首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Earthworm activity has been reported to lead to increased production of the greenhouse gas nitrous oxide (N2O). This is due to emissions from worms themselves, their casts and drilosphere, as well as to general changes in soil structure. However, it remains to be determined how important this effect is on N2O fluxes from agricultural systems under realistic conditions in terms of earthworm density, soil moisture, tillage activity and residue loads. We quantified the effect of earthworm presence on N2O emissions from a pasture after simulated ploughing of the sod (‘grassland renovation’) for different soil moisture contents during a 62-day mesocosm study. Sod (with associated soil) and topsoil were separately collected from a loamy Typic Fluvaquent. Treatments included low (L), medium (M) and high (H) moisture content, in combination with: only soil (S); soil+incorporated sod (SG); soil+incorporated sod+the anecic earthworm Aporrectodea longa (SGE). Nitrous oxide and carbon dioxide (CO2) fluxes were measured for 62 d. At the end of the incubation period, we determined N2O production under water-saturated conditions, potential denitrification and potential mineralization of the soil after removing the earthworms. Cumulative N2O and CO2 fluxes over 62 d from incorporated sod were highest for treatment HSGE (973 μg N2O-N and 302 mg CO2-C kg−1 soil) and lowest for LSG (64 μg N2O-N and 188 mg CO2-C kg−1 soil). Both cumulative fluxes were significantly different for soil moisture (p<0.001), but not for earthworm presence. However, we observed highly significant earthworm effects on N2O fluxes that reversed over time for the H treatments. During the first phase (day 3-day 12), earthworm presence increased N2O emissions with approximately 30%. After a transitional phase, earthworm presence resulted in consistently lower (approximately 50%) emissions from day 44 onwards. Emissions from earthworms themselves were negligible compared to overall soil fluxes. After 62 d, original soil moisture significantly affected potential denitrification, with highest fluxes from the L treatments, and no significant earthworm effect. We conclude that after grassland ploughing, anecic earthworm presence may ultimately lead to lower N2O emissions after an initial phase of elevated emissions. However, the earthworm effect was both determined and exceeded by soil moisture conditions. The observed effects of earthworm activity on N2O emissions were due to the effect of earthworms on soil structure rather than to emissions from the worms themselves.  相似文献   

2.
Effects of earthworm casts on soil nutrient dynamics and their responses to changing moisture availability in subtropical ecosystems remain poorly understood. This study aimed to examine short-term carbon(C) and nitrogen(N) dynamics and their interactions with wetting-drying cycles in three different structural forms(i.e., granular, globular, and heap-like) of Amynthas earthworm casts. The rates of C and N mineralization in the earthworm casts were examined under two different wetting-drying cycles(i.e., 2-d and 4-d wetting intervals) using a rainfall simulation experiment. After three simulated rainfall events, subsamples of the earthworm casts were further incubated for 4 d for the determination of CO_2 and N_2O fluxes. The results of this study indicated that the impacts of wetting-drying cycles on the short-term C and N dynamics were highly variable among the three cast forms, but wetting-drying cycles significantly reduced the cumulative CO_2 and N_2O fluxes by 62%–83% and 57%–85%, respectively, when compared to the control without being subjected to any rainfall events. The C mineralization rates in different cast forms were affected by the amount of organic substrates and N content in casts, which were associated with the food preference and selection of earthworms. Meanwhile, the cumulative N_2O fluxes did not differ among the three cast forms. Repeated wetting and drying of casts not only enhanced aggregate stability by promoting bonds between the cast particles, but also inhibited microbial survival and growth during the prolonged drying period, which together hindered decomposition and denitrification. Our findings demonstrated that the interactions between the structural forms, aggregate dynamics, and C and N cycling in the earthworm casts were highly complex.  相似文献   

3.
Soil fauna can significantly affect soil CO2 and N2O emissions, but little is known about interactions between faunal groups and their relative contribution to such emissions. Over a 64-day microcosm incubation, we studied the effects of an epigeic earthworm (Eisenia fetida), mesofauna (Collembola plus oribatid mites) and their combinations on soil CO2 and N2O emissions under two faunal densities. Earthworms significantly enhanced soil CO2 and N2O emissions, while mesofauna only increased N2O emissions. Soil CO2 and N2O emissions were significantly affected by earthworm density, but not by mesofauna density. No significant interactive effects between earthworms and mesofauna were found on soil CO2 and N2O emissions. Our results indicate that earthworms probably play the dominant roles in determining soil CO2 and N2O emissions where they coexist with soil mesofauna.  相似文献   

4.
5.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

6.
Earthworms, as the ecosystem engineers, both directly and indirectly affect the nitrogen(N) cycle. We aimed to provide a quantitative assessment of the contribution of earthworms to the terrestrial ecosystem N cycle using meta-analysis of 130 publications selected. The natural logarithm of the response ratio(lnRR) was used to indicate the effect size of earthworms on N dynamic variables. The results showed that earthworms significantly affected soil N-cycling microorganisms, including the amoA gene abundance of soil ammonia-oxidizing bacteria(AOB), and significantly promoted soil N cycle processes,including denitrification, mineralization, and plant assimilation. The effects of earthworms on the N cycle were experimental design dependent and affected by factors such as the functional group of earthworm and residue input. The presence of the anecic earthworms decreased the rates of mineralization and nitrification, and increased nitrification and denitrification responses were more pronounced in the presence of the endogeic earthworms than that of the other two functional groups of earthworms. In addition, residue input enhanced the effects of earthworms on the N cycle. The effects of earthworms on nitrous oxide(N2 O) emission increased when residues were added. These findings indicate that residue input and introducing suitable functional groups of earthworms into the field can lead to N sustainability without increasing N2 O emission. This meta-analysis also provides systematic evidence for the positive effects of earthworms on the plant N pool, N availability(soil ammonium(NH4+) content), and soil microbial biomass N content, showing the potential to alter ecosystem functions and services in relation to N cycling.  相似文献   

7.
Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unclear. The aims of this study were (i) to determine whether earthworms with an endogeic strategy also affect N2O emissions; (ii) to quantify possible interactions with epigeic earthworms; and (iii) to link these effects to earthworm-induced differences in selected soil properties. We initiated a 90-day 15N-tracer mesocosm study with the endogeic earthworm species Aporrectodea caliginosa (Savigny) and the epigeic species Lumbricus rubellus (Hoffmeister). 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue was placed on top or incorporated into the loamy (Fluvaquent) soil. When residue was incorporated, only A. caliginosa significantly (p < 0.01) increased cumulative N2O emissions from 1350 to 2223 μg N2O-N kg−1 soil, with a corresponding increase in the turnover rate of macroaggregates. When residue was applied on top, L. rubellus significantly (p < 0.001) increased emissions from 524 to 929 μg N2O-N kg−1, and a significant (p < 0.05) interaction between the two earthworm species increased emissions to 1397 μg N2O-N kg−1. These effects coincided with an 84% increase in incorporation of residue 15N into the microaggregate fraction by A. caliginosa (p = 0.003) and an 85% increase in incorporation into the macroaggregate fraction by L. rubellus (p = 0.018). Cumulative CO2 fluxes were only significantly increased by earthworm activity (from 473.9 to 593.6 mg CO2-C kg−1 soil; p = 0.037) in the presence of L. rubellus when residue was applied on top. We conclude that earthworm-induced N2O emissions reflect earthworm feeding strategies: epigeic earthworms can increase N2O emissions when residue is applied on top; endogeic earthworms when residue is incorporated into the soil by humans (tillage) or by other earthworm species. The effects of residue placement and earthworm addition are accompanied by changes in aggregate and SOM turnover, possibly controlling carbon, nitrogen and oxygen availability and therefore denitrification. Our results contribute to understanding the important but intricate relations between (functional) soil biodiversity and the soil greenhouse gas balance. Further research should focus on elucidating the links between the observed changes in soil aggregation and controls on denitrification, including the microbial community.  相似文献   

8.
Biochar application to arable soils could be effective for soil C sequestration and mitigation of greenhouse gas (GHG) emissions. Soil microorganisms and fauna are the major contributors to GHG emissions from soil, but their interactions with biochar are poorly understood. We investigated the effects of biochar and its interaction with earthworms on soil microbial activity, abundance, and community composition in an incubation experiment with an arable soil with and without N-rich litter addition. After 37 days of incubation, biochar significantly reduced CO2 (up to 43 %) and N2O (up to 42 %), as well as NH4 +-N and NO3 ?-N concentrations, compared to the control soils. Concurrently, in the treatments with litter, biochar increased microbial biomass and the soil microbial community composition shifted to higher fungal-to-bacterial ratios. Without litter, all microbial groups were positively affected by biochar × earthworm interactions suggesting better living conditions for soil microorganisms in biochar-containing cast aggregates after the earthworm gut passage. However, assimilation of biochar-C by earthworms was negligible, indicating no direct benefit for the earthworms from biochar uptake. Biochar strongly reduced the metabolic quotient qCO2 and suppressed the degradation of native SOC, resulting in large negative priming effects (up to 68 %). We conclude that the biochar amendment altered microbial activity, abundance, and community composition, inducing a more efficient microbial community with reduced emissions of CO2 and N2O. Earthworms affected soil microorganisms only in the presence of biochar, highlighting the need for further research on the interactions of biochar with soil fauna.  相似文献   

9.
This study investigated the maturity and gaseous emissions from vermicomposing with agricultural waste. A vermicomposting treatment (inoculated Eisenia fetida) was conducted over a 50-day period, taking tomato stems as the processing object and using cow dung as the nutrient substrate. A thermophilic composting treatment without earthworm inoculation was operated as a control treatment. During the experiment, maturity indexes such as temperature, pH, C/N ratio, and germination index (GI) were determined and continuous measurements of earthworm biomass and CH4, N2O, and NH3 emissions were carried out. The results showed that the temperature during vermicomposting was suitable for earthworm survival, and the earthworm biomass increased from 10.0 to 63.1 kg m?3. Vermicomposting took less time on average to reach the compost maturity standard (GI 80%), and reached a higher GI (132%) in the compost product compared with the thermophilic composting treatment. Moreover, the decrease of the C/N ratio in vermicompost indicated stabilization of the waste. The activities of earthworms played a positive role in reducing gaseous emissions in vermicompost, resulting in less emissions of NH3 (12.3% NH3-N of initial nitrogen) and total greenhouse gases (8.1 kg CO2-eq/t DM) than those from thermophilic compost (24.9% NH3-N of initial nitrogen, 22.8 kg CO2-eq/t DM). Therefore, it can be concluded that vermicomposting can shorten the period required to reach compost maturity, can obtain better maturity compost, and at the same time reduce gaseous emissions. As an added advantage, the earthworms after processing could have commercial uses.  相似文献   

10.
This study was conducted to improve our understanding of how earthworms and microorganisms interact in the decomposition of litter of low quality (high C : N ratio) grown under elevated atmospheric [CO2]. A microcosm approach was used to investigate the influence of endogeic earthworm (Aporrectodea caliginosa Savigny) activity on the decomposition of senescent Charlock mustard (Sinapis arvensis L.) litter produced under ambient and elevated [CO2]. Earthworms and microorganisms were exposed to litter which had changed in quality (C : N ratio) while growing under elevated [CO2]. After 50 d of incubation in microcosms, C mineralization (CO2 production) in the treatment with elevated‐[CO2] litter was significantly lower in comparison to the ambient‐[CO2] litter treatment. The input of Charlock mustard litter into the soil generally induced N immobilization and reduced N2O‐emission rates from soil. Earthworm activity enhanced CO2 production, but there was no relationship to litter quality. Although earthworm biomass was not affected by the lower quality of the elevated‐[CO2] litter, soil microbial biomass (Cmic, Nmic) was significantly decreased. Earthworms reduced Cmic and fungal biomass, the latter only in treatments without litter. Our study clearly showed that A. caliginosa used the litter grown under different [CO2] independent of its quality and that their effect on the litter‐decomposition process was also independent of litter quality. Soil microorganisms were shown to negatively react to small changes in Charlock mustard litter quality; therefore we expect that microbially mediated C and N cycling may change under future atmospheric [CO2].  相似文献   

11.
In the highlands of Madagascar, agricultural expansion gained on grasslands and cropping systems based on direct seeding with permanent vegetation cover are emerging as a means to sustain upland crop production. The objective of this study was to examine how such agricultural practices affect greenhouse‐gas emissions from a loamy Ferralsol previously used as a pasture. We conducted an experiment under controlled laboratory conditions combining cattle manure, crop residues (rice straw), and mineral fertilizers (urea plus NPK or di‐NH4‐phosphate) to mimic on‐field inputs and examined soil CO2 and N2O emissions during a 28‐d incubation at low and high water‐filled pore space (40% and 90% WFPS). Emissions of N2O from the control soil, i.e., soil receiving no input, were extremely small (< 5 ng N2O‐N (g soil)–1 h–1) even under anaerobic conditions. Soil moisture did not affect the order of magnitude of CO2 emissions while N2O fluxes were up to 46 times larger at high soil WFPS, indicating the potential influence of denitrification under these conditions. Both CO2 and N2O emissions were affected by treatments, incubation time, and their interactions. Crop‐residue application resulted in larger fluxes of CO2 but reduced N2O emissions probably due to N immobilization. The use of di‐NH4‐phosphate was a better option than NPK to reduce N2O emissions without increasing CO2 fluxes when soil received mineral fertilizers. Further studies are needed to translate the findings to field conditions and relate greenhouse‐gas budgets to crop production.  相似文献   

12.
We investigated in the laboratory the influence of a municipal solid waste applied to soil at two different particle sizes (<2 and <0.5 mm) and the presence or absence of the Eisenia fetida earthworm on soil carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, as well as on the changes in chemical [ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3N), soluble carbon (C), and soluble carbohydrates] and biochemical (dehydrogenase activity) properties of the soil. The presence of Eisenia fetida caused an increase in the emission of both gases (CO2 and N2O) in municipal solid waste (MSW)–amended soils due to the enhanced soil microbial activity and the degradation of the exogenous organic matter. Soil gas fluxes were influenced by the particle size of the organic waste added. The lowest particle size (<0.5 mm) increased the contact surface of the organic amendment, facilitating the accessibility to the microorganisms, enhancing soil biological activity, and the mineralization of the organic matter.  相似文献   

13.
Earthworm activity may have an effect on nitrous oxide (N2O) emissions from crop residue. However, the importance of this effect and its main controlling variables are largely unknown. The main objective of this study was to determine under which conditions and to what extent earthworm activity impacts N2O emissions from grass residue. For this purpose we initiated a 90-day (experiment I) and a 50-day (experiment II) laboratory mesocosm experiment using a Typic Fluvaquent pasture soil with silt loam texture. In all treatments, residue was applied, and emissions of N2O and carbon dioxide (CO2) were measured. In experiment I the residue was applied on top of the soil surface and we tested (a) the effects of the anecic earthworm species Aporrectodea longa (Ude) vs. the epigeic species Lumbricus rubellus (Hoffmeister) and (b) interactions between earthworm activity and bulk density (1.06 vs. 1.61 g cm−3). In experiment II we tested the effect of L. rubellus after residue was artificially incorporated in the soil. In experiment I, N2O emissions in the presence of earthworms significantly increased from 55.7 to 789.1 μg N2O-N kg−1 soil (L. rubellus; p<0.001) or to 227.2 μg N2O-N kg−1 soil (A. longa; p<0.05). This effect was not dependent on bulk density. However, if the residue was incorporated into the soil (experiment II) the earthworm effect disappeared and emissions were higher (1064.2 μg N2O-N kg−1 soil). At the end of the experiment and after removal of earthworms, a drying/wetting and freezing/thawing cycle resulted in significantly higher emissions of N2O and CO2 from soil with prior presence of L. rubellus. Soil with prior presence of L. rubellus also had higher potential denitrification. We conclude that the main effect of earthworm activity on N2O emissions is through mixing residue into the soil, switching residue decomposition from an aerobic and low denitrification pathway to one with significant denitrification and N2O production. Furthermore, A. longa activity resulted in more stable soil organic matter than L. rubellus.  相似文献   

14.
为探究石河子灌区、新湖总场灌区、莫索湾灌区之间土壤温室气体排放的差异性,通过长期的野外观测及样品采集,采用静态箱—气相色谱法,于2019年棉花出苗期、花铃期、吐絮期对玛纳斯河流域石河子灌区、新湖总场灌区、莫索湾灌区棉田土壤温室气体进行日观测,应用统计学方法,并结合土壤温度、含水量、pH、有机碳、铵态氮、硝态氮等因素分析。结果表明:(1)土壤CO2和N2O具有明显的季节变化和日变化,土壤CO2和N2O排放通量的峰值出现在花铃期,分别为527.160,1.713 mg/(m2·h)。同时,CO2排放通量日变化峰值出现在13:00,N2O排放通量日变化峰值出现在17:00,表现为单峰曲线。2种土壤温室气体在生育期内的排放通量在不同灌区之间有所差异,呈现出新湖总场灌区>莫索湾灌区>石河子灌区。(2)土壤CO2和N2O排放通量受温度影响更为显著,土壤CO2和N  相似文献   

15.
Significance of earthworms in stimulating soil microbial activity   总被引:9,自引:0,他引:9  
 The stimulatory effect of earthworms (Lumbricus terrestris L.) on soil microbial activity was studied under microcosm-controlled conditions. The hypothesis was tested that microbial stimulation observed in the presence of a soil invertebrate would be due to the utilization of additional nutritive substances (secretion and excretion products) that it provides. Changes in microbial activity were monitored by measuring simultaneously CO2 release and protozoan population density. The increase in CO2 released in the presence of earthworms was found to result from both earthworm respiration and enhanced microbial respiration. The stimulation of microbial activity was confirmed by a significant increase in protozoan population density, which was 3–19 times greater in the presence of earthworms. The respiratory rate of L. terrestris was estimated to be 53 μl O2 g–1 h–1. Earthworm respiration significantly correlated with individual earthworm weight, but there was no correlation between the increase in microbial respiration and earthworm weight. This finding does not support the hypothesis given above that enhanced microbial respiration is due to utilization of earthworm excreta. A new hypothesis that relationships between microbial activity and earthworms are not based on trophic links alone but also on catalytic mechanisms is proposed and discussed. Received: 26 August 1997  相似文献   

16.
This study assessed the effects that season and tillage practices have on the diversity of nitrous oxide producing bacteria (nitrifiers and denitrifiers) and to relate this to measured N2O fluxes at our field site. Large-scale field plots (1.5 ha) were established in Elora, Ontario in 2000, and managed using conventional tillage (CT) or no-tillage (NT). Each field plot was instrumented with micrometeorological equipment to determine N2O fluxes on a field scale. Soil samples were taken at four time points between the fall of 2005 and the spring of 2006. The diversity of the nitrifier and denitrifier communities was assessed by PCR–denaturing gradient gel electrophoresis (DGGE) using primer pairs targeting the amoA, nirS and nirK gene. Seasonal variation (a combination of soil temperature, available soil moisture, nutrient levels and other potential factors) had the largest influence on the diversity of nitrifier and denitrifier populations; while tillage practice also influenced the diversity of the microbial community at certain time periods. Tillage significantly affected all communities in March and affected denitrifiers on all other dates except for the nirS community in February. Further statistical analysis revealed that diversity of the nitrifying and denitrifying populations was the lowest in February, in frozen soils, and rapidly increased in March, corresponding with spring thaw N2O emissions. Long-term soil nutrient, temperature and N2O data taken at this site added additional information on the dynamics of the nitrogen cycle.  相似文献   

17.
Fluxes of N2O and CO2 are not limited to the growing season; winter and spring thaw can represent a significant emission period. The objective of this study was to apply wavelet analysis to winter and spring thaw CO2 and N2O fluxes and soil temperatures, to yield additional information about underlying processes, examining temporal patterns and relationships among them. Fluxes used in this analysis were measured over 4 years using micrometeorological methods, in a study comparing two agricultural management practices, best management (BM) and conventional (CONV) practices. Cross-wavelet transform (XWT) and wavelet coherence (WCO) were applied to daily mean time series of N2O fluxes for BM and CONV replicates and treatments, CO2 vs. N2O fluxes, CO2 flux vs. air and soil temperatures, and N2O flux vs. air and soil temperatures. N2O fluxes for replicate plots had small differences in temporal variation while N2O fluxes from BM and CONV treatments showed a large difference in their time series. XWT and WCO analysis confirmed differences in N2O fluxes between management practices due to differences in temporal trends in the time series. Field emissions of N2O and CO2 fluxes showed times of common high fluxes, such as thaw events. Nitrous oxide and CO2 flux time series showed a strong coherence with surface (air) temperatures. The relationship between N2O fluxes and temperature decreased with depth but the relationship between CO2 flux and temperature was similar for surface and at depth. The strong coherence between emissions and surface conditions does not support the suggested mechanism of trapped gas release. A release of trapped gases from below the ice formation would have been indicated by a strong coherence from CO2 and N2O with temperatures at depth as the trapping ice barrier melted. This study demonstrates the effectiveness of wavelets as a tool to investigate temporal relationships in GHG emissions, which is a relatively new application for this type of analysis.  相似文献   

18.
Spatial variability in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions from soil is related to the distribution of microsites where these gases are produced. Porous soil aggregates may possess aerobic and anaerobic microsites, depending on the water content of pores. The purpose of this study was to determine how production of CO2, N2O and CH4 was affected by aggregate size and soil water content. An air-dry sandy loam soil was sieved to generate three aggregate fractions (<0.25 mm, 0.25–2 mm and 2–6 mm) and bulk soil (<2 mm). Aggregate fractions and bulk soil were moistened (60% water-filled pore space, WFPS) and pre-incubated to restore microbial activity, then gradually dried or moistened to 20%, 40%, 60% or 80% WFPS and incubated at 25 °C for 48 h. Soil respiration peaked at 40% WFPS, presumably because this was the optimum level for heterotrophic microorganisms, and at 80% WFPS, which corresponded to the peak N2O production. More CO2 was produced by microaggregates (<0.25 mm) than macroaggregate (>0.25 mm) fractions. Incubation of aggregate fractions and soil at 80% WFPS with acetylene (10 Pa and 10 kPa) and without acetylene showed that denitrification was responsible for 95% of N2O production from microaggregates, while nitrification accounted for 97–99% of the N2O produced by macroaggregates and bulk soil. This suggests that oxygen (O2) diffusion into and around microaggregates was constrained, whereas macroaggregates remained aerobic at 80% WFPS. Methane consumption and production were measured in aggregates, reaching 1.1–6.4 ng CH4–C kg−1 soil h−1 as aggregate fractions and soil became wetter. For the sandy-loam soil studied, we conclude that nitrification in aerobic microsites contributed importantly to total N2O production, even when the soil water content permitted denitrification and CH4 production in anaerobic microsites. The relevance of these findings to microbial processes controlling N2O production at the field scale remains to be confirmed.  相似文献   

19.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

20.
Electroshocking has been used to manipulate earthworm populations in agroecosystems. However, data on the effects of electroshocking on vegetation are lacking. Here we report on a field experiment with the aim to validate electroshocking as a means of manipulating earthworms without otherwise affecting the soil-plant system. We showed that there was no effect of electroshocking on canopy CO2 exchange, root respiration or mycorrhizal fungal abundance and vitality (i.e. the proportion of mycorrhizal fungal structure which was alive). The potential for using electroshocking to manipulate earthworm populations in the field and test ecological hypotheses relating to the role of soil biodiversity in soil processes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号