首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erosion of the native genetic resources of brown trout in Spain   总被引:2,自引:2,他引:0  
Abstract– We analyzed the introduction of hatchery-reared trout in the Riutort Creek, a small stream in the eastern Spanish Pyrennees. We used gene correlation matrices between individuals to analyze the fish coancestry in the Riutort Creek samples and in the hatchery stock. Hatchery fish disturbed the single ancestry in the native population of the creek, and were clearly detected with principal coordinate analysis of the gene correlation matrix. The amount of introgression produced by successful introductions was estimated from the principal coordinate analysis projections of the matrix of FST values between the putative native Riutort Creek population, the hatchery stock and the introgressed population. In only two years the amount of introgression rose to 10%, indicating that 5% of the native ancestry is lost each year as a result of the stocking program. Based on these results, we review the present understandings on the genetic impact of hatchery fish on indigenous Spanish brown trout populations. The stocking of these populations involves a non-native broodstock widespread through the Spanish hatcheries, but successful stockings appear to be limited to wild populations subjected to occasional releases in protected or unfished areas. Surprisingly, extensive stocking in fished areas result in a more limited genetic impact on the recipient native population.  相似文献   

2.
1. Brown trout (Salmo trutta) is an important conservation resource in the Iberian Peninsula. The Atlantic is considered the most hydrologically stable region for the species, although inner Galicia (NW Spain) shows Mediterranean (unstable) climatic conditions. The Galician region, threatened by past releases of brown trout individuals from central European origin, harbours two native lineages, one of them endemic to the Iberian Peninsula. These populations are thus highly valuable for conservation, as well as being important for recreational fisheries. 2. In total, 546 individuals from 16 sampling sites (15 natural locations from inner Galicia and one from a central European hatchery stock) were genotyped for 11 nuclear markers (10 microsatellite loci and the LDH‐C* locus) to analyse genetic variability, population structure and introgression impact from stocking in order to assess the conservation status of brown trout in the region. Moreover, correlation among hatchery introgression and environmental variables relevant for species population dynamics was also investigated. 3. Genetic variability was within the range of Iberian brown trout (He = 0.500–0.600). Stocking impact was higher than previously reported values for the Atlantic region and was related to environmental instability. Highly significant native population differentiation was observed in the whole region (FST = 0.283), at least four main genetic groups being detected across the geographic distribution studied. 4. Conservation strategies at local level (including the creation of genetic refuges and temporal monitoring of genetic composition) are suggested to agencies and administrations for the sustainable management of brown trout.  相似文献   

3.
Since the end of the 20th century, some headwaters of rivers in the eastern Pyrenees have been designated as genetic refuges to protect remaining native brown trout (Salmo trutta) diversity. The declaration was based on limited or no evidence of genetic impact from released non‐native Atlantic hatchery fish. Hatchery releases were completely banned into the genetic refuges, but pre‐existing fishing activities were maintained. Specific locations in each refuge have been monitored every 2–3 trout generations to update genetic information to accurately assess the contribution of these reservoirs to the preservation of native brown trout gene pools. This work updates genetic information to year 2014 in three of these locations (in Ter, Freser and Flamisell rivers). Previous studies identified hatchery introgressed populations within refuges and suggested discrepancies between the underlying intention of the genetic refuges and the gene pools detected. Therefore, we also examined genetic divergences among locations inside refuge river segments. Combined information at five microsatellite and the lactate dehydrogenase C (LDH‐C*) loci showed reduced but significant temporal native allele frequency fluctuations in some of the above specific locations that did not modify overall levels of local diversity and river divergences. Bayesian clustering analyses confirmed the presence of differentiated native units within each genetic refuge. Some locations of the Freser River within the genetic refuge area showed high hatchery impact of non‐native fish (over 20%). We discuss additional local actions (releases of native fish, selective removals and fishery reinforcement with sterile individuals) to improve the conservation objective of genetic refuges.  相似文献   

4.
Abstract – Management policies balancing harvest and conservation of natural populations of fish are difficult to establish, both scientifically and politically. This issue is particularly difficult when those populations represent native genetic resources. Since 1997, several brown trout populations in the eastern Pyrenees Mountains (Spain) were designated as ‘genetic refuges’ under varying fishing regulations, where releases of hatchery‐origin fish are not permitted. We analysed genetic variation in samples of brown trout from six of those refuge populations and four non‐refuge populations within the same region. Each population was sampled in four separate years: 1993, 1999, 2004 and 2006. Our analyses were based on a diagnostic allele (LDH‐C*90) that distinguishes native and exogenous hatchery populations. Comparisons were based on stocking histories before and after refuge designations and on three management strategies: fished, unfished and catch‐and‐release. Overall, we detected significant genetic introgression resulting from past stocking practices despite the current restriction of hatchery releases imposed by the recent genetic refuge policy. However, this new policy has prevented detectable introgression from increasing throughout the region and together with additional measures on length and number of captured fish is contributing to self‐sustained fisheries that are achieving conservation goals. Quick acceptance of ‘genetic refuges’ by anglers in one particular river, the Ter River basin, has been a key factor in protecting native gene pools compared with the Segre River basins where refuges were not readily accepted.  相似文献   

5.
Many species of salmonids have been stocked into waters outside of their native range. The invasiveness and impact of these species on native species varies depending on their biological traits, and on environmental conditions, such as climate. In Japan, rainbow trout and brown trout, both listed in 100 of the world's worst invasive alien species by the International Union for Conservation of Nature, occur as non-native species. The invasiveness of these two species is thought to be related to seasonal flooding, given flood waters can physically damage fry and prevent population establishment. Rainbow trout have successfully invaded waters in Hokkaido, northern Japan, where the likelihood of flooding is low between June and July, when their fry emerge, but successful invasions are rare in regions south of Hokkaido. Brown trout, however, have successfully invaded waters not only in Hokkaido, but also other regions. Since brown trout have a similar life history to the native white-spotted charr and masu salmon, with fry emerging before the flood season, they are more suited to the Japanese climate than Rainbow trout. Rainbow and brown trout interact with native species in various ways, but a common outcome of these interactions is the displacement of native charr species. Legal regulations of non-native salmonids should be based on understandings of the ecological traits of each invasive species and regional impacts on native species. Given the ongoing nature of climate change, the nature and extent of the effects of rainbow and brown trout on native species might also change.  相似文献   

6.
Brown trout Salmo trutta were first introduced into Japan in 1892, and they currently naturally reproduce in several rivers in Honshu and Hokkaido, Japan. Although negative impacts of brown trout introductions on native salmonid fishes have been documented in some Hokkaido rivers, studies of ecological interactions between brown trout and native salmonid fishes on Honshu are limited. In this study, we describe the longitudinal distribution patterns of introduced brown trout, white-spotted charr Salvelinus leucomaenis and masu salmon Oncorhynchus masou in a 4 km stretch of a stream in central Honshu. Underwater observations were conducted in all pools within upstream, middle and downstream sections (190–400 m in length) of this stretch in order to estimate the densities of these species. Only white-spotted charr was observed in the upstream section, while brown trout and masu salmon were observed in the middle and downstream sections. Masu salmon densities, however, were much lower than brown trout densities. In the downstream section, white-spotted charr was absent. These results are consistent with results from previous studies of Hokkaido rivers, where it was found that white-spotted charr in low-gradient areas tend to be displaced by brown trout.  相似文献   

7.
The density of juvenile brown trout (Sulmo trutta L.) and Atlantic salmon (Salmo salar L.) was significantly higher along river bank areas protected against erosion than along natural river banks in the River Gaula, Central Norway. A habitat shift appeared in Atlantic salmon, and a behavioural shift was demonstrated by brown trout from August October. The effect of habitat on densities of juvenile salmonids should be taken into account as mitigation measures on eroded river banks and when assessing fish production in rivers.  相似文献   

8.
Although non‐native species can sometimes threaten the value of ecosystem services, their presence can contribute to the benefits derived from the environment. In the Great Lakes, non‐native brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) support substantial recreational fisheries. With current efforts underway to restore once‐native Atlantic salmon (Salmo salar) to Lake Ontario, there is some concern that Atlantic salmon will impede non‐native contributions to the recreational fishery because Atlantic salmon exhibit niche overlap with brown trout and rainbow trout, particularly during the juvenile life stage. We therefore examined competition and growth of juvenile Atlantic salmon, brown trout and rainbow trout in semi‐natural streams. We found that brown trout were the most dominant and had the greatest growth rate regardless of what other species were present. Rainbow trout were more dominant than Atlantic salmon and consumed the most food of the three species. However, in the presence of brown trout, rainbow trout fed less frequently and exhibited negative growth as compared to when the rainbow trout were present with only Atlantic salmon. These data suggest that, outside of density‐dependent effects, Atlantic salmon will not impact stream production of brown trout and rainbow trout.  相似文献   

9.
10.
Radio telemetry data were analysed to assess the microhabitat use, movement patterns, home range overlap and interspecific interactions of non‐native pumpkinseed Lepomis gibbosus (L.) and native brown trout Salmo trutta (L.) in a small English stream located immediately below a commercial angling lake from which pumpkinseed escaped. Although both species favoured pool habitats, brown trout preferred higher velocities and coarser substrata compared with pumpkinseed. Also, some individual brown trout preferred deeper waters than did pumpkinseed. Home range area of brown trout was substantially larger than that of pumpkinseed in spring and summer, and for both species, home range area in autumn was significantly smaller than in the other seasons. Range centre distribution analysis revealed that both species were distributed significantly nonrandomly within the stream during all seasons. There was substantial home range overlap between the two species in all seasons, the greatest being in spring. Overall distances moved were greatest during spring for both species, with brown trout moving greater distances relative to pumpkinseed. However, the absence of mutual attraction or avoidance between the species, as well as the lack of cohesion in preferred habitats and strong territorial fidelity, suggests little or no impact of introduced pumpkinseed on resident brown trout.  相似文献   

11.
12.
Habitat use, food composition and growth of stocked and native brown trout, Salmo trutta L., were studied in the subarctic Lake Muddusjärvi in northern Finland. Stocked brown trout and native brown trout preferred littoral and pelagic areas. Trout were stocked in October. In June stocked trout fed primarily on invertebrates while native fish were piscivorous. From July onwards the composition of the diet of both stocked and native trout was similar and consisted almost entirely of small‐sized whitefish. Brown trout were already piscivorous at a length of about 20 cm. The mean length of prey consumed was about 12 cm. Mean length‐at‐age was similar from the second year in the lake despite of the larger size of stocked fish during the first year in the lake.  相似文献   

13.
Abstract. Over a 15-year period hatchery brown trout, Salmo trutta L., have been added 10 Lower Lough Erne, Northern Ireland to supplement declining native populations. Introductions have mainly comprised eyed ova and fingerlings, stocked into a number of rivers in the Erne drainage. Utilizing a natural genetic tag an electrophoretic assessment of the stocking programme was undertaken. The percentage hatchery genetic contribution in trout populations varied widely from river to river (19%-91%). Lough-caught brown trout (3+ and older) showed a substantial (21·5%) hatchery genetic component. Introgression of native-and hatchery stocks was evident. The resultant deleterious genetic consequences for the conservation of the unique Lough Erne brown trout gene pool arc discussed and alternative management strategies are proposed.  相似文献   

14.
  • 1. The Falkland Islands, in the cool‐temperate south‐western Atlantic Ocean, have an impoverished freshwater fish fauna, with only two indigenous species certainly present there: the Falklands minnow, Galaxias maculatus, and the zebra trout, Aplochiton zebra. Additional species whose presence there is uncertain are the southern pouched lamprey, Geotria australis, and the Patagonian puyen, Galaxias platei. Brown trout, Salmo trutta, were introduced in the mid‐20th century, and sea‐migratory (diadromous) populations are widespread.
  • 2. Distributions of zebra trout and brown trout, particularly, are complementary, suggesting that brown trout are having detrimental impacts on zebra trout. Zebra trout have suffered massive decline over the past few decades and remain largely in restricted areas that brown trout have not yet invaded.
  • 3. Owing to their sea‐migratory habits, it can be expected that brown trout will eventually invade all significant streams on the Falkland Islands. This raises issues of serious concern since zebra trout are also probably sea‐migratory, and therefore need access to and from the sea to complete their life cycles. Therefore, any streams accessible to zebra trout are potentially accessible also to brown trout, raising the spectre that eventually brown trout will invade all the streams where zebra trout persist.
  • 4. The existence of landlocked populations of zebra trout provides some form of protection from brown trout invasion, though a landlocked stock does not represent the full behavioural and genetic diversity of zebra trout in Falkland's waters, and must be regarded as a last resort means for conservation.
Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Mediterranean populations of brown trout (Salmo trutta L. complex) have lost a large part of their genetic distinctiveness, mostly due to massive restocking, and the waters of the Gardens of Ninfa (province of Latina, central Italy, Site of Community Importance since 2013) are regarded as one of a few potential reservoirs of autochthonous trout lineages in the Tyrrhenian drainage of the Italian peninsula. In this study, nuclear and mitochondrial markers were used on brown trout samples from Ninfa to estimate non‐Mediterranean influence in the population gene pool, potential changes of genetic structure over time and genetic relationships with other sites known (or suspected) to host native trout gene pools. Striking changes in both microsatellite and mtDNA allele frequencies over a 9‐year time span were found and provided evidence of unrecorded stocking from the nearby Lake Fibreno. Results are analysed in the light of potential ecological consequences of such events on a longer time scale and provide a scientific background for fisheries management and conservation programmes in the area.  相似文献   

16.
17.
18.
We explored potential negative effects of exotic brown trout (Salmo trutta) on native sculpin (Cottus sp.) on the Logan River, Utah, USA by (i) examining factors most strongly correlated with sculpin abundance (e.g., abiotic conditions or piscivory?), (ii) contrasting the extent of brown trout predation on sculpin with that by native cutthroat trout (Oncorhynchus clarkii utah) and (iii) estimating the number of sculpin consumed by brown trout along an elevational gradient using bioenergetics. Abundance of sculpin across reaches showed a strong (r ≥ 0.40) and significant (P < 0.05) correlation with physical variables describing width (positive) and gradient (negative), but not with abundance of piscivorous brown trout or cutthroat trout. In mainstem reaches containing sculpin, we found fish in 0% of age‐1, 10% of age‐2 and 33% of age‐3 and older brown trout diets. Approximately 81% of fish consumed by brown trout were sculpin. Despite a similar length–gape relationship for native cutthroat trout, we found only two fish (one sculpin and one unknown) in the diets of native cutthroat trout similar in size to age‐3 brown trout. Based on bioenergetics, we estimate that an average large (> 260 mm) brown trout consumes as many as 34 sculpin per year. Nevertheless, results suggest that sculpin abundance in this system is controlled by abiotic factors and not brown trout predation. Additional research is needed to better understand how piscivory influences brown trout invasion success, including in‐stream experiments exploring trophic dynamics and interactions between brown trout and native prey under different environmental conditions.  相似文献   

19.
Competitive interactions with non‐native species can have negative impacts on the conservation of native species, resulting in chronic stress and reduced survival. Here, juvenile Atlantic salmon (Salmo salar) from two allopatric populations (Sebago and LaHave) that are being used for reintroduction into Lake Ontario were placed into semi‐natural stream tanks with four non‐native salmonid competitors that are established in Ontario streams: brown trout (S. trutta), rainbow trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Brown trout and rainbow trout reduced the survival and fitness‐related traits of Atlantic salmon, whereas Chinook salmon and coho salmon had no impact on these traits. These data support theories on ecological niche overlap and link differences in observed aggression levels with competitive outcomes. Measurements of circulating hormones indicated that the Atlantic salmon were not chronically stressed nor had a change in social status at the 10‐month time point in the semi‐natural stream tanks. Additionally, the Sebago population was better able to coexist with the non‐native salmonids than the LaHave population. Certain populations of Atlantic salmon may thus be more suitable for some environments of the juvenile stream phase for the reintroduction into Lake Ontario.  相似文献   

20.
A knowledge of food habits is important for evaluating interspecific competition and predation between sympatric species. Data on food availability should be combined with data on food habits in this type of survey. Although food availability differs between habitats or seasons, these differences had never been considered in previous studies. We conducted year-round field surveys throughout a stream to compare the food habits of an introduced salmonid, brown trout Salmo trutta, and a native salmonid, masu salmon Oncorhynchus masou. Masu salmon did not constitute a large proportion of the diet of brown trout and vice versa. Thus, predation will likely not affect the population level of either species. The dietary overlap between brown trout and masu salmon varied depending on the presence of Gammaridae and terrestrial invertebrates; i.e., the intensity of interspecific competition for food resources may differ according to food conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号