首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to determine whether models developed from infrared spectroscopy could be used to estimate organic carbon (C) content, total nitrogen (N) content and the C:N ratio in the particulate organic matter (POM) and particle size fraction samples of Brookston clay loam. The POM model was developed with 165 samples, and the particle size fraction models were developed using 221 samples. Soil organic C and total N contents in the POM and particle size fractions (sand, 2000–53 µm; silt, 53–2 µm; clay, <2 µm) were determined by using dry combustion techniques. The bulk soil samples were scanned from 4000 to 400 cm?1 for mid‐infrared (MIR) spectra and from 8000 to 4000 cm?1 for near‐infrared (NIR) spectra. Partial least squares regression (PLSR) analysis and the ‘leave‐one‐out' cross‐validation procedure were used for the model calibration and validation. Organic C and N content and C:N ratio in the POM were well predicted with both MIR‐ and NIR‐PLSR models ( = 0.84–0.92; = 0.78–0.87). The predictions of organic C content in soil particle size fractions were also very good for the model calibration ( = 0.84–0.94 for MIR and = 0.86–0.92 for NIR) and model validation ( = 0.79–0.94 for MIR and = 0.84–0.91 for NIR). The prediction of MIR‐ and NIR‐PLSR models for the N content and the C:N ratio in the sand and clay fractions was also satisfactory ( = 0.73–0.88; = 0.67–0.85). However, the predictions for the N content and C:N ratio in the silt fraction were poor ( = 0.23–0.55; = 0.20–0.40). The results indicate that both MIR and NIR methods can be used as alternative methods for estimating organic C and total N in the POM and particle size fractions of soil samples. However, the NIR model is better for estimating organic C and N in POM and sand fractions than the MIR model, whereas the MIR model is superior to the NIR model for estimating organic C in silt and clay fractions and N in clay fractions.  相似文献   

2.
The main objective of this study was to analyse how different sewage sludges influence soil wetting and drying dynamics. Three composted and three thermally‐dried municipal sludges from different wastewater plants located in Catalonia (NE Spain) were mixed with a mine‐soil obtained from a limestone quarry. Measurements of the time required to reach zero contact angle () and water holding time (WHT) provided information on the time required for a mine‐soil to reach its complete wettability and the residence time of water stored between ?0.75 and ?25 MPa of soil suction, respectively. One month after sludge amendments, one composted and one thermally‐dried sludge significantly increased . WHT was increased in the mine‐soil treated by composted sludges (50.6% by Blanes' sludge, 65.5% by Manresa's sludge and 52.5% by Vilaseca's sludge) one month after sludge amendments. The amount of water retained in the mine‐soil was increased by all composted sludges and one thermally‐dried sludge after one month (by 42.3% with Blanes' sludge, 42.3% with Manresa's sludge, 65.7% with Vilaseca's sludge and 23.9% with Mataró's sludge) and one year after sludge amendments and at a small suction. Increments in WHT corresponded with the amount of water retained so the time‐scale of soil water availability should also be considered. The value was modified mainly by increments in carbon stock and microbial biomass, while the WHT was modified mainly by increments in pH and electrical conductivity. Under similar air‐drying conditions, mine‐soil treated with composted sludges retained more water for longer compared with thermally‐dried sludges.  相似文献   

3.
The transfer function mode) (TFM) and convection-dispersion equation (CDE) were compared for predicting Cl ? transport through a calcareous pelosol during steady, nearsaturated water flow. Large, undisturbed soil cores were used at constant irrigation intensities (q0) between 0.3 and 3 cm h?1, with a step-change in Cl? concentration. The assumption of a lognormal distribution of travel times–characterized by the mean (μ) and variance (σ2)–permitted the flux-averaged breakthrough curves (BTCs) to be modelled very accurately by the TFM. The BTCs could be modelled equally well by the CDE when both the mean pore water velocity (v) and dispersion coefficient (D) were optimized simultaneously by the method of least squares, but not when v was put equal to q0/v, where V was the mean volumetric water content. The best estimate of v was consistently > q0/v, which suggested that not all the pore water was effective in chloride transport. An operationally defined transport volume (θst) was calculated from the mean () or median (τm) travel times derived from the TFM. Chloride exclusion was not solely responsible for θst() being <V: immobile water also contributed. The positive skewness of the travel time distributions meant that θstm) < θst(), indicating the effectiveness of macropore flow in solute transport. Dαv1.42 (from the CDE), and σ2αv (from the TFM), confirmed that Cl? dispersion increased as flow velocity increased. Flux-averaged concentrations were used to calculate the volume-averaged resident concentrations. They matched the measured Cl? concentrations most closely when there was a gradual decrease in measured Cl ? concentration with depth, but not when Cl ? decreased sharply below c. 10 cm. Calculations assuming that all the water was effective in chloride transport gave less accurate results. Comparison of the measured and predicted concentrations of solute demonstrated that this must be a critical part of the evaluation of any model of solute transport.  相似文献   

4.
Nitrous oxide (N2O) is a potent greenhouse gas, and nitrate () is a water contaminant. In grazed grassland, the major source of both leaching and N2O emissions is nitrogen (N) deposited in animal excreta, particularly in the urine. The objective of this study was to determine the effectiveness of two nitrification inhibitors: (i) a solution of dicyandiamide (DCD) and (ii) a liquid formulation of 3,4‐dimethylpyrazole phosphate (DMPP) for reducing N2O emissions and leaching from urine patch areas in two grazed pasture soils under different environmental conditions. In the Canterbury Templeton soil, the nitrification rate of ammonium from the animal urine applied at 1000 kg N/ha was significantly decreased by the application of DCD (10 kg/ha) and DMPP (5 kg/ha). N2O emissions, measured over a 3‐month period, from dairy cow urine applied to the Canterbury Templeton soil were 1.14 kg N2O‐N/ha, and this was reduced to 0.43 and 0.39 kg N2O‐N/ha by DCD and the liquid DMPP, respectively. These are equivalent to 62–66% reductions in the total N2O emissions. Nitrate leaching losses from dairy cow urine applied to the Waikato Horotiu soil lysimeters were reduced from 628.6 kg ‐N/ha to 400.6 and 451.5 kg ‐N/ha by the application of DCD (10 kg/ha) or DMPP (1 kg/ha), respectively. There was no significant difference between the DCD solution and the liquid DMPP in terms of their effectiveness in reducing N2O emissions or leaching under the experimental conditions of this study. These results suggest that both the liquid formulations of DCD and DMPP have the potential to be used as nitrification inhibitors to reduce N2O emissions and leaching in grazed pasture soils.  相似文献   

5.
We studied the interaction of lead with seven Portuguese soils with different physical and chemical properties in order to elucidate more fully the behaviour of Pb in soil. We studied these adsorption phenomena by voltammetric titrations with differential pulse polarography (DPP) at different pH (6.0–7.2) and ionic strengths, I (0.010–0.50 m ) in order to clarify some of the factors that might control soil sorption capacity for Pb. From the voltammetric data, average formation constants, , and binding capacity, Cc, have been estimated according to a surface complexation model based on Scatchard and van den Berg–R?zic methods. Linear Scatchard and van den Berg–R?zic plots (r≥ 0.99) indicated that the results can be interpreted according to the existence of just one predominant active site for Pb(II) adsorption. The values from both procedures () agreed in all cases (r= 0.938, n= 66, P < 0.001). The same happened with Cc values that were statistically equivalent (r= 0.9998; n= 66; P < 0.001). The Cc values were found to depend on the pH and I, as well as on the soil properties. Either Langmuir or Freundlich isotherms fitted the experimental data well (r > 0.90, P < 0.05). The lead binding capacities were strongly and significantly correlated (P < 0.05) with pH, cation exchange capacity, organic carbon, loss‐on‐ignition, total Al2O3 content, extractable forms of Al and pyrophosphate extractable Fe, [Fep]. From a forward, stepwise regression model we concluded that [Al2O3], [Pb′] (concentration of labile lead in solution), [Fep], pH and I are able to explain more than 99.7% of the variation in lead sorption in our soils. The soils’ surface groups with special affinity to Pb(II) are in the inorganic fraction associated with aluminium.  相似文献   

6.
Mobilization of non‐exchangeable ammonium (NH ) by hyphae of the vesicular‐arbuscular mycorrhizal (VAM) fungus Glumus mosseae was studied under controlled experimental conditions. Maize (Zea mays) and parsley (Petroselinum sativum) were grown either alone or in symbiosis with Glomus mosseae in containers with separated compartments for roots and hyphal growth. In one experiment, 15NH was added to the soil to differentiate between the native non‐exchangeable NH and the non‐exchangeable NH derived from N fertilization. Non‐exchangeable NH was mobilized by plant growth. Plant dry weight and N uptake, however, were not significantly influenced by mycorrhizal colonization of the roots. The influence of root infection with mycorrhizal fungus on the mobilization of non‐exchangeable NH was negligible. In the hyphal compartment, hyphal uptake of N resulted in a decrease of NH in the soil solution and of exchangeable NH . However, the NH concentration was still too high to permit the release of non‐exchangeable NH . The results demonstrate that, in contrast to roots, hyphae of VAM fungi are not able to form a non‐exchangeable‐NH depletion zone in the adjacent soil. However, under conditions of a more substantial depletion of the exchangeable NH in the mycorrhizal sphere (e.g., with longer growth), an effect of mycorrhiza on the non‐exchangeable NH might be found.  相似文献   

7.
The chemistry of soil solutions and the potential toxicity of trace metals (Co, Cr, Cu, Ni and Mn) were investigated on soils formed on ultramafic rocks. Soil solutions were collected along a soil toposequence under natural vegetation and under a cropped field. In the latter, metal speciation and species activity were computed with the WHAM 6 model. Total element concentrations varied with the soil topographic position. Upslope, in well‐drained soils, they were relatively small with mean concentrations of <0.2 µmol l−1 for Co and Cr and <2 µmol l−1 for Ni and Mn. Downslope, in temporarily waterlogged soils, concentrations reached 37 (Mn), 5.6 (Ni), 1.9 (Co) and 0.1 (Cr) µmol l−1. Under crops, Ni, Mn and Co concentrations were similar to those under natural vegetation, but Cr concentration averaged 5 µmol l−1. Cu concentration was close to 1 µmol l−1. Free‐ion species amounted to 53–71% of all species for Co, Ni and Mn but only 5% for Cu. Cr was almost entirely in the Cr(VI) form (CrO, HCrO. The free‐metal‐ion activities were in the range 26–81% of the corresponding free‐metal‐ion concentration. Comparing our data with levels that are toxic to crops, Ni and Cr are potentially toxic in the well‐drained and the poorly‐drained soils. In the latter, Co and Mn are also potentially toxic. Both the large concentration of metals and the chemical species in which they occur in solution could limit the use of the land for agricultural purpose.  相似文献   

8.
We have synthesized a novel ambipolar membrane for the simple, rapid, and simultaneous extraction of key nutrients from soil. The membrane was made by adding an anion‐ and a cation‐exchange resin to a polyvinyl alcohol hydrogel in the presence of glutaraldehyde as a cross‐linking agent. The synthetic membrane was efficient in adsorbing (extracting) NO , PO , K+, Ca2+, and Mg2+ ions from soil simultaneously. The ion‐adsorption capacity of the membrane was related to the soil nutrient status, duration of membrane–soil contact, and soil water content. The importance of these factors followed the order: soil nutrient status > contact time > soil water content. Adsorption by the membrane of NO and Mg2+ ions from soil leveled off after 48 h of membrane–soil contact but uptake of Ca2+, PO , and K+ ions required a longer contact time for equilibrium to be established. When the soil water content exceeds 55% w/w, this factor ceased to influence ion adsorption by the ambipolar‐resin membrane. The synthetic membrane is potentially useful for the in situ assessment of the nutrient requirement of certain crops at a given point in time.  相似文献   

9.
Land use and mineral characteristics affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigation of the greenhouse effect. There is less information about the effects of land use and soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared with surface soils. Here we aimed to analyse the long‐term (≥ 100 years) impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils with different mineral characteristics (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected from within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used for >100 years. The OM(PY) fractions were analysed for their OC content (OCPY) and characterized by Fourier transform infrared spectroscopy. Multiple regression analyses for the arable subsurface soils indicated significant positive relationships between the SOC contents and combined effects of the (i) exchangeable Ca (Caex) and oxalate‐soluble Fe (Feox) and (ii) the Caex and Alox contents. For these soils the increase in OC (OCPY multiplied by the relative C=O content of OM(PY)) and increasing contents of Caex indicated that OM(PY) mainly interacts with Ca2+. For the forest subsurface soils (pH < 5), the OCPY contents were related to the contents of Na‐pyrophosphate‐soluble Fe and Al. The long‐term arable and forest land use seems to result in different OM(PY)‐mineral interactions in subsurface soils. On the basis of this, we hypothesize that a long‐term land‐use change from arable to forest may lead to a shift from mainly OM(PY)‐Ca2+ to mainly OM(PY)‐Fe3+ and ‐Al3+ interactions if the pH of subsurface soils significantly decreases to <5.  相似文献   

10.
Recent lysimeter studies have demonstrated that the nitrification inhibitor, dicyandiamide (DCD), can reduce nitrate (NO) leaching losses from cow urine patches in grazed pasture systems. The objective of this study was to quantify the effects of fine particle suspension (FPS) DCD on soil mineral N components, pasture yield, nutrient uptake and pasture quality under grazed pasture conditions. A field study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand, from 2002 to 2006. FPS DCD was applied to grazed pasture plots at 10 kg ha?1 in early May in addition to applied cow urine patches at a nitrogen (N) loading rate of 1000 kg N ha?1, with DCD reapplied in early August. Soil mineral N levels in the urine patches were monitored. Pasture yield, N and cation concentrations and uptake were measured in treatment urine patches and inter‐urine areas of the pasture. Comparisons were made with control plots which did not receive DCD. NO levels under the DCD‐treated urine patches (0–7.5 cm) were in the order of 10 kg N ha?1 compared with 40–80 kg N ha?1 under untreated patches, and soil ammonium (NH) levels were consistently higher under the DCD‐treated patches. The DCD significantly and consistently increased pasture yield in both the urine patches, and inter‐urine areas of the pasture in all 4 years of the trial. Mean annual dry matter (DM) yields over 4 years were inter‐urine areas, 10.3; inter‐urine + DCD, 12.4; urine, 12.4 and urine +DCD 16.0 t DM ha?1, representing an average DM yield increase of 20 and 29% in inter‐urine and urine patch areas, respectively. On a whole paddock basis, the increase in annual DM yield resulting from DCD application was estimated to be 21%. N, calcium (Ca), magnesium (Mg) and potassium (K) concentrations in pasture were unaffected by treatment with DCD; however, total annual uptake of these nutrients by pasture was significantly higher in all years where DCD had been applied. Pasture DM, protein, carbohydrate, metabolizable energy and fibre levels and sward clover content were not affected by treatment with DCD. The results demonstrate the agronomic value of the DCD treatment in addition to the environmental benefits in a grazed pasture system.  相似文献   

11.
Soil monitoring and inventory require a sampling strategy. One component of this strategy is the support of the basic soil observation: the size and shape of the volume of material that is collected and then analysed to return a single soil datum. Many, but not all, soil sampling schemes use aggregate supports in which material from a set of more than one soil cores, arranged in a given configuration, is aggregated and thoroughly mixed prior to analysis. In this paper, it is shown how the spatial statistics of soil information, collected on an aggregate support, can be computed from the covariance function of the soil variable on a core support (treated as point support). This is done via what is called here the discrete regularization of the core‐support function. It is shown how discrete regularization can be used to compute the variance of soil sample means and to quantify the consistency of estimates made by sampling then re‐sampling a monitoring network, given uncertainty in the precision with which sample sites are relocated. These methods are illustrated using data on soil organic carbon content from a transect in central England. Two aggregate supports, both based on a 20 m 20 m square, are compared with core support. It is shown that both the precision and the consistency of data collected on an aggregate support are better than data on a core support. This has implications for the design of sampling schemes for soil inventory and monitoring.  相似文献   

12.
We examined the effects of salicylate, glutamate and glucose on sulphur (S) immobilization and re‐mineralization in three calcareous soils: from arable, fallow and forest managements. Each of the three substrates, at a single rate of carbon (1000 mg C kg−1 soil) was added to the three soils and then incubated with NaSO4 plus Na2SO4 for 1, 2, 6 or 12 weeks prior to analysis. The extraction of the immobilized S was performed with either hot water (HW‐S) or 3 m hydrochloric acid (HCl‐S). Except for the forest soil, the average amounts of immobilized S increased in the order control < salicylate < glutamate < glucose. Across all soils, substrate addition significantly decreased the average value of HCl‐S expressed as a percentage of immobilized S compared with that of the control. The decreases in HCl‐S (58 − 100%) were substrate‐ and time‐independent, suggesting a heterogeneous action of HCl. In contrast, except for the forest soil, we found substantial declines in the average percentage values of HW‐S (21 − 75% of the immobilized S) in the order control > salicylate > glutamate = glucose, suggesting that the hot‐water action was substrate dependent. In addition, the proportion of HW‐S decreased with increasing incubation time, indicating that the youngest immobilized S was the most labile. Thus, hot water extracted more homogeneous S compounds than HCl. Sulphur immobilization induced by glutamate and glucose produced more recalcitrant S products (small quantities of 35S re‐mineralization) than that induced by salicylate. Glutamate tended to generate more recalcitrant S compounds than glucose. Hot‐water extractable S was a valuable and rapid indicator of readily labile organic S. Consequent microbial S immobilization resulting from glucose or glutamate addition was followed by a small rate of re‐mineralization of immobilized S.  相似文献   

13.
The relationship between structure and the hydraulic conductivity of soil   总被引:7,自引:0,他引:7  
A random fractal matrix comprising a hierarchical aggregation of primary structural elements is used to capture the characteristics of a heterogeneous soil structure with a tortuous pore space. The influence of heterogeneity of both the solid matrix and the pore space, as well as the shape of the pore boundary, on the saturated and unsaturated hydraulic conductivity is studied. For such random structures, the fractal (Hausdorff) dimension alone is not enough to characterize the structure from the point of view of fluid flow and additional characterizations are introduced. The porosity, ρp, of the primary elements has a critical value, ρc. With probability 1, both the saturated and unsaturated conductivities are found to be dependent as a power law on the length scale, L, at which the measurement is made when ρpc. When ρpc, only the unsaturated conductivity is scaling in length scale, while the saturated conductivity becomes dominated, with probability close to 1, by the conductivity of the largest connecting pores in the structure, i.e. preferential pathways. The relationships between the parameters of the power laws and structure are derived and are found to depend on the fractal (Hausdorff) and spectral dimensions of the solid matrix, denoted dm and respectively. A discussion of the importance of these results for the interpretation and extrapolation of measurements is presented, and the implications for variability and predictability of the hydraulic properties of soil is discussed.  相似文献   

14.
If an exchangeable ion in soil diffuses along a liquid and solid pathway, its diffusion coefficient may be expressed as where D, v, f, C are diffusion coefficient, volume fraction, impedance factor, and concentration terms and the suffixes l,S refer to liquid and solid. The self-diffusion coefficient of the ion is then where D′, Dt, and Ds, are self-diffusion coefficients. D and D′ will vary with concentration. In diffusion out of the soil to a zero sink, the appropriate average diffusion coefficient is, approximately, the self-diffusion coefficient in the undisturbed soil. Diffusion of one ion species is influenced by other ions diffusing in the system through the diffusion potential set up. When ions are diffusing to plant roots, the diffusion potential is likely to be small. A more likely, though more complicated, expression for D than the first equation above is derived by assuming the ion to follow solid and liquid pathways in series as well as in parallel.  相似文献   

15.
The application of mineral nitrogen (N) fertilizers is one of the most important management tools to ensure and increase yield in agricultural systems. However, N fertilization can lead to various ecological problems such as nitrate () leaching or ammonia and nitrous oxide emissions. The application of N stabilizers (i.e., inhibitors) combined with urea fertilization offers an effective option to reduce or even prevent N losses due to their regulatory effect on ammonium () and release into the soil. The present field experiment therefore aimed at soil N speciation dynamics after urea spring fertilization (225 kg N ha?1) in the presence of a urease inhibitor (UI), a nitrification inhibitor (NI), both inhibitors (UI+NI) or when no inhibitor was applied at all. The study focused on the distribution of N species among soil matrix and soil solution. Plant cultivation was completely omitted in order to avoid masking soil N turnover and speciation by plant N uptake and growth dynamics. Application of UI clearly delayed urea hydrolysis in the top soil, but a complete hydrolysis of urea took place within only 10 days after fertilization (DAF). Nitrification was significantly reduced by NI application, leading to higher and lower concentrations in treatments with NI. Due to sorption of to the soil matrix a significantly larger fraction of was always detected in the soil extracts compared to soil solution. However, while in soil extracts the impact of NI application was less apparent and delayed, in soil solution a quick response to NI application was observed as revealed by significantly increased soil solution concentrations of . Because of the “asymmetric” soil phase distribution soil solution was predominant over only initially after fertilization even in inhibitor treatments (≈ 8 to 10 DAF). Nevertheless, inhibitor application tended towards closer ratios of to concentration in soil solution and hence, might additionally affect concentration dependent processes like plant N uptake and root development. Despite cold spring conditions urea application along with UI and/or NI did not indicate a limited supply of plant available and .  相似文献   

16.
Nitrification inhibitors (NIs), DCD (dicyandiamide), and DMPP (3,4‐dimethylpyrazole phosphate), in combination with urea (UR) and ammonium sulfate nitrate (ASN) fertilizers were studied under contrasting soil textures (sand, loam, and clay) from cultivated soils collected in Brazil and Germany. Soil samples were incubated over 50 days and the content of ammonium ( ), nitrate ( ), and soil pH were measured periodically. Applied NIs delayed the nitrification process across all soil textures. Correlation analysis indicated that combining ASN with NIs resulted in higher content and efficiency in delaying the nitrification process with high N‐conversion rate (r = –0.82). The combination of ASN+ DMPP increased the efficiency of the N‐conversion rate (r = –0.86) due to H+ release in soil, while UR+DCD (r = –0.50) had an efficiency of the N‐conversion rate similar to UR (r = –0.42). All the NIs had a better performance in reducing formation in sandy soils as compared to the loam and clay textured soils. Use of DMPP with an N fertilizer results in a soil pH decrease and can be an option to increase the efficiency of the N‐conversion rate, reducing N losses in soil. Overall, our results suggest that NIs have a better performance in reducing formation in sandy soils as compared to that of the loam and clay textured soils. Use of DMPP with ASN results in a soil pH decrease and can be an option to reduce N losses in soil.  相似文献   

17.
Remediation of an uranium‐mine soil from Settendorf (East Germany) includes phytoextraction under conditions which make its heavy metals more plant‐available but less leachable. A second way is active inhibition of heavy metal uptake by the plant. In a pot trial with Chinese cabbage (Brassica chinensis L.), planted and unplanted soil samples were daily irrigated with deionized water or aqueous solutions with a total of (g (kg soil)–1) CaCl2 (0.26 Ca), NH4Cl (1.39), casein, sucrose, citric acid (13), and an extract of rape (B. napus L.) shoots (13 DW) in a phytotron for 26 d. Water‐irrigated plants were also treated with a 50 mM citric acid solution (10.5 g (kg soil)–1) 6 and 7 d prior to harvesting. Total elements in plant tissue and soluble elements in aqueous extracts from control and postharvest soils were determined by ICP‐AES. Supplements of NH , and the NH ‐generating casein and rape extract reduced soil pH during nitrification, and increased plant uptake of Cd, Cu, Ni, and Zn. Citric acid at 50 mM adjusted soil to pH 4.5–6.0 and enhanced uptake of all elements. Long‐term application of sucrose and citric acid increased pH and inhibited uptake of Cd, Cr, Cu, Ni, and Zn. Contemporarily, leaching of heavy metals and humic substances was lowest with Ca and NH and highest with sucrose and citric acid amendments. It is concluded that Chinese cabbage grown for chelate‐assisted phytoextraction should be supplied with Ca and NH to obtain a high plant biomass on soil with a low hazard of leaching. Metal uptake should be stimulated by application of chelator 7 d prior to harvesting. Undesired uptake of heavy metals by Chinese cabbage determined as food should be inhibited with carbohydrate amendments. Long‐term application of NH or chelator, which reduces the solubility of certain elements but increases their uptake moderately, is recommended as a tool for continuous phytoextraction technologies.  相似文献   

18.
THE MECHANICAL STRENGTH OF UNSATURATED POROUS GRANULAR MATERIAL   总被引:1,自引:0,他引:1  
The influence of pore-water suction on the strength of a porous material is that it contributes a compressive load which increases the shear strength. When the material is unsaturated, the normal load or effective stress is due, in part to the continuous water at measured suction in unemptied pores, and in part to isolated bodies in nominally emptied pores at suctions approximating to the suction at emptying. When the material is draining from saturation, the effective stress σ is where S is the fraction of saturation, α is the fraction of the initial water content drained at the maximum suction, Psd is the prevailing pore water suction, and Psd is a suction passed through in reaching pSd at which the reduction of S is dS. When the material is rewetting, the relationship becomes where psw is now the prevailing suction during wetting and f is a distribution function of the degree of saturation such that δS is the fractional saturation removed in the suction range δsd at sd and regained in the suction range δsw at sw. msd is the maximum suction attained. The effective stress is revealed experimentally by unconfined compression tests on samples with imposed pore water suctions, and the dependence on this suction confirms reasonably that which is predicted by the theoretical formulas.  相似文献   

19.
The saturation percentage is related to the mechanical constituents of a soil: and is therefore a quantitative expression of soil texture. Profiles may be described in terms of the S.P.; thus Maps may be drawn showing quantitative changes in texture, and associated statements of the reliability of an S.P. estimate and the probable error of the position of a textural contour be made. Decomposition of the calcium carbonate component should be avoided in routine soil survey work.  相似文献   

20.
Charcoal‐based amendments have a potential use in controlling NH3 volatilization from urea fertilization, owing to a high cation‐exchange capacity (CEC) that enhances the retention of NH . An incubation study was conducted to evaluate the potential of oxidized charcoal (OCh) for controlling soil transformations of urea‐N, in comparison to urease inhibition by N‐(n‐butyl) thiophosphoric triamide (NBPT). Four soils, ranging widely in texture and CEC, were incubated aerobically for 0, 1, 3, 7, and 14 d after application of 15N‐labeled urea with or without OCh (150 g kg?1 fertilizer) or NBPT (0.5 g kg?1 fertilizer), and analyses were performed to determine residual urea and 15N recovery as volatilized NH3, mineral N (as exchangeable NH , NO , and NO ), and immobilized organic N. The OCh amendment reduced NH3 volatilization by up to 12% but had no effect on urea hydrolysis, NH and NO concentrations, NO accumulation, or immobilization. In contrast, the use of NBPT to inhibit urea hydrolysis was markedly effective for moderating the accumulation of NH , which reduced immobilization and also controlled NH3 toxicity to nitrifying microorganisms that otherwise caused the accumulation of NO instead of NO . Oxidized charcoal is not a viable alternative to NBPT for increasing the efficiency of urea fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号