首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Broad industrial application of organotin compounds (OTC) leads to their release into the environment. OTC are deposited from the atmosphere into forest ecosystems and may accumulate in soils. Here, we studied the degradation of methyltin and butyltin compounds in a forest floor, a mineral, and a wetland soil with incubation experiments at 20 °C in the dark. OTC degraded slowly in soils with half‐lives estimated from 0.5 to 15 years. The first order degradation rate constants of OTC in soils ranged from 0.05 to 1.54 yr–1. The degradation rates in soils were generally in the order mono‐ ≥ di‐ > tri‐substituted OTC. Stepwise dealkylation was observed in all cases of di‐substituted OTC, but only in some cases of tri‐substituted OTC. Decomposition rates of OTC in the forest floor were higher than in wetland and mineral soils. Tetramethyltin in the gas phase was not detected, suggesting little tin methylation in the wetland soils. Slow degradation of OTC in soils might lead to long‐term storage of atmospherically deposited OTC in soils.  相似文献   

2.
Organotin compounds (OTC) are deposited from the atmosphere into terrestrial ecosystems and can accumulate in soils. We studied the adsorption and desorption of methyltin and butyltin compounds in organic and mineral soils in batch experiments. The adsorption and desorption isotherms for all species and soils were linear over the concentration range of 10–100 ng Sn ml?1. The strength of OTC adsorption correlated well with the carbon content and cation exchange capacity of the soil and was in the order mono‐ > di‐ > tri‐substituted OTCs and butyltin > methyltin compounds. The OTC adsorption coefficients were much larger in organic soils (Kd > 104) than in mineral soils. The adsorption and desorption showed a pronounced hysteresis. Trimethyltin adsorption was partly reversible in all soils (desorption 2–12% of the adsorbed amounts). Dimethyltin, tributyltin and dibutyltin exhibited reversible adsorption only in mineral soils (desorption 4–33% of the adsorbed amounts). Mono‐substituted OTCs adsorbed almost irreversibly in all soils (desorption < 1% of adsorbed amounts). Trimethyltin was more mobile and more bioavailable in soils than other OTCs. It might therefore be leached from soils and accumulate in aquatic ecosystems. The other OTCs are scarcely mobile and are strongly retained in soils.  相似文献   

3.
Determining the relative temperature sensitivities of the decomposition of the different soil organic matter (SOM) pools is critical for predicting the long-term impacts of climate change on soil carbon (C) storage. Although kinetic theory suggests that the temperature sensitivity of SOM decomposition should increase with substrate recalcitrance, there remains little empirical evidence to support this hypothesis. In the study presented here, sub-samples from a single bulk soil sample were frozen and sequentially defrosted to produce samples of the same soil that had been incubated for different lengths of time, up to a maximum of 124 days. These samples were then placed into an incubation system which allowed CO2 production to be monitored constantly and the response of soil respiration to short-term temperature manipulations to be investigated. The temperature sensitivity of soil CO2 production increased significantly with incubation time suggesting that, as the most labile SOM pool was depleted the temperature sensitivity of SOM decomposition increased. This study is therefore one of the first to provide empirical support for kinetic theory. Further, using a modelling approach, we demonstrate that it is the temperature sensitivity of the decomposition of the more recalcitrant SOM pools that will determine long-term soil-C losses. Therefore, the magnitude of the positive feedback to global warming may have been underestimated in previous modelling studies.  相似文献   

4.
The organic matter (OM) in biopore walls and aggregate coatings may be important for sorption of reactive solutes and water as well as for solute mass exchange between the soil matrix and the preferential flow (PF) domains in structured soil. Structural surfaces are coated by illuvial clay‐organic material and by OM of different origin, e.g., earthworm casts and root residues. The objectives were to verify the effect of OM on wettability and infiltration of intact structural surfaces in clay‐illuvial horizons (Bt) of Luvisols and to investigate the relevance of the mm‐scale distribution of OM composition on the water and solute transfer. Intact aggregate surfaces and biopore walls were prepared from Bt horizons of Luvisols developed from Loess and glacial till. The mm‐scale spatial distribution of OM composition was scanned using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The ratio between alkyl and carboxyl functional groups in OM was used as potential wettability index (PWI) of the OM. The infiltration dynamics of water and ethanol droplets were determined measuring contact angles (CA) and water drop penetration times (WDPT). At intact surfaces of earthworm burrows and coated cracks of the Loess‐Bt, the potential wettability of the OM was significantly reduced compared to the uncoated matrix. These data corresponded to increased WDPT, indicating a mm‐scaled sub‐critical water repellency. The relation was highly linear for earthworm burrows and crack coatings from the Loess‐Bt with WDPT > 2.5 s. Other surfaces of the Loess‐Bt and most surfaces of the till‐derived Bt were not found to be repellent. At these surfaces, no relations between the potential wettability of the OM and the actual wettability of the surface were found. The results suggest that water absorption at intact surface structures, i.e., mass exchange between PF paths and soil matrix, can be locally affected by a mm‐scale OM distribution if OM is of increased content and is enriched in alkyl functional groups. For such surfaces, the relation between potential and actual wettability provides the possibility to evaluate the mm‐scale spatial distribution of wettability and sorption and mass exchange from DRIFT spectroscopic scanning.  相似文献   

5.
Land use and mineral characteristics affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigation of the greenhouse effect. There is less information about the effects of land use and soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared with surface soils. Here we aimed to analyse the long‐term (≥ 100 years) impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils with different mineral characteristics (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected from within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used for >100 years. The OM(PY) fractions were analysed for their OC content (OCPY) and characterized by Fourier transform infrared spectroscopy. Multiple regression analyses for the arable subsurface soils indicated significant positive relationships between the SOC contents and combined effects of the (i) exchangeable Ca (Caex) and oxalate‐soluble Fe (Feox) and (ii) the Caex and Alox contents. For these soils the increase in OC (OCPY multiplied by the relative C=O content of OM(PY)) and increasing contents of Caex indicated that OM(PY) mainly interacts with Ca2+. For the forest subsurface soils (pH < 5), the OCPY contents were related to the contents of Na‐pyrophosphate‐soluble Fe and Al. The long‐term arable and forest land use seems to result in different OM(PY)‐mineral interactions in subsurface soils. On the basis of this, we hypothesize that a long‐term land‐use change from arable to forest may lead to a shift from mainly OM(PY)‐Ca2+ to mainly OM(PY)‐Fe3+ and ‐Al3+ interactions if the pH of subsurface soils significantly decreases to <5.  相似文献   

6.
Dissolved organic matter (DOM) is involved in many important biogeochemical processes in soil. As its collection is laborious, very often water‐soluble organic matter (WSOM) obtained by extracting organic or mineral soil horizons with a dilute salt solution has been used as a substitute of DOM. We extracted WSOM (measured as water‐soluble organic C, WSOC) from seven mineral horizons of three forest soils from North‐Rhine Westphalia, Germany, with demineralized H2O, 0.01 M CaCl2, and 0.5 M K2SO4. We investigated the quantitative and qualitative effects of the extractants on WSOM and compared it with DOM collected with ceramic suction cups from the same horizons. The amounts of WSOC extracted differed significantly between both the extractants and the horizons. With two exceptions, K2SO4 extracted the largest amounts of WSOC (up to 126 mg C kg–1) followed by H2O followed by CaCl2. The H2O extracts revealed by far the highest molar UV absorptivities at 254 nm (up to 5834 L mol–1 cm–1) compared to the salt solutions which is attributed to solubilization of highly aromatic compounds. The amounts of WSOC extracted did not depend on the amounts of Fe and Al oxides as well as on soil organic C and pH. Water‐soluble organic matter extracted by K2SO4 bore the largest similarity to DOM due to relatively analogue molar absorptivities. Therefore, we recommend to use this extractant when trying to obtain a substitute for DOM, but as WSOM extraction is a rate‐limited process, the suitability of extraction procedures to obtain a surrogate of DOM remains ambiguous.  相似文献   

7.
8.
We use a simple single‐pool model of soil carbon turnover to evaluate possible explanations for the widespread changes in the organic carbon contents of mineral soils across England and Wales, measured in the National Soil Inventory between 1978 and 2003. We provide a means of quantifying the changes in rates of soil organic carbon decomposition in relation to inputs from vegetation required to explain the results. We find that neither changes in decomposition resulting from the effects of climate change on soil temperature and moisture, nor changes in input, could by themselves account for the overall trends. Past changes in land use and management were more likely explanations. Any climate‐change signal is masked by these other changes.  相似文献   

9.
10.
We summarize progress with respect to (1) different approaches to isolate, extract, and quantify organo‐mineral compounds from soils, (2) types of mineral surfaces and associated interactions, (3) the distribution and function of soil biota at organo‐mineral surfaces, (4) the distribution and content of organo‐mineral associations, and (5) the factors controlling the turnover of organic matter (OM) in organo‐mineral associations from temperate soils. Physical fractionation achieves a rough separation between plant residues and mineral‐associated OM, which makes density or particle‐size fractionation a useful pretreatment for further differentiation of functional fractions. A part of the OM in organo‐mineral associations resists different chemical treatments, but the data obtained cannot readily be compared among each other, and more research is necessary on the processes underlying resistance to treatments for certain OM components. Studies using physical‐fractionation procedures followed by soil‐microbiological analyses revealed that organo‐mineral associations spatially isolate C sources from soil biota, making quantity and quality of OM in microhabitats an important factor controlling community composition. The distribution and activity of soil microorganisms at organo‐mineral surfaces can additionally be modified by faunal activities. Composition of OM in organo‐mineral associations is highly variable, with loamy soils having generally a higher contribution of polysaccharides, whereas mineral‐associated OM in sandy soils is often more aliphatic. Though highly reactive towards Fe oxide surfaces, lignin and phenolic components are usually depleted in organo‐mineral associations. Charred OM associated with the mineral surface contributes to a higher aromaticity in heavy fractions. The relative proportion of OC bound in organo‐mineral fractions increases with soil depth. Likewise does the strength of the bonding. Organic molecules sorbed to the mineral surfaces or precipitated by Al are effectively stabilized, indicated by reduced susceptibility towards oxidative attack, higher thermal stability, and lower bioavailability. At higher surface loading, organic C is much better bioavailable, also indicated by little 14C age. In the subsurface horizons of the soils investigated in this study, Fe oxides seem to be the most important sorbents, whereas phyllosilicate surfaces may be comparatively more important in topsoils. Specific surface area of soil minerals is not always a good predictor for C‐stabilization potentials because surface coverage is discontinuous. Recalcitrance and accessibility/aggregation seem to determine the turnover dynamics in fast and intermediate cycling OM pools, but for long‐term OC preservation the interactions with mineral surfaces, and especially with Fe oxide surfaces, are a major control in all soils investigated here.  相似文献   

11.
The temperature sensitivity of soil organic carbon (SOC) decomposition will influence the accuracy of the quantitative prediction of carbon (C) balance between ecosystem C fixation and decomposition in a warmer world. However, a consensus has not yet been reached on the temperature sensitivity of SOC decomposition with respect to SOC quality. The fundamental principles of enzyme kinetics suggest that temperature sensitivity of decomposition is inversely related to the C quality of the SOC. This “C quality-temperature” hypothesis was tested in a 170-day laboratory experiment by incubating soil samples with changing temperature (low-high-low) at a ±5 °C step every 24 h. Soil samples were collected from a long-term warming experiment in a tallgrass prairie. There were four treatments of soil samples before lab incubation: control (C), warmed (W), field incubation (FI, litter exclusion), and warmed plus field incubation (WFI). Results showed that SOC decomposition rates were influenced by labile organic C (LOC) content, which were low in the soils under field incubation and decreased with increasing lab incubation time. Field warming and field incubation increased the temperature sensitivity of SOC decomposition in the 1st two lab incubation cycles but the treatment effects diminished as decomposition proceeded, probably due to increased contribution of recalcitrant C. In line with the hypothesis, we found that the lower the SOC quality, the higher the Q10 values. This relationship held across treatments and lab incubation cycles, regardless of whether the differences in SOC quality resulted from inherent differences in SOC chemistry or from differences in the extent of SOC decomposition. Treatment effects of field warming and field incubation on SOC quality and Q10 values also negatively correlated with each other. Our results suggest that dynamics of low-quality SOC have the highest potential to impact long-term C stocks in soils. Potential decreases in SOC quality in response to warming and consequent shifting species composition may result in a positive feedback of SOC to climate change in the future.  相似文献   

12.
13.
Organic matter composition is an important soil constituent with regard to function in soil ecosystems. In the recent paper litter and humic compound contents from about 100 mineral soil investigations are presented. The soil horizons are divided into four groups (Ah, Ap, M. Bh) in order to compare the SOM quality. Ap and Ah horizons showed a similar litter and humic compound distribution. Structural differences in the humic compound fractions were only visible with CPMAS 13C-NMR. SOM-containing non-spodic subsoil horizons had a similar SOM quality as the A horizons. In the Bh horizons the humic compounds dominated with about 75% in the SOM. Alkylic and O-alkylic carbon units are the main fractions. The combination of the solid-state 13C-NMR spectroscopy of whole soil samples and the wet chemical analysis of litter compounds allowed the estimation of the liner and chemically defined humic compound distribution in soil samples.  相似文献   

14.
W.A. Dick  M.A. Tabatabai 《Geoderma》1978,21(3):175-182
The rates of hydrolysis of seven organic and two inorganic phosphorus compounds applied to soils at a rate of 500 ppm P and incubated at 20°C for various times under aerobic and waterlogged conditions were studied. Monomethyl phosphate, β-glycerophosphate, and α-D-glucose-1-phosphate were hydrolyzed at similar rates in the three soils used, but the rates were somewhat faster under aerobic than under waterlogged conditions. Organic P compounds in which two hydrogens of the orthophosphoric acid are replaced (e.g., diphenyl phosphate) were hydrolyzed at slower rates than those in which one hydrogen is replaced (e.g., phenyl phosphate). The rate of hydrolysis of diphenyl phosphate was lower than that of bis-p-nitrophenyl phosphate. Of the two inorganic P compounds studied, ammonium tetrametaphosphimate did not hydrolyze in soil, and the rate of hydrolysis of phosphonitrilic hexaamide was very small (6–13% hydrolyzed in 7 days) compared with those of the organic phosphates (30–98%).  相似文献   

15.
以棕壤肥料长期定位试验(29 a)形成的高、低两种肥力水平棕壤为研究对象,采用不同部位玉米残体为试验试材,分别向两种土壤中加入玉米根茬和茎叶,进行田间原位培养试验,试验设置6个处理:低肥力土壤添加玉米根茬(LF+R)、低肥力土壤添加玉米茎叶(LF+S)、高肥力土壤添加玉米根茬(HF+R)、高肥力土壤添加玉米茎叶(HF+S)和未添加玉米残体的对照处理(LF,HF)。本研究旨在探明玉米根茬、茎叶添加后不同肥力土壤团聚体组成及有机碳分布的变化规律,为构建合理的秸秆还田与施肥措施,减少土壤侵蚀提供理论依据。结果表明:1)添加玉米残体后低肥力棕壤团聚体稳定性、较大级别团聚体(2 mm和1~2 mm)有机碳贡献率的提升幅度比高肥力棕壤大,说明低肥力土壤对外源有机质的响应更敏感,向大团聚体转化的速率更快。2)培养结束时,高肥力棕壤添加茎叶处理团聚体稳定性显著高于添加根茬处理,而添加根茬处理各粒级团聚体有机碳含量显著高于添加茎叶处理;低肥力棕壤中根茬和茎叶添加处理团聚体稳定性及有机碳含量之间差异不明显。3)在田间原位培养过程中,棕壤2 mm和1~2 mm团聚体所占比例和团聚体稳定性呈现出前期(0~360 d)快速增加,后期(360~720 d)趋于稳定的趋势。可以看出,玉米残体对土壤团聚体团聚化过程的作用强度逐渐减弱。以上结果表明,作物残体输入对棕壤团聚体组成及有机碳分布的影响与棕壤肥力水平和不同残体部位间的差异关系密切。  相似文献   

16.
Water extracts from the organic horizons of southern-tundra loamy permafrost-affected soils (a surface-gleyed tundra soil, a surface-gleyed soddy tundra soil (Haplic Stagnosols (Gelic)), and a peaty tundra soil (Histic Cryosol (Reductaquic)) and their undecomposed moss layers have been analyzed. The total weight concentration of the cations (Ca2+, Mg2+, K+, and Na+) determined by the atomic absorption method reaches 20 mg/dm3 in the organic horizons and 40–90 mg/dm3 in the undecomposed moss layers. Potassium and calcium ions dominate in all the organic horizons (80–90% of the total weight); potassium ions prevail in the mosses (about 70%). The weight concentration of carbon in the water-soluble organic compounds is 0.04–0.07 g/dm3 in the organic horizons and 0.20–0.40 g/dm3 in the undecomposed moss layers. The content of low-molecular-weight organic compounds (alcohols, carbohydrates, and acids) identified by gas chromatography and chromatomass spectrometry is 1–30 mg/dm3 in the organic horizons of the soils and 80–180 mg/dm3 in the mosses, which does not exceed 26% of the total organic carbon in the extracts.  相似文献   

17.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

18.
In the humid tropics, soil erosion due to the impact of high‐intensity tropical rainfall is one of the important environmental problems. A quick assessment of slaking sensitivity of soils that are frequently subjected to the fast wetting of intense rainfall of the humid tropics is necessary for the selection of appropriate soil management practices to avoid soil structure deterioration that results in runoff, seal formation, erosion and eventual degradation. Unfortunately, field and laboratory measurements of slaking sensitivity are tedious, time consuming and expensive. Therefore, a slaking sensitivity ranking framework using readily available soil data, namely, clay content, organic matter content, exchangeable sodium percentage (ESP) and cation exchange capacity (CEC) determined to be important in slaking sensitivity and structural degradation under intense rainfall was developed. The ranking framework was subsequently used to classify 23 agriculturally important Trinidadian soils into slaking sensitivity classes for management recommendation. A simple mathematical model that provides a rapid assessment of slaking sensitivity was also developed using the soil data of 14 out of the 23 soils and subsequently tested on the remaining nine soils. Our results suggest that about 80 per cent or more of the soils are highly sensitive to slaking pressures, highly vulnerable to degradation and require management practices that reduce the rate of wetting and thus degradation of aggregates under intense rainfall. The developed model performed with a high degree of accuracy as the predicted values were in close agreement with measured values (r = 0·93). This suggests that the model gives a good indication of the structural degradation vulnerability of the soils studied under the conditions applied and criteria used. The model is, therefore, recommended for use in the tested humid tropical soils. However, more comprehensive testing is required on a broader range of soils prior to its more widespread application in other climatic conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Liu  Jin-e  Shu  Zihao  Zhao  Yan-ping  Deng  Dailan  Zou  Caiyu  Xin  Yue  Zhang  Limin 《Journal of Soils and Sediments》2021,21(10):3438-3450
Purpose

In this study, 1-year decomposition experiments were conducted to measure the litter carbon decomposition dynamics in saltmarsh and to determine the changes in the chemical structure of litter carbon during the litter decomposition process.

Methods

Litterbags containing a mixture of Spartina alterniflora litter and burned sediment were buried at four S. alterniflora saltmarshes and one S. alternifloraSuaeda salsa co-existing saltmarsh. The contents of total organic carbon (TOC) and recalcitrant carbon (RC) were determined by a Sercon Integra CN isotope ratio mass spectrometer, while the content of labile carbon (LC) was estimated by calculation. 13C nuclear magnetic resonance (NMR) spectroscopy was conducted to characterise the chemical structures of the organic carbon compounds in the S. alterniflora litter during decomposition. Solid-state 13C–CPMAS-NMR spectra were obtained using an AVANCE III 400 MHz (Bruker) spectrometer.

Results

The results indicated that more RC than LC remained in the litterbag during decomposition. The organic carbon content of the S. alterniflora litter was largely composed of alcoxyl-C compounds (78.9%), the decomposition products of which dominated the litter organic carbon fractions, including the TOC, RC, and LC. In contrast, alkyl-C, aromatic-C, and carboxyl-C products contributed mostly to RC. Differences in the negative correlations between the litter carbon fractions and alkyl-C, aromatic-C, and carboxyl-C were found among the developing saltmarshes. Humus generated by the S. alterniflora litter was mainly composed of macromolecular organic compounds containing functional groups such as methyl, methylene, methine, methoxyl, aromatic rings, phenolic hydroxyl, and carboxyl.

Conclusions

During decomposition, the organic carbon in the S. alterniflora litter was found to be dominated by O-alkyl-C, followed by aromatic-C, alkyl-C, and carboxyl-C. O-alkyl-C plays a major role in the LC proportion of organic carbon, while aromatic-C, alkyl-C, and carboxyl-C contribute more to the RC proportion. Alkyl-C was found to be more easily decomposed than aromatic-C in the S. alterniflora litter. During litter decomposition, the molecular structure complexity, humification degree, and decomposition degree of organic carbon exhibited seasonal variations. In the 3-year saltmarsh, more decomposition of the organic carbon in the S. alterniflora litter was observed as compared to other sites.

  相似文献   

20.
The partitioning of dissolved organic carbon (DOC) within mineral soils is primarily controlled by adsorption to soil particle surfaces. We compare the theoretical limitations and modeling accuracy of four isotherm approaches to describe DOC partitioning to soil surfaces. We use 52 mineral soil samples to create linear initial mass (IM), non-linear, and Langmuir isotherms, all relating the initial solution concentration (Xi) to the amount of DOC adsorbed or released from soil surfaces. The Langmuir isotherm is also used with final concentration (Xf). The IM isotherm failed to meet theoretical assumptions and provided poor fits to experimental data. The non-linear and Langmuir Xi approaches had good fits to experimental data, and the Langmuir Xi approach had the most robust estimates of desorption capacity. Both Langmuir Xi and Xf isotherms hold the advantage of estimating the maximum adsorption capacity, yet the Xf isotherm is a better reflection of adsorption processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号