首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A 60 days feeding experiment was carried out with Black Sea turbot Psetta maeotica to determine the amount of poultry by‐product meal (PBM) that could replace fish meal (FM) in formulated diets without reducing growth performance. Juvenile Black Sea turbot (initial average weight, 30 g) were fed five isoenergetic (gross energy, 20.5 ± 0.21 kJ g?1 diet) and isonitrogenous diets (protein content, 550 ± 0.35 g kg?1). The control diet used white FM as the sole protein source, the other four diets were prepared to replace FM protein at levels of 25%, 50%, 75% and 100% with PBM. The fish readily accepted all experimental diets and no mortality were recorded during the trial. There were no significant differences in growth performance of turbot (P < 0.05) fed the diets with 25% and 50% replacement levels compared with fish offered the control diet (100% FM), however, final body weight and specific growth rate values in the 50% replacement diet were about 8% lower than those of the control. Total nitrogen excretion in fish fed 50% replacement diet were about 10% higher than the control group, even though these parameters were not found to be statistically different. At the levels of 750 and 1000 g kg?1 of the protein, PBM inclusion caused a severe decrease in growth performance, feed utilization, protein efficiency ratio and per cent nitrogen retention. The results in the present study indicate that up to 25% of FM protein can be replaced by PBM protein without causing reduction in growth performance, nutrient utilization and nitrogen retention.  相似文献   

2.
The aim of this study was to evaluate different replacement levels of fish meal (FM) by poultry by‐product meal (PBM) on survival, growth performance and body composition of juvenile tench (Tinca tinca). A 90‐day experiment was conducted with 5 month‐old juveniles (31.95 mm total length, 0.396 g weight). Eight practical diets (50% crude protein) differing in the level of replacement of FM protein by PMB protein were tested: 0% (control), 25%, 31%, 37%, 43%, 49%, 55% and 61% corresponding to 0, 184.8, 229.2, 273.5, 317.8, 362.1, 406.5 or 450.8 g PBM kg?1 diet respectively. Significant differences were not found (> 0.05) between 25% replacement of FM protein by PBM protein (184.8 g kg?1 PBM in diet) and control diet. At higher replacement levels, fish had significantly lower growth, higher feed conversion ratio and lower protein productive value (< 0.05). Fish with externally visible deformities ranged from 1.1% to 3.3%. The relation among amino acid profiles of the diets, body composition, growth performance of juveniles and amino acid requirements of other fish species is discussed. Up to 184.8 g PBM kg?1 diet can be included in diets for juvenile tench without impairing growth performance.  相似文献   

3.
A 16‐week feeding experiment was conducted to study the feasibility of using broad bean meal (BBM) as a replacement for fish meal (FM) for Nile tilapia Oreochromis niloticus fry, initial average weight 1.9±0.18 g. FM (50% of the diet) was used as sole sources of animal protein in the control diet 1. The replacement levels of BBM in diets (2–5) were 25%, 50%, 75% and 100% of the FM. Methionine (1%) and lysine (0.5%) were added to each diet except the control diet. Three groups of fish were fed each of five isonitrogenous (31.2% CP) and isocaloric (20.1 kJ g?1), and performance was compared against a nutritionally balanced control diet at the end of the experiment. Nile tilapia fed the diet containing 50% BBM exhibited comparable growth with those fed the FM‐based control diet. Digestibility of protein, energy and lipid decreased with increasing levels of BBM above 50% of total replacement FM into the diet. Incorporation of BBM in the diets significantly affected the moisture, fat and energy of whole fish body. These results suggest that BBM can replace 50% of the FM in diet for Nile tilapia fry, without adverse effects on fish performance.  相似文献   

4.
A 12‐week feeding trial was carried out in fibreglass tanks to examine partial replacement of fish meal (FM) with poultry by‐product meal (PBM), meat and bone meal (MBM) and blood meal (BM) in practical diets for gibel carp Carassius auratus gibelio (Bloch). Triplicate groups of fish (initial body weight 15.3 g fish?1) were fed eight isonitrogenous (crude protein: 37.5%) and isolipidic diets (crude lipid: 7%). The control diet is the commercial diet of gibel carp, which used 18% of FM as the sole animal protein source. In the other seven diets (Diet 2–Diet 8), 17–83% of FM protein was substituted by a blend of PBM and BM or a blend of PBM, MBM and BM. The final body weight and thermal‐unit growth coefficient of fish fed the feeds in Diet 8 in which 83% of FM protein was replaced by the blend of 3% BM, 10% PBM and 5% MBM is significantly lower than Diet 1 (the control). The feed efficiency ratio in Diet 8 group is significantly lower than Diet 1, 2, 4 and 7 groups. The results of the present study indicated that a combination of PBM, BM and MBM can replace most of the FM protein and the FM level can be reduced to about 6% with satisfactory growth and feed utilization in practical diets for gibel carp.  相似文献   

5.
With the aim to evaluate different replacement levels of fish meal (FM) by pea protein concentrate (PPC) on survival, growth performance and body composition of juvenile tench (Tinca tinca), a 90‐day experiment was conducted with 6‐month‐old juveniles. Four practical diets (50% crude protein) differing in the level of replacement of FM protein by PPC protein were tested: 0% (control), 25%, 35% or 45%, corresponding to 0, 207.5, 290.4 or 373.3 g PPC kg?1 diet respectively. Survival rates ranged from 96.4% to 98.5%. The 25% and 35% replacement diets resulted in similar growth values (P > 0.05) to those obtained with the control diet (average of the three feeding treatments: 57.57 mm total length, 2.48 g weight and 1.87% day?1 specific growth rate). The 45% replacement diet had the lowest growth (P < 0.05). Fish with externally visible deformities ranged from 0% to 1.5%. The relation among amino acid profiles of the diets, body composition, growth performance of juveniles and amino acid requirements of other fish species is discussed. An amount of 290.4 g PPC kg?1 diet (35% replacement of FM protein) can be included in juvenile tench diets without impairing growth performance.  相似文献   

6.
Two consecutive 6-week feeding trials were conducted to determine the amount of haemoglobin powder (BM) that could replace fish meal (FM) in juvenile Japanese eel Anguilla japonica (Temminck et Schlegel) diets. Fish were fed 50% crude protein diets in which each of ten isonitrogenous diets was formulated to contain white fish meal and/or blood meal as the dietary protein source to replace FM by BM as follows: Diet 1 (control), 0% BM; diet 2,12.5% BM; diet 3,25% BM; diet 4, 50% BM; diet 5, 75% BM; diet6,100%BM;diet7,25%BM + 3 Essential Amino Acids (EAA); diet 8, 50% BM + 3 EAA; diet 9, 75% BM + 3 EAA; diet 10, 100 BM + 3 EAA. In the first 6-week period, the results were not consistent with the treatments, and poor adaptation of the fish to the experimental diets and conditions was observed. In the second 6-week period, weight gain, specific growth rate, protein efficiency ratio and protein productive value offish fed diets 2, 3, 4, 7, 8 and 9 were not significantly different from those of fish fed the control diet (P > 0.05). However, feed conversion ratios offish fed diets 6 and 10 were lower than that offish fed the control diet (P < 0.05). These results demonstrate that FM can be replaced by BM up to 50% without supplementation of three EAA, and up to 75% with three EAA supplementation in juvenile Japanese eel diets.  相似文献   

7.
A feeding trial was conducted in a closed system with Nile tilapia, Oreochromis niloticus, juveniles (mean initial weight, 2.66 g) to examine total replacement of menhaden fish meal (FM) with distiller's dried grains with solubles (DDGS), which had been used as substrate for the production of black soldier fly larvae, Hermetia illucens, in combination with soybean meal (SBM) and poultry by‐product meal (PBM), with or without supplementation of the amino acids (AA) DL‐methionine (Met), L‐lysine (Lys) and a commercial non‐amylaceous polysaccharide enzyme (Enz) product. Fish were fed seven isoenergetic [available energy (AE) = 4.0 kcal g?1 of diet] and isonitrogenous (350 g kg?1 protein as‐fed basis) practical diets formulated with equivalent digestible protein levels. Diet 1 was formulated to be similar to a commercial, high‐quality, tilapia diet containing 200 g kg?1 FM. Diets 2–5 were formulated as a 2 × 2 factorial to replace FM with similar contributions from DDGS (45%), PBM (25%) and SBM (2.1–2.9%), but to differ in supplementation of AA and/or Enz preparation. Diets 6 and 7 were formulated to investigate the effects of a 2/3 and 1/3 reduction, respectively, in DDGS contribution to the replacement protein mix, with concomitant increases in SBM, with respect to diet 3, and were balanced with Lys and Met. After 6 weeks, growth responses were slightly attenuated (P ≤ 0.05) and average daily intake (ADI) and feed conversion ratio (FCR) were slightly higher in tilapia fed DDGS diets 2–5 compared to those of fish fed the FM control diet 1. Growth responses were not significantly affected by the presence or absence of AA or Enz (diets 2–5), or the level of DDGS (diets 3, 7 and 6). Whole‐body proximate composition was not different among treatments. Amino acid profiles of fish fed DDGS diets were not significantly different from those of fish fed the FM control. Evidence of interaction between AA and Enz supplementation was detected in whole‐body amino acid concentrations such that AA content was higher with AA or Enz addition alone, but lower when both were added to the diet. Results suggest that DDGS replacement of FM in tilapia diets can be substantial when diets are formulated on a digestible protein basis and DDGS is combined with highly digestible animal (PBM) and plant proteins (SBM).  相似文献   

8.
We evaluated four fermented protein concentrates (FPCs) as a fish meal replacer in juvenile rainbow trout, Oncorhynchus mykiss. Ten diets were formulated to contain low‐temperature fish meal (LT‐FM), Vietnam fish meal (VT‐FM) and four types of FPCs as fish meal replacers (FPC‐A, B, C & D) at 30% and 50% FM replacement levels. FPC‐A was a mixture of solid‐state fermented soybean meal (SBM) and corn gluten meal (CGM) with Bacillus subtilis; FPC‐B was pretreated acid‐hydrolysed FPC‐A; FPC‐C and FPC‐D were FPC‐A + 2% shrimp soluble extract (SSE) and FPC‐B + 2% SSE, respectively. Triplicate groups of fish (average 15.4 g) were fed one of the experimental diets for 8 weeks. At the end of the feeding trial, fish fed the LT‐FM, FPC‐B, FPC‐C and FPC‐D diets showed significantly higher growth performance at 30% FM replacement than those of fish fed the FPC diets at 50% FM replacement. Fish fed 30FPC‐B, 30FPC‐C and 30FPC‐D diets showed higher weight gain (WG) than fish fed 30FPC‐A diet. Haematological parameters showed no clear trends among the experimental groups. Superoxide dismutase, lysozyme and myeloperoxidase activities were found to be higher in fish fed the LT‐FM, FPC‐A, FPC‐B, FPC‐C and FPC‐D diets at 30% FM replacement than in fish fed the FPC diets at 50% FM replacement. Antinutritional factors such as α‐ and β‐conglycinin, glycinin, trypsin inhibitors or zein were absent in FPC compared with SBM and CGM. Intestinal villi length and muscular thickness were significantly reduced in fish fed the VT‐FM and FPC diets at 50% FM replacement compared to fish fed the LT‐FM and FPC diets at 30% FM replacement. The results show that FPC‐B, FPC‐C, FPC‐D could replace up to 30% of LT‐FM in juvenile rainbow trout.  相似文献   

9.
A basal practical diet for juvenile tench (Tinca tinca) was formulated and elaborated to test several protein contents and substitution possibilities of fish meal (FM) by soybean meal (SBM) in a 90‐day trial with 5‐month‐old juveniles (30.54 mm TL, 0.30 g W). A factorial design included nine feeding treatments: three protein contents (50%, 40% or 30%) and three levels of replacement (0%, 25% or 45%) of FM protein by SBM protein. In addition, a commercial carp feed was used as reference. Final survival ranged from 98.2% to 99.4%. The 50% dietary protein with 0% or 25% replacement and 40% dietary protein with 25% replacement diets enabled higher growth (P < 0.05) and lower FCR (P < 0.05) than the rest of practical diets. Fish fed 50% dietary protein had similar growth than those fed carp feed (63.8% protein). Deformed fish averaged 1% for the practical diets and 87.6% for the carp feed. The basal practical diet has showed to be feasible and levels of 40–50% dietary protein with 25% replacement of FM protein by SBM protein can be recommended for juvenile tench aged 5–8 months.  相似文献   

10.
Two feeding trials examined the replacement of fishmeal (FM) with poultry by‐product meal (PBM) in the diet of juvenile Sparus aurata. In Feeding trial I (100 days), three diets were formulated, where FM protein was replaced by 50% (PBM50) and 100% (PBM100) PBM, while in Feeding trial II (110 days), four diets were formulated using the same FM control diet, but FM was replaced at lower levels: 25% (PBM25), and 25% (PBM25 + ) and 50% (PBM50 + ) with the supplementation of lysine and methionine amino acids. PBM protein can successfully replace 50% of FM protein in the diet of Saurata without adverse effects on survival, feed intake, growth performance and feed utilization, given that the diet is balanced with lysine and methionine. The proximate composition of body and muscle was unaffected by the diet, but the total FM replacement resulted in reduced lipid and energy contents in fish. A fifty per cent FM replacement by PBM did not affect haematological parameters indicating a good fish health. Similarities in trypsin and chymotrypsin activities with FM‐fed fish suggest a high digestibility of PBM. High dietary levels of PBM reduced the liver gene expression of GH/IGF axis and of cathepsin D suppressing fish growth and modulating the protein turnover.  相似文献   

11.
The effects of total replacement of dietary fish meal (FM) with animal protein sources on the growth, feed efficiency and profit indices of Nile tilapia, Oreochromis niloticus (L.), were investigated. Shrimp meal (SM), blood meal (BM), meat and bone meal (MBM), BM + MBM mix and poultry by-product meal (PBM) replaced FM in six isonitrogenous (30% crude protein), isocaloric (400 kcal GE 100 g–1) diets. The diets were fed to O. niloticus fingerlings (12.5 g) to satiation twice a day for 150 days. The growth of fish fed SM, PBM and MBM was not significantly different from those fed the FM-based diet, while feed conversion and protein efficiency ratios were significantly retarded. Further reduction in fish performance was noticed when BM or BM + MBM replaced FM in the control diet. Cost–benefit analyses of the test diets indicated that these sources were economically superior to FM. The PBM-based diet produced higher carcass lipid than other diets. Fish fed SM, MBM and PBM diets had significantly higher ash contents (P < 0.05).  相似文献   

12.
A plant protein mixture (PPM) was tested to replace fish meal (FM) in diets for juvenile Nile tilapia, Oreochromis niloticus. Fish averaging (±SD) 3.7±0.14 g were divided into 15 groups. Three groups were fed each of five isonitrogenous (33.6%) and isocaloric (4.7 kcal g?1) diets replacing 0%, 25%, 50%, 75% and 100% of the FM protein with similar percentages of PPM (PPM0, PPM25, PPM50, PPM75 or PPM100 respectively). The PPM consisted of 25% soybean meal, 25% cottonseed meal, 25% sunflower meal and 25% linseed meal, and 0.5% of both methionine and lysine were added to each diet except for the control. After 16 weeks of feeding, the fish fed diets PPM75 and PPM100 exhibited growth performance not differing significantly from the fish fed control diet. PPM substitution of up to 75% of the FM protein did not result in differences in the apparent protein digestibility compared with the control, whereas in the PPM100 group digestibility was significantly lower than in the other groups, except for fish fed the PPM75 diet. The incorporation of PPM in diets did not significantly affect whole‐body dry matter, protein, fat or energy compared with the control. The cost–benefit analyses of the test diets indicated that the PPM diets were economically superior to FM. The protein from PPM can completely replace the FM protein in the diets for Nile tilapia, based on the results of this study.  相似文献   

13.
An 8‐week feeding trial was conducted to evaluate the effects of replacing fish meal (FM) with soybean meal (SBM) and peanut meal (PM) on growth, feed utilization, body composition and haemolymph indexes of juvenile white shrimp Litopenaeus vannamei, Boone. Five diets were formulated: a control diet (FM30) containing 30% fish meal and four other diets (FM20, FM15, FM10 and FM5) in which protein from fish meal was substituted by protein from SBM and PM. The dietary amino acids of diets FM20, FM15, FM10 and FM5 were equal to those of the diet FM30 by adding crystalline amino acids (lysine and methionine). Each diet was randomly assigned to triplicate groups of 30 shrimps (initial weight = 0.48 g), each three times daily. The results indicated that shrimp fed the diets FM15, FM10 and FM5 had poor growth performance and feed utilization compared with shrimp fed the control diet. No difference was observed in feed intake, survival and body composition among dietary treatments. The plasma total cholesterol level of shrimp and the digestibility of dry matter, protein and energy contained in the diets decreased significantly with increasing PM and SBM inclusion levels. Results of this study suggested that fish meal can be reduced from 300 to 200 g kg?1 when replaced by a mixture of SBM and PM.  相似文献   

14.
A 12‐week feeding trial was carried out in concrete tanks to examine complete and partial replacement (75%) of fish meal (FM) with poultry by‐product meal (PBM), meat and bone meal (MBM) and soybean meal (SBM) in practical feeds for African catfish Clarias gariepinus. Triplicate groups of fish (initial body weight ranged from 90.33 to 93.93 g fish−1) were fed seven isonitrogenous and isocaloric diets of 20% digestible protein and 300 kcal 100 g−1 of digestible energy. The control contained 25% herring meal, whereas in the other six diets, PBM, MBM and SBM replaced 75% or 100% of the FM. Final body weight (FBW) and specific growth rate (SGR) of the fish fed diets containing PBM (75% and 100%), SBM (75% and 100%) and MBM (75%) were all higher, but not significantly different than those for fish fed the control diet. Replacing 100% of the FM by MBM significantly lowered FBW and SGR. Concerning whole body composition, there were no significant differences in ash and gross energy content of whole‐body among fish; fish fed diets containing PBM‐100% recorded significantly lower protein content compared with the control diet, while fish fed diet SBM‐100% recorded significantly lower moisture content compared with the control diet. Also fish fed diets SBM‐100% and PBM‐75% recorded higher lipid and gross energy contents compared with the control diet. The study revealed that satisfactory growth and feed utilization responses could be achieved through the replacement of FM by PBM, SBM and MBM in the diet of African catfish.  相似文献   

15.
D. Xu  G. He  K. Mai  Q. Wang  M. Li  H. Zhou  W. Xu  F. Song 《Aquaculture Nutrition》2017,23(5):1169-1178
The objective of the study was to evaluate the effects of incorporating plant protein blend in juvenile turbot (Scophthalmus maximus L.) diet on free amino acid (AA) concentration and the expression of genes related to peptide and AA transporters, key enzymes of AA metabolism and AA response (AAR) pathway. Fish were fed diets with fish meal (FM), or 400 g/kg FM replacement by plant protein blend for 9 weeks. Compared with the FM diet, PP40 diet did not affect plasma essential amino acid (EAA) concentration or AA metabolic enzymes gene in intestine, while it significantly upregulated all the detected peptide and neutral AA transporters gene. Results in muscle indicated that PP40 diet led to a great reduction of EAA concentrations and mRNA abundance of two kinds of AA transporters (SNAT2 and b0,+AT), while it greatly increased the gene expression of L‐type and T‐type AA transporters (LAT2 and TAT1) and the enzymes of AA catabolism (BCKDH‐E2) and anabolism (asparagine synthetase). In addition, the expression of genes related to AAR pathway were all greatly stimulated by PP40 diet in muscle. Our results provide a molecular explanation for the change of tissues AA concentrations caused by plant protein in turbot, which maybe applicable for general carnivorous fish.  相似文献   

16.
Experimental diets were formulated to evaluate a “pure” poultry meat meal (PMM) source in diets formulated for juvenile gilthead sea bream (Sparus aurata L.). The digestible protein contribution of fish meal in a control diet was substituted by 25%, 50% and 75% of a processed poultry meat meal (PMM) on a digestible crude protein (DCP) basis and by 5% and 10% for an enzyme‐treated feather meal (EFM) and also a spray‐dried haemaglobin meal (SDHM), respectively. In a consecutive trial, diets were designed to assess the value of a “pure” (defatted) poultry protein substituting the fish meal (FM) protein content. Experimental diets included: a control diet, two test diets where 75% of FM was replaced by a full‐fat PMM (PMM75) or a defatted grade of PMM (dPMM75) and two test diets where 50% of FM was substituted for defatted PMM (dPMM50) or a 50:50 blend of soya bean meal and defatted PMM (SBM/dPMM) to produce a composite product. This soya bean/dPMM blend was tested to enhance the nutritional value of this key plant ingredient commonly employed in sea bream diets that can be deficient in specific amino acids and minerals. In the first trial, gilthead sea bream grew effectively on diets containing up to the 75% replacement of FM attaining a mean weight of 63.6 g compared to 67.8 g for the FM control fed group. For the consecutive trial, the fishmeal‐based control diet yielded the highest SGR followed by dPMM50 and SBM/dPMM blend inclusion but was not significant. Carcass FA profiles of gilthead sea bream conformed to the expected changes in relation to the dietary FA patterns, with the 18:1n‐9 representative of the poultry lipid signature becoming more apparent with PMM inclusion. The ratio of n‐3/n‐6 fatty acids was greatly affected in sea bream fed the full‐fat PMM at 75% inclusion due to fish oil exclusion. Defatted dPMM, however, allowed more of the fish oil to be used in the diet and reducing this latter effect in sea bream carcass, hence restoring the higher total omega‐3 HUFA fatty acids namely EPA and DHA and n‐3/n‐6 ratio. It is concluded that poultry meat meal can be modestly incorporated into formulated diets for sea bream and can be used in conjunction with soya bean meal without any fundamental changes in performance and feed efficiency.  相似文献   

17.
The effects of a double replacement of fish oil (FO) and fish meal (FM) by dietary vegetable ingredients in juvenile gilthead sea bream (Sparus aurata L. 1758) on some indices of lipid metabolism and plasma insulin levels were analysed. Four experimental diets with a replacement of 75% of FM by plant proteins (PP) were administered. Added oil was either FO (75PP/FO diet), or a vegetable oil mix (VO), replacing 33%, 66% or 100% of FO (75PP/33VO, 75PP/66VO, 75PP/100VO diets). Another diet with 50% of substitution of FM by PP and with 100% of VO was also tested (50PP/100VO diet). Final body weight was similar in all diet groups, except for the 75PP/100VO group, which presented lower values. Circulating insulin levels increased with feed administration in all groups and no differences between diets were observed, with the exception of the 75PP/FO group, which presented higher plasma insulin values. In adipose tissue, glucose‐6‐phosphate dehydrogenase and malic enzyme activities decreased with the inclusion of vegetable oil, especially 5 h after feeding. Diet had no significant effect on the hepatic activity of either enzyme. Lipoprotein lipase activity decreased in white muscle and adipose tissue with the replacement of fish oil in 75PP diets, 5 h after feeding. In conclusion, the use of a combined replacement of fish oil and fish meal by vegetable ingredients in gilthead sea bream permits satisfactory growth, with moderate changes in tissue lipogenesis and lipid uptake.  相似文献   

18.
A 16‐week feeding trial was conducted to assess the effects of replacing fish meal (FM) with cottonseed meal (CM) on the growth performance, feed utilization, plasma biochemical composition and target of rapamycin (TOR) pathway gene expression of juvenile blunt snout bream (Megalobrama amblycephala). Five isonitrogenous (36% crude protein) and isoenergetic (16 MJ kg?1) diets with graded replacing levels of CM (replacing 0, 25, 50, 75 and 100% FM with CM) and similar lysine and methionine concentrations were fed to triplicate groups of fish. Results revealed that specific growth rate (SGR), feed intake and protein efficiency ratio (PER) of group fed with diets replacing FM with CM up to 50% were significantly higher than others (< 0.05). However, final body weight and feed conversion ratio (FCR) remained similar up to 25% and thereafter significantly decreased and increased, respectively, as the replacement level increased (< 0.05). Replacement levels significantly decreased hepatosomatic index and viscerosomatic index (< 0.05), but did not significantly affect condition factor and whole body compositions. Free gossypol mainly accumulated in liver and significantly increased in diets CM75 and CM100 than CM0 (< 0.05). Replacement significantly influenced plasma urea contents (< 0.05). Meanwhile, increasing replacement of FM with CM in diets increased insulin‐like growth factor I (IGF‐1) gene expression in liver of blunt snout bream. Target of rapamycin (TOR) gene expression in diet CM100 was significantly lower than that in diets CM0 and CM75, while the eukaryotic translation initiation factor 4E‐binding protein 2 (4E‐BP2) gene expression was not affected by the replacement level of CM in diets. Therefore, based on final body weight and FCR, it suggested that up to 25% of FM (150 g kg?1 in basal diet) could be replaced by CM in diets, which was 112.5 g kg?1 FM and 192.9 g kg?1 CM, for juvenile blunt snout bream.  相似文献   

19.
Two experiments were conducted to determine the optimum dietary inclusion level of dehulled soybean meal (DHSM) as a fish meal (FM) replacement in diets for olive flounder Paralichthys olivaceus. All the experimental diets were formulated to be isonitrogenous and isoenergetic to contain 50% crude protein (CP) and 16.7 kJ energy g?1 diet. In the first experiment, eight diets were formulated to replace FM with DHSM at 0%, 10%, 20% without amino acid (AA) supplementation; 20%, 30%, 40% with AA supplementation and 30%, 40% with AA & attractant supplementation (DHSM0, DHSM10, DHSM20, DHSM20+AA, DHSM30+AA, DHSM30+AA+Att, DHSM40+AA, DHSM40+AA+Att respectively). Triplicate groups of 25 fish averaging 5.0±0.04 g (mean±SD) were fed one of eight experimental diets for 8 weeks. In the second experiment, six diets were formulated to replace FM with DHSM at 0%, 10%, 20%, 30% without attractant supplementation and 20%, 30% with attractant supplementation (DHSM0, DHSM10, DHSM20, DHSM30, DHSM20+Att, DHSM30+Att respectively). Triplicate groups of 15 fish averaging 45.5±0.08 g (mean±SD) were fed one of six experimental diets for 10 weeks. Based on growth performance, we concluded that DHSM could replace FM up to 20% without AAs (lysine and methionine) and attractant supplementation, and up to 30% with AAs and/or attractant supplementation in diets for fingerling and growing olive flounder.  相似文献   

20.
An indoor feeding trial in a flow-through marine water system was performed to evaluate the feasibility of using dehulled lupin Lupinus albus seed meal as a protein source to replace fish meal in diets for the juvenile Penaeus monodon. Five isonitrogenous (40% crude protein) diets formulated by replacing 0, 25, 50, 75, and 100% of fish meal protein by lupin meal protein were fed to shrimp (mean initial weight of 4.32 ± 0.23 g) three times daily at a feeding allowance of 5% body weight per day for 42 days. Shrimp fed diets with 0, 25, 50 and 75% replacement had similar (P > 0.05) weight gain, dry matter feed intake, feed conversion ratio (FCR), protein efficiency ratio (PER), and apparent net protein utilization (ANPU). Shrimp fed the highest dietary inclusion level of lupin meal (100% replacement) had significantly (P < 0.05) lower responses for all the above parameters than shrimp fed all other diets. Survival was high (87–100%) and similar for all diets. Apparent dry matter digestibility (ADMD) of diets with 25, 50, 75 and 100% replacement of fish meal with lupin meal was similar (75.6–76.6%) and significantly (P < 0.05) higher than that of diet with 0% replacement (73.9%). Diets containing the two highest lupin inclusion levels (75 and 100% replacement) had significantly (P < 0.05) better apparent protein digestibility (APD) than those containing the two lowest lupin meal inclusion levels (0 and 25% replacement). There were no significant differences (P > 0.05) in whole-body composition (dry matter, protein, lipid and ash) of shrimp fed on the various diets. Pellet water stability was inversely related to level of lupin meal inclusion. It was found, in this study, that up to 75% protein of fish meal can be replaced with the protein of dehulled lupin seed meal in diets for juvenile P. monodon. The diet with total replacement of fish meal containing 40% lupin meal was utilized very poorly by the shrimp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号