 95–100%, whereas the flower and stem were much less effective. Results from further pot experiments indicated that only the root bark consistently contains nematicidal compounds which are effective in soil, whereas the nematicidal activity of the root core in soil was inconsistent. The presence of non‐volatile lipophilic and lipophobic nematicidal compounds in the root bark was suggested by extraction with different polar solvents, but these compounds do not seem to be isothiocyanates – glucosinolate‐hydrolysed compounds with nematicidal activity. Very poor host status of Ochradenus baccatus to M. javanica, Mincognita and M. hapla, but with root‐penetration rates of juveniles similar to those in tomato roots, suggest that this plant may be used as a cover plant or trap plant to reduce nematode populations in the soil.  相似文献   

3.
The effects of root‐knot nematodes on black root rot of watermelon and bottle gourd were studied using field surveys and co‐inoculation tests with Meloidogyne incognita (southern root‐knot nematode) and Diaporthe sclerotioides. The results of the field survey suggested that root‐knot nematodes had little effect on either the severity of black root rot or infection with D. sclerotioides. None of the three fields showed a significant positive correlation between disease severity and nematode gall index, with low correlation coefficients. Co‐inoculation experiments under controlled conditions found no significant effect of root‐knot nematodes on black root rot of watermelon and bottle gourd based on area under disease progress curves (AUDPC). These results were supported by the quantities of DNA of the two agents in root tissues because no significant difference was found between dual‐ and single‐inoculation treatments with M. incognita and/or D. sclerotioides. These findings suggest that root‐knot nematodes probably do not affect the infection of watermelon or bottle gourd roots by D. sclerotioides or the incidence of black root rot in these crops caused by this fungus.  相似文献   

4.
The suitability of watermelon cultivars and cucurbit rootstocks as hosts to Meloidogyne incognita and M. javanica was determined in pot and field experiments. Meloidogyne incognita showed higher reproduction than did M. javanica on watermelon and cucurbit rootstocks. The watermelon cultivars did not differ in host status when challenged with these two species and supported lower nematode reproduction than the cucurbit rootstocks. Rootstocks Lagenaria siceraria cv. Pelops and Cucurbita pepo AK15 supported lower reproduction than did the squash hybrid rootstocks (C. maxima × C. moschata). Egg production increased (< 0·05) with a rising initial inoculum level (Pi) in the non‐grafted Sugar Baby but the reproduction factor Rf (eggs per plant/Pi) was similar at two Pi levels. The total egg production in the plants grafted onto squash hybrids RS841 and Titan was greater (< 0·05) at the higher Pi, but the Rf values were lower. The development of field‐grown non‐grafted watermelon plants was significantly stunted in plots where nematodes were detected at planting. However, no differences were observed in plots with grafted plants. In plots with nematodes, non‐grafted and Titan‐grafted plants had similar yields that were higher than that of RS841‐grafted plants. In the commercial plastic houses with grafted watermelon, the average Rf value was 42‐fold, confirming the high susceptibility of squash hybrids as rootstocks for grafted watermelon. The Titan–Sugar Baby combination was tolerant to M. javanica.  相似文献   

5.
Several experiments were carried out to assess the performance of commercial Solanum torvum cultivars against the root knot nematodes Meloidogyne incognita and M. javanica in Spain. The response of S. torvum rootstock cultivars Brutus, Espina, Salutamu and Torpedo against M. incognita and Mi-1.2 (a)virulent M. javanica isolates was determined in pot experiments, and of ‘Brutus’ to an N-virulent isolate of M. incognita, compared with that of the eggplant S. melongena ‘Cristal’. The relationship between the initial and final population densities of M. javanica on ungrafted and grafted ‘Cristal’ onto the S. torvum ‘Brutus’ was assessed, together with the effect on dry shoot biomass. Finally, the population growth rate and the resistance level of the four S. torvum cultivars against M. incognita was assessed under plastic greenhouse conditions in two cropping seasons. All S. torvum rootstocks responded as resistant to the M. incognita isolates and from highly resistant to susceptible against M. javanica isolates. The maximum multiplication rates of M. javanica on the ungrafted or grafted eggplant were 270 and 49, respectively, and the equilibrium densities were 1318 and 2056 eggs and J2 per 100 cm3 soil, respectively. The tolerance of the ungrafted eggplant was 10.9 J2 per 100 cm3 soil, and the minimum relative dry shoot biomass was 0.76. The population growth rate of M. incognita on eggplant cv. Cristal differed from that of the S. torvum cultivars in both cropping seasons. These results suggest that S. torvum is a valuable rootstock for managing the two Meloidogyne species irrespective of the (a)virulence status.  相似文献   

6.
Several studies were carried out to determine (i) thermal requirements for development, egg production and emergence of juveniles, and completion of the life cycle of Meloidogyne incognita and Meloidogyne javanica on cucumber, (ii) the maximum multiplication rate and the equilibrium density of root‐knot nematodes on cucumber and yield losses in pot and plastic greenhouse experiments, and (iii) the relationships between relative leaf chlorophyll content (RLCC) and relative cucumber dry top weight biomass (RDTWB) in relation to increasing nematode densities at planting (Pi) in pot experiments. Thermal requirements of M. incognita and M. javanica on cucumber did not differ, irrespective of the biological stage. In the pot experiments, Mjavanica completed one generation. The maximum multiplication rate (a) was 833, and the equilibrium density (E) varied according to the effective inoculum densities. The relationship between RDTWB and Pi fitted the Seinhorst damage function model. The RLCC value at 40 or 50 days post‐inoculation also fitted the damage model and was related to RDTWB. In greenhouse experiments, conducted from 2009 to 2012, M. incognita completed three generations. The values for a and E were 1147 and 625 second stage juveniles (J2) per 250 cm3 soil, respectively. The tolerance limit was below zero, and the minimum relative yield ranged from 0·12 to 0·34.  相似文献   

7.
Nematicidal activity of the leaf powder, leaf extracts and formulated leaf extracts of Myrtus communis, an evergreen shrub that is widely distributed in Israel and other Mediterranean countries, was evaluated using the root‐knot nematode Meloidogyne javanica in in vitro and pot experiments. Leaf powder added to sand at 0·1% (w/w) reduced the number of juveniles recovered from the sand by more than 50%. Reduction in galling index and number of nematode eggs on tomato roots was also observed by incorporating the leaf powder at 0·1–0·4% (w/w) in the soil in pot experiments. Leaf powder extracts with methanol or ethanol showed the highest nematicidal activity among all extracts tested. Emulsifiable concentrates of leaf‐paste extract at a concentration as low as 0·005% (a.i., w/w) reduced the number of juveniles recovered from treated sand and the gall index of cucumber seedlings. The extract paste at 26 g m?2 was also effective in reducing the gall index of tomato plants in field‐plot experiments. The leaf powder at 0·2% and the formulated leaf‐paste extract at 0·02% were also nematicidal to Tylenchulus semipenetrans and Ditylenchus dipsaci, but not to Pratylenchus penetrans or Steinernema feltiae. At least three nematicidal compounds were found in the leaf extract upon fractionation by thin‐layer chromatography. The results suggest that the leaf powder and paste extract of M. communis are potential nematicides against root‐knot nematodes.  相似文献   

8.
宁夏葡萄苗圃根结线虫病发病症状、为害程度及种类   总被引:2,自引:0,他引:2  
为有效防治葡萄苗圃根结线虫病,采用拔根百分法和直接解剖法调查宁夏永宁县玉泉营镇葡萄苗圃葡萄苗木根结线虫病的发病症状、为害程度,并通过形态学和分子生物学对其种类进行鉴定。结果表明:15个葡萄品种的病害症状之间有一定差异。除抗砧3号外,其余14个葡萄品种均受根结线虫侵染,且不同葡萄品种受根结线虫为害的严重度差异明显,其中西拉、红芭拉蒂、爱神玫瑰、阳光玫瑰、马瑟兰、贝达和黑比诺上根结线虫病较严重,病情指数介于51.67~78.33之间,大青的病情指数最低,为21.67。不同葡萄品种的每根段雌成虫数量之间、每根段根结数量之间差异明显,其中葡萄品种贝达的每根段雌成虫数量和每根段根结数量最多,分别为12.47条和4.27个,葡萄品种黑比诺的每根段雌成虫数量和每根段根结数量较少,分别为3.60条和1.73个;每根段雌成虫数量随着每根段根结数量的增加而增加。根据根结线虫2龄幼虫、雌成虫和会阴花纹的形态学特征及分子生物学鉴定结果确定为害葡萄苗圃的根结线虫主要为南方根结线虫Meloidogyne incognita和花生根结线虫M. arenaria。除抗砧3号外,其它14个葡萄品种均不同程度的感染了南方根结线虫和花生根结线虫,且所有葡萄品种感染南方根结线虫的比例均较高。  相似文献   

9.
Weeds have a great economic impact on agricultural production because they compete with crops for resources and are alternative hosts for pests, microbial pathogens and plant-parasitic nematodes. This study aimed to investigate the susceptibility of weeds to the root-knot nematodes Meloidogyne javanica and Meloidogyne incognita and assess the effect of aqueous weed extracts on M. javanica egg hatching. Four experiments were conducted, two for each nematode species. Weeds were inoculated with 2000 nematode eggs and grown for 60 days under greenhouse conditions. Soyabean cv. Monsoy 7110 was used as control. The weeds Ipomoea grandifolia, Solanum americanum, Digitaria horizontalis, Amaranthus deflexus, Sorghum halepense and Commelina benghalensis were susceptible to M. javanica and M. incognita in at least one experiment (reproduction factor, RF >1). Crotalaria juncea and Eleusine indica were susceptible to M. incognita in one experiment, and Digitaria insularis, Sida rhombifolia, Bidens pilosa, Urochloa decumbens, Crotalaria breviflora, Cenchrus echinatus, Crotalaria ochroleuca and Crotalaria spectabilis were immune or resistant (RF <1 or RF = 0). Alternanthera tenella, C. juncea, S. rhombifolia, C. ochroleuca, C. spectabilis, C. breviflora, B. pilosa, E. indica, U. decumbens and C. echinatus were resistant or immune to M. javanica (RF <1 or RF = 0). Compared with the control (water), all weed extracts reduced M. javanica egg hatch. Our results highlight the importance of weed control in agricultural systems, as nematodes can survive and multiply in weed roots during the off-season. Weed leaves and shoots, however, may be an interesting source of compounds with nematicidal activity.  相似文献   

10.
Agrobacterium tumefaciens (AT) is the causal agent of crown gall, a major problem in the family Rosaceae and particularly for Prunus spp. Crown gall symptoms result from the bacterial infection of the cells damaged mechanically at the collar or by root parasitic nematodes. Myrobalan plum (P. cerasifera) is susceptible to AT and is not a host for the root-knot nematode (RKN), M. hapla. Some clones of this plum carry single Ma resistance genes that control M. arenaria, M. incognita and M. javanica. The four above mentioned RKN and Myrobalan progenies segregating for Ma were used in experiments aimed at obtaining a better knowledge of the interaction between AT and RKN in relation to the RKN resistance genes. Prunus rooted cuttings, naturally infected with the bacterium were repotted, grown and inoculated individually with RKN. In a first experiment, Prunus plants were (i) either inoculated with 10,000 juveniles (J2s) of M. arenaria to provide a short inoculum pressure (SIP) or (ii) inoculated by association with one M. arenaria-galled tomato root system that produced a high and durable inoculum pressure of the same nematode species. Four months after RKN inoculation, plants were rated for nematode and bacterial root galling symptoms. RKN and AT galls were more numerous and more homogenous under DIP than under SIP. Nevertheless, for both inoculum regimes, AT galls were present in the RKN-susceptible clones (= carrying none of the Ma genes) and absent in the RKN-resistant clones. Subsequent experiments, conducted under DIP with M. arenaria, M. incognita, M. javanica and M. hapla, also showed, for the three first species, the presence of AT galls only in RKN-susceptible clones whereas Prunus plants inoculated with M. hapla and nematode-free controls were free of AT galls. Consequently RKN act as a wound agent in the AT infection process of Myrobalan plum only when the plant develops a compatible reaction (i.e. when it lacks the Ma resistance genes). Considering that J2s do penetrate the roots of resistant plants, the absence of crown gall symptoms on this material even under durable inoculum pressure strengthens the hypothesis that this nematode stage has a very weak effect on plant cells during the infection process. This is the first evidence of the protective effect of a RKN resistance gene against the expression of root crown gall consecutive to RKN infection. The protective effect of Ma and presumably of other RKN resistance genes against AT is a strong argument for their introgression into Prunus and other Rosaceae or bacterium-susceptible crops.  相似文献   

11.
Root‐knot nematodes (RKNs), Meloidogyne spp., are a major disease problem in solanaceous crops worldwide, including pepper (Capsicum spp.). Genetic control provides an economically and environmentally sustainable protection alternative to soil fumigants. In pepper, resistance to the main RKN species (M. incognita, M. javanica and M. arenaria) is conferred by the major genes (R genes) Me1, Me3 and N. However, RKNs are able to develop virulence, thus endangering the efficiency of R genes. Quantitative resistance (QR) against Meloidogyne spp. is expected to provide an alternative to R genes, or to be combined with R genes, to increase the resistance efficiency and durability in pepper. In order to explore the ability of QR to protect pepper against RKNs, five pepper inbred lines, differing in their QR level, were tested directly, or after combination with the Me1 and Me3 genes, for their resistance to a panel of M. arenaria, M. javanica and M. incognita isolates. The M. arenaria and M. javanica isolates showed low pathogenicity to pepper, unlike the M. incognita isolates. The QR, controlled by the pepper genetic background, displayed a high resistance level with a broad spectrum of action, protecting pepper against Me3‐virulent as well as avirulent M. incognita isolates. The QR was also expressed when combined with the Me1 and Me3 genes, but presented additive genetic effects so that heterozygous F1 hybrids proved less resistant than homozygous inbred lines. The discovery of this QR is expected to provide promising applications for preserving the efficiency and durability of nematode resistance.  相似文献   

12.
Commercial vineyards in southern Spain were surveyed and sampled during October to December 2004 to determine the extent to which common weeds present were suitable hosts of root-knot nematodes infesting soils of those vineyards. Seven weed species commonly growing in grapevine soils in southern Spain were found infected by either Meloidogyne incognita or M. javanica: Amaranthus retroflexus (redroot pigweed), Anchusa azurea (ox-tongue), Chenopodium album (goosefoot), Erodium moschatum (musk stork’s bill), Malva rotundifolia (low mallow), Sinapis alba (white mustard), and Solanum nigrum (black nightshade). The host suitability of the weeds to root-knot nematodes was evaluated on the basis of root galling severity and nematode population densities in soil and roots. Also, the host–parasite relationship in these naturally Meloidogyne-infected weeds was examined. All the weed species in the study were considered suitable hosts for M. incognita and M. javanica because: (a) high Meloidogyne spp. populations occurred in roots and surrounding soil of the weed species; (b) the severity of root galling was high, and (c) well-established permanent feeding sites were observed in the histopathological studies of infected root tissues. In addition, this study presents the first reports of S. alba and A. azurea as hosts for M. incognita, and of E. moschatum as a new host for M. javanica, thus increasing the list of reported weed hosts for Meloidogyne spp. These results indicate that noticeable population densities of M. incognita and M. javanica can be maintained or increased in these weeds, at population levels higher than those previously reported for the same nematodes infecting grapevine roots. The weeds infesting vineyards thus represent an important source of inoculum of Meloidogyne spp., and furthermore may act as reservoirs of these nematodes which can be disseminated within or among vineyards by agricultural operations.  相似文献   

13.
The response of recombinant inbred lines (RILs) from a cross of zucchini × scallop (Cucurbita pepo subsp. pepo ‘Murcia MU-CU-16’ × C. pepo subsp. ovifera ‘Scallop UPV-196’) to Meloidogyne incognita and M. javanica was determined after completion of a nematode reproduction cycle in experiments carried out in a growth chamber. The nematode differentiated the C. pepo genotypes at the subspecies level due to lower egg mass production on subspecies pepo than ovifera, and thus subspecies pepo was a poorer host than ovifera. In addition, Murcia MU-CU-16 discriminated M. incognita from M. javanica in terms of egg masses (EM), eggs per gram of root and reproduction factor (Rf), whereas Scallop UPV-196 did so in eggs per gram of root and Rf. The RILs differed in gall formation and EM production depending on the nematode × line combination. Comparisons between nematode isolates resulted in four significant combinations for pathogenic potential (galls/initial population (Pi) × 100), seven for parasitic success (egg masses/Pi × 100), and nine for host efficiency (egg masses/galls per root system × 100) which included all the lines tested against both isolates. Lines that restricted nematode development by at least 90% were considered as having intermediate resistance to M. incognita based on the definition of the International Seed Federation. They included lines 28-1, 35A, 107A, 110-3 and 153-2. All the RILs were susceptible hosts for M. javanica. The information presented here will be helpful for nematode management and also for plant breeders working on pathogen resistance on C. pepo.  相似文献   

14.
Abstract

In a survey of plant parasitic nematodes associated with or affecting rice throughout Nigeria, some important nematode pests, especially the white tip disease nematode, Aphelenchoides besseyi and the rice root nematodes Hirschmanniella spinicaudata and H. oryzae were identified from seed, soil and root samples from swamp rice fields respectively. The sugarcane cyst nematode, Heterodera sacchari occurred in swamp rice fields only around the major sugarcane estates in Nigeria. The root‐knot Meloidogyne incognita and the root lesion nematode, Pratylenchus brachyurus were also encountered in upland (rainfed) rice fields. The white tip disease nematode, A. besseyi occurred at low levels in soils and rice seeds throughout the country. High population levels of H. spinicaudata and H. oryzae were encountered especially in areas where monoculture of rice is practised. General chlorosis, poor tillering and significantly reduced yield have been observed due to H. spinicaudata. Rice plants attacked by H. sacchari also showed intense chlorosis, delayed and reduced tillering and reduced grain yield. The roots of attacked plants were twiggy, very necrotic and blackened. The root‐knot M. incognita and the root lesion nematodes P. brachyurus have both been observed to reduce rice yields. Rice cultivars screened for reactions to the nematodes showed varying degrees of susceptibilities. Some varieties were however resistant to the root‐knot nematode, M. incognita.  相似文献   

15.
BACKGROUND: Fluensulfone, a new nematicide of the fluoroalkenyl group, has proved to be very effective in controlling root‐knot nematodes, Meloidogyne spp., by soil application. The systemic activity of this compound against M. incognita on peppers via soil drenching and foliar spray was evaluated. RESULTS: Root application of fluensulfone via soil drenching showed slight and no nematode control activity when applied 4 and 10 days, respectively, after inoculation. A single foliar spray of peppers with a fluensulfone solution at 3.0 g L?1 prior to inoculation reduced the galling index by 80% and the number of nematode eggs by 73–82% of controls. The reduction in these parameters by fluensulfone was much higher than that obtained with oxamyl or fenamiphos at the same concentration. This activity was also observed when the plants were sprayed 21 days before inoculation. A series of experiments suggested that foliar spray with fluensulfone prior to inoculation reduces nematode invasion. However, foliar spray after inoculation did not inhibit nematode development inside roots. CONCLUSION: Fluensulfone showed relatively high nematode control activity when sprayed on the foliage before inoculation. Fluensulfone may be used as a foliar application, in addition to soil application, for root‐knot nematode control. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The reproductive behaviour of the root‐knot nematode Meloidogyne arenaria race 1 was compared on two wild species of Arachis (A. duranensis and A. stenosperma) and cultivated peanut (A. hypogaea cv. IAC‐Tatu‐ST). The three species were considered moderately susceptible, resistant, and susceptible, respectively. Penetration and development of the root‐knot nematode in the resistant species was reduced in comparison with that occurring in susceptible plants. Several cell features, including dark blue cytoplasm and altered organelle structure were observed in the central cylinder of A. stenosperma, indicating a hypersensitive‐like response (HR) of infested host cells. Neither giant cells, nor nematodes developed beyond the second stage, were found on A. stenosperma. Arachis duranensis showed a delay in the development of nematodes in the roots compared to A. hypogaea. The two wild peanut species were chosen to be the contrasting parents of a segregating population for mapping and further investigation of resistance genes.  相似文献   

17.
Accessions of Gossypium spp., some of them never previously tested, were evaluated for resistance to a local isolate of Meloidogyne incognita race 3 in greenhouse experiments. Nematode infection was characterized based on the galling and egg mass indexes and the reproduction factors (RF). Root‐knot nematode reproduction among the newly tested accessions varied from highly susceptible (AS0188, AS0189) to moderately resistant (MT123 no. 3), and some accessions showed highly reduced nematode reproduction (CIR1343, CIR1348, Fai Mui). Histological observations of two resistant accessions (G. barbadense CIR1348 and G. hirsutum TX‐25, respectively) showed that resistance occurs through a two‐stage mechanism in the first accession and through a single‐stage mechanism in the second. Parasitism is blocked early after second‐stage juvenile (J2) penetration or during its initial tissue migration (CIR1348) and the development of later‐stage juveniles into female adults is suppressed at a later stage (TX‐25 and CIR1348). Fluorescence and bright light microscopy showed that root cells surrounding nematodes exhibit a hypersensitivity‐like reaction, with the accumulation of presumably phenolic compounds and the presence of necrotic cells that limit the development of nematodes and the formation of giant cells. Underdeveloped giant cells with degenerated cytoplasmic content were found in small numbers in CIR1348 and in large numbers in TX‐25, along with deformed nematodes. The full characterization of the defence mechanisms of novel sources of resistance to the root‐knot nematode in cotton constitutes a first step towards their use in crop improvement.  相似文献   

18.
19.
Since weeds serve as hosts for nematode pests, the host status of 20 weed species (commonly occurring in fields of developing farmers) to Meloidogyne incognita and M. javanica, respectively, were investigated. Greenhouse studies showed that seven weed species had Rf values >1 for both nematode species indicating susceptibility, while 13 had Rf values ≤ 1 indicating resistance. Greenhouse results showed that Hibiscus trionum and Amaranthus tricolor were identified as the most susceptible and Chenopodium carinatum and Datura ferox the poorest hosts for M. incognita and M. javanica. For field experiments at Kuruman, Solanum retroflexum was the most susceptible weed to a M. javanica population, while the same was evident for H. trionum at Nelspruit, where a mixed population of M. incognita and M. javanica occurred and at Potchefstroom, where a population of M. incognita was present. Results from this study indicated that certain weed species are highly susceptible to root-knot nematodes and should be removed timely and effectively to prevent population level increases of root-knot nematode pests in the fields of farmers.  相似文献   

20.
The nematicidal effect of soil amendments with dry top and root material from Medicago sativa and/or Medicago arborea was evaluated on the root-knot nematode Meloidogyne incognita and on the cyst nematode Globodera rostochiensis in potting mixes. All amendments suppressed root and soil population densities of both nematode species compared to non-treated and chemical controls. The suppressiveness of M. sativa differed between top and root material and among the amendment rates. In field conditions soil amendments with 20 or 40 t ha−1 of a pelleted M. sativa meal increased tomato crop yield and reduced soil population densities and root galling by M. incognita. It is suggested that saponins were at least partly responsible for the nematicidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号