共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of fly ash on N mineralization in sewage sludge was studied during a 5-week aerobic incubation of soil-waste mixtures at different loading rates under controlled conditions. Periodically, the mixtures were leached with distilled water and the inorganic N released was determined in the percolates. The data were tested by an analysis of variance with repeated measures. Significant differences were found among different incubation periods and also between different treatments. The net N mineralization, expressed as a percentage of organic N added in the sludge, was drastically reduced when higher rates (500 Mg ha-1) of fly ash were added. 相似文献
2.
为揭示不同作物秸秆与污泥堆肥产物对土壤氮素矿化特征的影响,为科学施用城市污泥堆肥提供参考依据,通过室内培养试验研究了城市污泥与4种秸秆(小麦、水稻、玉米和油菜)高温好氧堆肥产物施入酸性紫色土、黄壤、石灰性紫色土后土壤氮矿化的差异。结果表明,4秸秆污泥堆肥均可显著提高3种土壤氮的潜在矿化势(N0)和矿化速度(k),促进土壤氮的矿化,提高土壤NH4+-N、NO3--N质量分数,其中石灰性紫色土以油菜秸秆污泥堆肥和小麦秸秆污泥堆肥处理、黄壤以油菜秸秆污泥堆肥处理、酸性紫色土以小麦秸秆污泥堆肥处理提高幅度最大。作物秸秆与污泥堆肥施入土壤后,黄壤、酸性紫色土在培养60 d和30 d后趋于稳定,石灰性紫色土在培养60 d后仍有增高的趋势,但不同秸秆污泥堆肥对土壤氮矿化速度的影响无明显规律。结果说明秸秆污泥堆肥对土壤氮矿化的效应因土壤及秸秆类型的不同而异,根据研究结果提出了4种作物秸秆与城市污泥堆肥施用的建议。 相似文献
3.
Various urban and industrial sewage sludges were applied to a soil at two doses (50 and 100 t ha−1 y−1) during eight years in a field experiment. The soil was analysed at two depths (0–30 and 30–60 cm) for extractable cadmium and nickel. In general these trace metal increased with dosage. However, cadmium formed complexes with organic matter and nickel bound to iron and manganese oxides. Hence, the available fractions of these metals constituted a small proportion of the total content. The results obtained show a low risk of contamination due to the available fractions of these metals at sludges dosages of up to 100 t ha−1. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
4.
M. L. Lozano Cerezo M. L. Fernndez Marcos E. lvarez Rodríguez 《Land Degradation \u0026amp; Development》1999,10(6):555-564
In order to reclaim a clay quarry, a topsoil material was mixed with gravelly spoil at different ratios and with various rates of sewage sludge. The influence of three spoil/topsoil ratios (1:1, 2:1 and 3:1) and three sludge rates (40, 80 and 120 t ha−1) on chemical properties of the resulting material was investigated, with emphasis on heavy metal (Fe, Cu, Mn, Ni and Zn) contents. The mixtures topsoil/spoil/sludge were water saturated and incubated for 15 or 30 days in a chamber under controlled conditions. The incubated samples were analysed for pH, total carbon and nitrogen, and total, available, exchangeable and soluble heavy metals. The addition of spoil to the topsoil increased the volume of material available, by utilizing an inert material unsuitable by itself to grow plants. The addition of sewage sludge repaired the disadvantages of the spoil, increasing the pH and the organic matter contents. The total heavy metal contents in the mixtures followed the sequence Fe>>Mn>>Zn, Cu>Ni. All except Cu were within the ranges allowed for agricultural lands. The available heavy metals constituted a small fraction of total contents and decrease with time due to complexation and immobilization processes. The exchangeable and soluble fractions were almost negligible; only small amounts of Mn, Zn and Cu were detected. Therefore, the risk of contamination by heavy metals is insignificant in the conditions investigated. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
5.
To reclaim a limestone quarry, 200 and 400 Mg/ha of municipal sewage sludge were mixed with an infertile calcareous substrate and spread as mine soil in 1992. Soil samples were taken 1 week later and again after 17 yr of mine soil rehabilitation so as to assess changes in the amount and persistence of soil organic carbon (SOC). Sludge application increased SOC as a function of the sludge rate at both sampling times. Seventeen years after the sludge amendments, the nonhydrolysable carbon was increased in the 400 Mg/ha of sludge treatment. The recalcitrance of SOC was less in sludge‐amended soils than in the control treatment at the initial sampling, but 17 yr later this trend had reversed, showing qualitative changes in soil organic carbon. The CO2‐C production had not differed between treatments, yet the percentage of mineralized SOC was less in the high sludge dose. When the size of active (Cactive) and slow (Cslow) potentially mineralizable C pools was calculated by curve fitting of a double‐exponential equation, the proportion of Cactive was observed to be smaller in the 400 Mg/ha sludge treatment. Soil aggregate stability, represented by the mean weight diameter of water‐stable soil aggregates, was significantly greater in mine soil treated with the high dose of sludge (18.5%) and SOC tended to be concentrated in macro‐aggregates (5–2 mm). Results suggest that SOC content in sludge‐amended plots was preserved due by (i) replacement of the labile organic carbon of sludge by more stable compounds and (ii) protection of SOC in aggregates. 相似文献
6.
Ashok K. Alva Siva Paramasivam Kenneth S. Sajwan 《Archives of Agronomy and Soil Science》2013,59(3):321-331
Abstract A sandy soil was amended with various rates (20 – 320 g air-dry weight basis of the amendments per kg of air-dry soil) of chicken manure (CM), sewage sludge (SS), and incinerated sewage sludge (ISS) and incubated for 100 days in a greenhouse at 15% (wt/wt) soil water content. At the beginning of incubation, NH4-N concentrations varied from 50 – 280 mg kg?1 in the CM amended soil with negligible amounts of NO3-N. Subsequently, the concentration of NH4-N decreased while that of NO3-N increased rapidly. In soil amended with SS at 20 – 80 g kg?1 rates, the NO3-N concentration increased sharply during the first 20 days, followed by a slow rate of increase over the rest of the incubation period. However, at a 160 g kg?1 SS rate, there were three distinct phases of NO3-N release which lasted for160 days. In the ISS amended soil, the nitrification process was completed during the initial 30 days, and the concentrations of NH4-N and NO3-N were lower than those for the other treatments. The mineralized N across different rates accounted for 20 – 36%, 16 – 40%, and 26 – 50% of the total N applied as CM, SS, and ISS, respectively. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(10):1109-1119
Abstract The ratio between non‐humified and humified fractions in pyrophosphate extracts is shown to vary during maturation of sewage sludge. The ratio is higher than 1 in the raw materials but lowers at 1 or less than 1 with the aging of sludge and is assumed to reflect quantitatively the degree of stabilization of organic matter in the sludge. Analytical isoelectrofocusing (IEF) experiments showed that humified fractions in raw sludge focalize only in the pH gradient regions lower than 5.0, whilst in older sludge samples a progressive strengthening of bands occurs in the region between pH 6.5 and 5.0, approaching at least partially IEF patterns of soil organic matter. IEF patterns are suggested to reflect the stabilization of organic matter in sewage sludge from a qualitative point of view. 相似文献
8.
José Luis Moreno Carlos García Teresa Hernández Miguel Ayuso 《Soil Science and Plant Nutrition》2013,59(3):565-573
To elucidate the mechanism of transfer of heavy metals into the food chain, an experiment was carried out with a calcareous soil, to which two different doses of a sewage sludge compost contaminated with either Cd or Zn, Cd, Cu, and Ni were applied. A crop of lettuce was then grown in the amended soils. The application of sewage sludge composts to a calcareous soil lowered the soil's pH, although the value was always around 8 at the end of the experiment. Electric conductivity rose with organic amendment. As anticipated, such an amendment improved the nutritional level of the soils, particularly Nand P, both total and available. Plant yields were negatively affected by organic amendments contaminated with heavy metals, the most dangerous in our experiment being Cd and Zn since this metals easily taken up by plants. As Ni and Cu form insoluble complexes with the organic matter of the sewage sludge composts they are not readily absorbed. Of the metals studied, Cd and Zn showed the highest bioavailability index. 相似文献
9.
Summary Two biological and two chemical methods were tested to quantify the available N of two sewage sludges in two soils. Sewage sludges increased the quantified available N of soil according to the rate for any tested method. A significant correlation between available N determined by biological methods (leaching and non-leaching incubation procedures) was observed, while no significant correlation between chemical methods (acidic hydrolysis and 2 N KCl extraction) was reported. With the exclusion of the method based on acid hydrolysis, the other procedures were correlated significantly with the available N determined in field experiments. It is concluded that the method based on NH4
+-N released by KCl gives an easy and accurate estimation of the sewage sludge available N.[/ab] 相似文献
10.
In order to promote the transformation of a burnt Mediterranean forest area into a dehesa system, 10 t ha−1 of dry matter of the same sewage sludge in three different forms: fresh, composted and thermally‐dried, were added superficially to field plots of loam and sandy soils located on a 16 per cent slope. This application is equivalent to 13ċ8 t ha−1 of composted sludge, 50 t ha−1 of fresh sludge and 11ċ3 t ha−1 of thermally‐dried sludge. The surface addition of a single application of thermally‐dried sludge resulted in a decrease in runoff and erosion in both kinds of soil. Runoff in thermally‐dried sludge plots was lower than in the control treatment (32 per cent for the loam soil and 26 per cent for the sandy soil). The addition of any type of sludge to both soil types also reduces sediment production. Significant differences between the control and sludge treatments indicate that the rapid development of plant cover and the direct protective effect of sludge on the soil are the main agents that influence soil erosion rates. Results suggest that the surface application of thermally‐dried sludge is the most efficient way to enhance soil infiltration. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
Cícero Célio de Figueiredo Walda Monteiro Farias Bruno Araújo de Melo Jhon Kenedy Moura Chagas Ailton Teixeira Vale Thais Rodrigues Coser 《Archives of Agronomy and Soil Science》2019,65(6):770-781
One of the main advantages of using biochar for agricultural purposes is its ability to store carbon (C) in soil for a long-term. Studies of labile and stable fractions of soil organic matter (SOM) may be a good indicator of the dynamics of biochar in soils. This study evaluated the effects of applying sewage sludge biochar (SSB) in combination with mineral fertilizer on fractions of SOM. To conduct this evaluation, 15 Mg ha?1 of SSB combined or not with mineral fertilizer (NPK) was applied to the soil in two cropping seasons. Apart from total organic C (TOC), the labile and stable fractions of SOM were also determined. The combined use of SSB and NPK resulted in higher TOC, a 22% to 40% increase compared to the control and to the NPK treatments, respectively. The SSB produced at a lower temperature increased the labile fractions of SOM, especially the microbial biomass C, showing its capacity to supply nutrients in the short-term. The stable pools of SOM are increased after adding SSB produced at a higher temperature. It was concluded that pyrolysis temperature is a key-factor that determines the potential of SSB to accumulate C in labile and stable fractions of SOM. 相似文献
12.
城市污泥与调理剂混合堆肥过程中有机质组分的变化 总被引:1,自引:4,他引:1
【目的】研究城市污泥堆肥过程中各项有机质组分及碳、 氮在堆肥过程中的形成与转化,以期改善堆肥的生物有效性,促进其土地利用。【方法】在工厂规模化下,以城市污泥、 蘑菇渣锯末以及返混料按照6∶3∶1的质量比混合形成堆肥物料,辅以强制通风措施和翻抛,进行为期18 d的高温堆肥试验。堆肥期间定期采样,测定指标包括温度、 C/N值、 pH、 含水率、 有机质降解率、 水溶性组分、 半纤维素、 纤维素和木质素,研究堆肥期间不同阶段堆肥物料中有机质组分的动态变化。【结果】堆体温度随着发酵时间的延长呈现先升高后降低的趋势,最高温度达到71.3℃; 含水率由60.7%降低到51.4%,pH呈现先升高后降低的趋势,总体处于6.0~7.5之间; 总有机碳含量持续下降,氮素含量表现为高温期持续下降随后呈上升的趋势; 初始阶段,堆肥物料中四种成分含量分布为: 水溶性组分纤维素半纤维素木质素,至堆肥结束变化为: 纤维素水溶性组分木质素半纤维素,经过堆肥之后水溶性组分及半纤维素含量分别由39.5%和20.1%下降为27.9%和14.4%,纤维素含量由初始的21.8%上升至29.5%,木质素含量相对稳定不变。物料经过堆肥化处理后达到腐熟标准,水溶性组分和半纤维素含量分别降低了38.6%和38.8%,纤维素和木质素含量在高温期分别降解了11.7%和18.5%; 物料总量降低了9.8%。水溶性组分的主要降解阶段为高温期,期间降解部分占总降解量的65.5%; 半纤维素的主要降解阶段为稳定期,稳定期降解部分占总降解量的69.1%,且有继续降解的趋势; 纤维素和木质素仅在高温期有少量降解; 氮素则表现为高温期铵态氮的损失及稳定期硝态氮的积累。【结论】堆肥化处理在实现污泥减量化基础上,污泥中有机质得到了稳定化,有利于城市污泥的土地利用。 相似文献
13.
Nitrous oxide and carbon dioxide emissions from grassland amended with sewage sludge 总被引:5,自引:0,他引:5
Abstract. Land disposal of sewage sludge in the UK is set to increase markedly in the next few years and much of this will be applied to grassland. Here we applied high rates of digested sludge cake (1–1.5×103 kg total N ha−1 ) to grassland and incorporated it prior to reseeding. Using automated chambers, nitrous oxide (N2 O) and carbon dioxide (CO2 ) fluxes from the soil were monitored 2–4 times per day, for 6 months after sludge incorporation. Peaks of N2 O emission were up to 1.4 kg N ha−1 d−1 soon after incorporation, and thereafter were regularly detected following significant rainfalls. Gas emissions reflected diurnal temperature variations, though N2 O emissions were also strongly affected by rainfall. Although emissions decreased in the winter, temperatures below 4 °C stimulated short, sharp fluxes of both CO2 and N2 O as temperature increased. The aggregate loss of nitrogen and carbon over the measurement period was up to 23 kg N ha−1 and 5.1 t C ha−1 . Losses of N2 O in the sludge-amended soil were associated with good microbial conditions for N mineralization, and with high carbon and water contents. Since grassland is an important source of greenhouse gases, application of sewage sludge can be at least as significant as fertilizer in enhancing these emissions. 相似文献
14.
The objective of this research was to study the effect of water deficit on soil heavy metal availability and metal uptake by ryegrass (Lolium multiflorum Lam.) plants grown in a soil amended with a high dose of rural sewage sludge. Three fertility treatments were applied: sewage sludge (SS), mineral fertilizer (M), and control (C); unamended). The levels of irrigation were: well-watered (W) and water deficit (D). Microbial respiration decreased the total organic C (TOC) in sludge-treated soils, but this did not enhance soil DTPA-extractable heavy metal concentrations. Indeed, Zn, Cu, Mn and Ni availability decreased during the experiment. C- and M-treated soils showed either no changes or increases of some trace element concentrations during the incubation. In the plant experiment, ryegrass dry matter (DM) yield, relative water content (RWC) and leaf water potential (w) decreased in drought conditions. Sludge addition increased metal concentrations in plants. However, in some instances, SS-treated plants showed either similar or lower transfer coefficient (Tc) values than did plants in the C and M treatments. Water deficit decreased the concentration and the Tc of some metals in roots of M and SS plants. Results indicate that sludge-borne heavy metals were maintained in chemical forms of low availability. The lower metal uptake by SS and M plants under dry conditions cannot be attributed to a lower availability of these elements in soil. 相似文献
15.
M. Yeganeh M. Afyuni A. H. Khoshgoftarmanesh Y. Rezaeinejad R. Schulin 《Soil Use and Management》2010,26(2):176-182
The application of sewage sludge on farmland is practised in many countries since sludge is rich in macro- and micro- nutrients. However, increasing use of sewage sludge on farmland has raised concerns about the potential transport of heavy metals into food chains and groundwater. This study determined for a calcareous soil the effects of sludge application on soil physical properties and transport of zinc (Zn), copper (Cu), and lead (Pb). Secondary anaerobic digested sewage sludge was applied at rates of 0, 25, 50, and 100 t/ha (on a dried weight basis) for four consecutive years and mixed in the top 20-cm of soil. Corn (Zea mays L.) was planted as a spring crop, followed by wheat (Triticum aestivum) as a winter crop. Sludge application increased the dissolved organic matter content and modified the soil structure, increased the soil infiltration rate, saturated hydraulic conductivity, and aggregate stability, and decreased the bulk density. Sludge application greatly increased DTPA (diethylenetriamine pentaacetic acid)-extractable soil metal concentrations to 50 cm depth and significantly to 1 m. In the plots that received four application of 100 t/ha sewage sludge, the mean concentrations of Zn, Cu, and Pb in subsoil increased by 1600, 7, and 4.5 times, respectively, compared with the control. The results indicate that a combination of enhanced soil physical properties, heavy and inefficient irrigation and high organic matter content with heavy metals cause significant metal mobility. High sludge applications pose risks of groundwater and food chain contamination and rates are best restricted to those reflecting the nutrient demand of crops (20 t/ha every 4 to 5 yr or an average of 4 to 5 t/ha/yr). 相似文献
16.
Hiroko Yoshida Martin P. Nielsen Charlotte Scheutz Lars S. Jensen Thomas H. Christensen Steen Nielsen 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(6):506-516
Application of sewage sludge on agricultural land becomes more and more common in many parts of the world in order to recycle the nutrients from the sludge. A range of sewage sludge stabilization techniques are available to make the sludge more stable prior to storage, transportation, and application. These stabilization techniques include dewatering, drying, anaerobic digestion, composting, and reed bed sludge treatment. However, very few studies have investigated the effect of these techniques after the sludge has been applied to agricultural land. The objective of the current study was therefore to investigate the effect of sewage sludge stabilization techniques on the C and N mineralization and gaseous emissions from soil. A soil incubation was conducted to determine the rate of C and N mineralization and N2O and CH4 emissions of sewage sludge stabilized using different techniques. Unstabilized sludge released up to 90% of their C content as CO2, part of which could be caused by release of CO2 from carbonates. Compared with this, sludge stabilization including anaerobic digestion and drying resulted in a reduction of the C mineralization rate of about 40%. Liming reduced C mineralization with around 29%, while treatment in a reed bed system reduced it by 74%. The current study thus clearly demonstrated that stabilization techniques resulted in sludge that was more stable once they were applied to agricultural land. Stabilization also reduced the N immobilization phase, potentially improving the value of the sludge as a fertilizer. Emissions of CH4 were also reduced through sludge stabilization and mainly occurred after application of easily degradable sludge types, which is likely to have enhanced the creation of anaerobic microsites. The stabilization processes also decreased emissions of N2O. The results for both CH4 and N2O indicate that the stabilization tends to reduce the chance of developing conditions where these gases could be produced. 相似文献
17.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4 + -N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3 − -N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC. 相似文献
18.
19.
This work sets out to verify whether the application of municipal solid waste compost (MSWC) or treated urban sewage sludge (USS) organic amendments efficiently promote organic matter (OM) increases in a Haplic Podzol (PZha) and in a Calcic Vertisol (VRcc). For that purpose, carbon (C) mineralization and C kinetic parameters were studied, using a laboratory experimental incubation setup. The results showed that the addition of the amendments to the soils increased their mineralization capacities, and that the highest C mineralization rate was reached at the end of the first 2 d of incubation. The different characteristics of the soils seem to have influenced the C mineralization rates during the 28-d incubation. The USS induced higher C mineralization than the MSWC, and the PZha soil gave rise to higher C mineralization than VRcc. For all treatments, C mineralization adjusted well to an exponential plus linear kinetic model, suggesting that the organic C of the amendments was made up of two organic pools of differing degrees of stability. With the exception of the application of USS 60 t ha−1, all the treatments increased the OM content on both soils, or at least the OM remained constant throughout the incubation. 相似文献
20.
Accurate prediction of plant-available N release from sewage sludge is necessary to optimize crop yields and minimize NO3– leaching to groundwater. We conducted a 1.5-year study with three maize crops to determine N mineralization from an urban sewage sludge from Barueri, State of São Paulo, Brazil, and its potential to contaminate groundwater with NO3–. The soil at the experimental site was a loamy/clayey-textured Dark Red Dystroferric Oxisol. The treatments consisted of: plots without chemical fertilization or sludge, plots with complete chemical fertilization, and plots receiving four different doses of sewage sludge. Dose 1 was calculated at the agronomic N rate, while doses 2, 3 and 4 were, respectively, two, four, and eight times dose 1. The inorganic N addition increased with the rate of biosolid application. The high NO3– concentrations in relation to NH4+ were associated with intense soil nitrification. High N losses occurred for the first 27 days after soil sludge incorporation, even at the lowest dose, suggesting that land application of sewage sludge based on the N requirement of the crop may be overestimating the amount of sewage sludge to be applied. 相似文献