首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈明向    翟禄新    阳扬    薛开元   《水土保持研究》2022,29(3):189-196+204
为揭示生态水文过程与气候变化的关系,以广西猫儿山典型流域人工毛竹林为研究对象,利用Hydrus-1D模型模拟了毛竹林土壤水分及其他水文要素,在此基础上,针对设定的不同气候变化情景,分析了人工毛竹林对气候变化的响应。结果表明:Hydrus-1D模型可满足人工毛竹林生态水文分析,人工毛竹林蒸散发量占总降水量的28.40%,径流以基流为主。在不同气候变化情景下,气温升幅控制蒸发和蒸腾的增幅,且冬季增幅大于夏季增幅。径流对降水变化更敏感,降水变化会更多地影响夏季径流,而气温则更易影响冬季径流。降水对夏季土壤储水量影响大于冬季,气温则更多地影响冬季土壤储水量。气温降水耦合情况下,土壤储水量对降水减少气温升高时敏感性最明显,总体表现为冬季土壤储水量更易受影响。研究结果可为区域生态规划、水资源开发利用等提供参考依据。  相似文献   

2.
Restoration of the degraded rangelands in Jordan using mechanized water harvesting and native species planting has become key to enhancing and maintaining the productivity and resilience of fragile ecosystems. A balanced interaction between the rangeland's hydrology and vegetation states is vital for achieving long-term sustainability. To gain a better insight into the impact of restoration on surface runoff and erosion and its role in recovering the ecosystem functions, we used the Rangeland Hydrological and Erosion Model (RHEM) to simulate various vegetation scenarios. Our research aims to understand the rangelands' water and sediment dynamics and the vegetation transition states of the ecosystem through evaluating the current (degraded) situation, assess the restoration approach on improving the degraded status (restored), and investigate the long-term sustainability of the restoration approach compared with historical rangeland conditions (baseline). Several scenarios were developed with rangeland experts, local community representatives, and measurements at protected and restored areas to represent the rangeland conditions. We found that restoration of the degraded Badia areas will decrease annual surface runoff from an average of 23.5 to 19.1 mm/year and soil erosion rate from 3.3 to 1.3 tons/ha. With time, restoration can bring back rangeland water and sediment dynamics closer towards the baseline conditions, which were 16.9 mm/year runoff rates and 0.85 ton/ha/year soil loss. The results indicate that restoration is a promising methodology to restore the degraded ecosystem and approximate the environment's historical hydrological regime.  相似文献   

3.
金沙江干热河谷坡面水土流失系统动力学仿真模拟   总被引:1,自引:0,他引:1  
在对斜坡演化全过程特点分析的基础上,讨论了斜坡演化的自组织过程.研究表明,斜坡演化过程是一类具有时间-空间变化的广延耗散动力学复杂系统,与外界环境存在着物质、能量和信息的交换,是一种远离平衡态的自组织临界现象.自组织临界性是斜坡动力学过程的吸引子,同时为斜坡作用强度与频度之间的负幂律特征提供了证据.在此基础上,以斜坡崩塌落石为例,建立了斜坡防护系统的可靠性分析模型,并对某铁路缙云至青田段危岩崩塌分布区内拦石网防护系统进行了可靠性分析.  相似文献   

4.
基于黑龙江省宾县试验站2008年气象观测数据和野外径流小区监测资料,利用WEPP模型估算东北黑土区次降雨径流量和土壤流失量,并通过与实测资料对比,评价WEPP模型的适用性.结果表明,在3°,5°,8°这3个坡度条件下,WEPP模型对次降雨径流量模拟的Nash-Sutcliffe有效性系数ME分别为0.47,0.03和-5.9,对次降雨土壤侵蚀量模拟的Nash-Sutcliffe有效性系数ME分别为0.58,0.72和0.60,说明WEPP模型对次降雨坡面径流量的模拟效果较差,而对次降雨坡面土壤侵蚀量模拟效果较好.WEPP模型对次降雨的径流量和土壤流失量的模拟显示,WEPP模型对坡度变化反应敏感.WEPP模型对大豆、稗草、苜蓿和苗期榆树次降雨径流量模拟有效性系数ME分别为0.81,0.71和0.83,0.94,对次降雨土壤流失量的模拟有效性系数ME分别为0.81,0.71和0.83,0.94,表明WEPP对大豆地和苜蓿地的模拟效果好于稗草和苗期榆树,且其好于不同坡度条件下裸地的模拟结果.WEPP模型可以模拟不同水保措施条件下的次降雨径流量和土壤侵蚀量,也可以模拟不同坡度条件下裸地的次降雨土壤侵蚀量,但是不适合模拟不同坡度条件下裸地的次降雨径流量.  相似文献   

5.
《CATENA》2010,80(3):237-242
Proper spatial and temporal treatments of climate change scenarios projected by General Circulation Models (GCMs) are critical to accurate assessment of climatic impacts on natural resources and ecosystems. The objective of this study was to evaluate the site-specific impacts of climate change on soil erosion and surface hydrology at the Changwu station of Shaanxi, China using a new spatiotemporal downscaling method. The Water Erosion Prediction Project (WEPP) model and climate change scenarios projected by the U.K. Hadley Centre's GCM (HadCM3) under the A2, B2, and GGa emissions scenarios were used in this study. The monthly precipitation and temperature projections were downloaded for the periods of 1900–1999 and 2010–2039 for the grid box containing the Changwu station. Univariate transfer functions were derived by matching probability distributions between station-measured and GCM-projected monthly precipitation and temperature for the 1950–1999 period. The derived functions were used to spatially downscale the GCM monthly projections of 2010–2039 in the grid box to the Changwu station. The downscaled monthly data were further disaggregated to daily weather series using a stochastic weather generator (CLIGEN). The HadCM3 projected that average annual precipitation during 2010–2039 would increase by 4 to 18% at Changwu and that frequency and intensity of large storms would also increase. Under the conventional tillage, simulated percent increases during 2010–2039, compared with the present climate, would be 49–112% for runoff and 31–167% for soil loss. However, simulated soil losses under the conservation tillage during 2010–2039 would be reduced by 39–51% compared with those under the conventional tillage in the present climate. The considerable reduction in soil loss in the conservation tillage indicates the importance of adopting conservation tillage in the region to control soil erosion under climate change.  相似文献   

6.
渭河流域地表水资源未来变化趋势分析   总被引:5,自引:0,他引:5  
全球气候的暖干变化,将会加剧水资源供需矛盾。在分析渭河流域降水及径流量时空分布基础上,根据渭河产流和水平衡原理,依据假定的未来不同气候变化情景,采用模型模拟方法,分析了渭河流域地表水资源量对气候变化的响应趋势。提出了该地区水资源合理利用方案。  相似文献   

7.
四川紫色土地区典型小流域分布式产汇流模型研究   总被引:4,自引:3,他引:1  
针对日益加剧的四川紫色土地区水土流失情况,为定量分析紫色土地区小流域水土流失程度,选取四川省南部县鹤鸣观小流域为研究区,在蓄满产流模型的基础上,构建了适合紫色土地区小流域分布式产汇流模型。该模型以地块为计算单元,在每个地块上输入参数,然后依据流域产汇流机制计算每个地块的产汇流量,并用递归算法将计算结果推算到流域出口,得到流域径流总量。该模型能评价流域下垫面各因子空间分布不均匀性和人类活动的影响,模拟每个地块次降雨产汇流过程。在鹤鸣观小流域进行了模型的检验与应用,模拟过程与实测结果符合较好。该研究为四川紫色土地区水土保持治理提供了科学依据。  相似文献   

8.
以三峡库区的张家冲小流域为例,对降雨—径流过程进行模拟,以期为库区小流域水土流失和非点源污染过程研究提供借鉴,并为控制三峡库区的水土流失和非点源污染,保障库区的水资源安全,缓解日趋严重的环境压力提供科学支撑。首先以研究区的水文、气温观测资料以及数字高程模型为基础,利用半分布式水文模型TOPMODEL模型对日径流进行模拟,选用Nash—Sutcliffe效率系数、均方根误差RMSE以及相关系数r作为目标函数。模拟结果表明,研究区径流的模拟值与实测值变化趋势较为一致;丰水期的模拟精度和拟合效果都优于枯水期,且差异较大;依据《水文情报预报规范》SL250—2000,确定该区丰水期的模拟精度为丙级,枯水期在丙级以下。研究发现,TOPMODEL比较适用研究区丰水期的日径流模拟,不适用于枯水期的日径流模拟。  相似文献   

9.
Agricultural production systems are complex involving variability in climate, soil, crop, tillage management and interactions between these components. The traditional experimental approach has played an important role in studying crop production systems, but isolation of these factors in experimental studies is difficult and time consuming. Computer simulation models are useful in exploring these interactions and provide a valuable tool to test and further our understanding of the behavior of soil–crop systems without repeating experimentation.Productivity erosion and runoff functions to evaluate conservation techniques (PERFECT) is one of the soil–crop models that integrate the dynamics of soil, tillage and crop processes at a daily resolution. This study had two major objectives. The first was to calibrate the use of the PERFECT soil–crop simulation model to simulate soil and crop responses to changes of traffic and tillage management. The second was to explore the interactions between traffic, tillage, soil and crop, and provide insight to the long-term effects of improved soil management and crop rotation options. This contribution covers only the first objective, and the second will be covered in a subsequent contribution.Data were obtained from field experiments on a vertisol in Southeast Queensland, Australia which had controlled traffic and tillage treatments for the previous 5 years. Input data for the simulation model included daily weather, runoff, plant available water capacity, and soil hydraulic properties, cropping systems, and traffic and tillage management. After model calibration, predicted and measured total runoffs for the 5-year period were similar. Values of root mean square error (RMSE) for daily runoff ranged from 5.7 to 9.2 mm, which were similar to those reported in literature. The model explained 75–95% of variations of daily, monthly and annual runoff, 70–84% of the variation in total available soil water, and 85% of the variation in yield. The results showed that the PERFECT daily soil–crop simulation model could be used to generate meaningful predictions of the interactions between crop, soil and water under different tillage and traffic systems.Ranking of management systems in order of decreasing merit for runoff, available soil water and crop yield was (1) controlled traffic zero tillage, (2) controlled traffic stubble mulch, (3) wheeled zero tillage, and (4) wheeled stubble mulch.  相似文献   

10.
The response of terrestrial C storage to GCM derived climate change scenarios was investigated over a range of temporal and spatial scales. The potential changes in the global distribution of major ecosystem complexes were examined by combining changes in land cover and corresponding soil type with C storage estimates for each of the ecosystem types. All scenarios consistently showed an overall increase in global carbon storage. On a more regional basis, the potential impacts of climate change on the structure, composition and biomass dynamics of major forest types within the North American Boreal zone were investigated using individual based stand models. Biomass fluxes were found to be dependent on the tree species, site and GCM parameters. A method to simulate corresponding changes in intra- and interannual patterns of CO2 flux by combining a gap model with an ecosystem model which incorporates photosynthesis, respiration (both canopy and decomposer) and transpiration is demonstrated.  相似文献   

11.
This study investigates the impact of future climate change on heavy metal (i.e., Cd and Zn) transport from soils to surface waters in a contaminated lowland catchment. The WALRUS hydrological model is employed in a semi-distributed manner to simulate current and future hydrological fluxes in the Dommel catchment in the Netherlands. The model is forced with climate change projections and the simulated fluxes are used as input to a metal transport model that simulates heavy metal concentrations and loads in quickflow and baseflow pathways. Metal transport is simulated under baseline climate (“2000–2010”) and future climate (“2090–2099”) conditions including scenarios for no climate change and climate change. The outcomes show an increase in Cd and Zn loads and the mean flux-weighted Cd and Zn concentrations in the discharged runoff, which is attributed to breakthrough of heavy metals from the soil system. Due to climate change, runoff enhances and leaching is accelerated, resulting in enhanced Cd and Zn loads. Mean flux-weighted concentrations in the discharged runoff increase during early summer and decrease during late summer and early autumn under the most extreme scenario of climate change. The results of this study provide improved understanding on the processes responsible for future changes in heavy metal contamination in lowland catchments.  相似文献   

12.
顾海敏  史建桥    邹长新  白淑英    郑雪峰 《水土保持研究》2013,20(6):135-139,144
利用SWAT模型模拟开都河流域的径流变化,并采用1990—2009年的水文站点径流数据进行精度验证,然后设定气候变化情景,模拟不同气候条件下径流的响应特征。结果表明:模拟结果与实测径流较吻合,剔除异常年份(1994年、1995年)后,校准期(1990—2000年)效率系数为0.58,平均相对误差为-5.7%,线性拟合度为0.8;验证期(2000—2009年)的结果与校准期接近,均达到了模型的评价标准,说明SWAT模型在开都河流域的适用性较好。基于此,采用任意情景设置方法,设置了25种气候变化(气温和降水)组合情景,研究了该流域对气候变化的响应,结果表明,气候变化对径流量的影响较为显著,降水增加或气温降低均会导致径流量增加,流域未来年均径流变化的主要影响因素是降水,温度的影响相对较弱。  相似文献   

13.
Abstract. Regions in the Po Valley, Northern Italy, are characterized by intensive crop‐livestock farming systems. A simulation model has been chosen for an inter‐regional project, which should help in defining groundwater vulnerability and pollution risk on a regional scale, in relation to agricultural land use, by allowing the prediction of nitrate leaching under different climate, soil, crop and management scenarios. The model derives from the coupling of a hydrological model, MACRO, simulating water flow and solute transport in structured soils, with a model simulating soil N dynamics, SOILN. The aim of this work was to test the model's ability to simulate nitrate leaching through soil after land spreading of pig slurries. A dataset obtained from lysimeter experiments which had been carried out in the period 1976–1981 was used for this purpose. Four soil types were compared (silty clay, sandy loam, loam and sand) in factorial combination with four rates of pig slurry (0, 142, 284, 426 g of N m–2, accumulated values from 1976 to 1979) for a seven crop sequence. The efficiency of the MACRO model ranged from 0.96, in the sandy‐loam soil, to 0.81, in the sand. Percolation was usually under‐estimated, the relative error ranging from 0.7 to 14.6, depending on the soil. The low efficiency of the SOILN model in simulating nitrate leaching is attributed to the lack of knowledge of the mechanisms regulating N transformation processes and especially the mineralization of pig slurry N. This lack of knowledge hampers the correct setting of the N transformation parameter values. A remarkable improvement of the model's performance was obtained by changing a few coefficients which control the mineralization‐immobilization turnover of the faeces‐organic N. The model efficiency, following this recalibration, ranged from –0.62 to 0.84, and the relative error ranged from –56 to 35, depending on soil and treatment. N leaching was under‐estimated at the low pig slurry N application rates and over‐estimated at the high ones.  相似文献   

14.
Trends and uncertainty of the climate change impacts on hydrology, soil erosion, and wheat production during 2010-2039 at El Reno in central Oklahoma, USA, were evaluated for 12 climate change scenarios projected by four GCMs (CCSR/NIES, CGCM2, CSIRO-Mk2, and HadCM3) under three emissions scenarios (A2, B2, and GGa). Compared with the present climate, overall t-tests (n = 12) show that it is almost certain that mean precipitation will decline by some 6% (>98.5% probability), daily precipitation variance increase by 12% (>99%), and maximum and minimum temperature increase by 1.46 and 1.26 °C (>99%), respectively. Compared with the present climate under the same tillage systems, it is very likely (>90%) that evapotranpiration and long-term soil water storage will decease, but runoff and soil loss will increase despite the projected declines in precipitation. There will be no significant changes in wheat grain yield.Paired t-tests show that daily precipitation variance projected under GGa is greater than those under A2 and B2 (P = 0.1), resulting in greater runoff and soil loss under GGa (P = 0.1). HadCM3 projected greater mean annual precipitation than CGCM2 and CSIRO (P = 0.1). Consequently, greater runoff, grain yield, transpiration, soil evaporation, and soil water storage were simulated for HadCM3 (P = 0.1). The inconsistency among GCMs and differential impact responses between emission scenarios underscore the necessity of using multi-GCMs and multi-emission scenarios for impact assessments. Overall results show that no-till and conservation tillage systems will need to be adopted for better soil and water conservation and environmental protection in the region during the next several decades.  相似文献   

15.
The increasing demand for biomass for food, animal feed, fibre and bioenergy requires optimization of soil productivity, while at the same time, protecting other soil functions such as nutrient cycling and buffering, carbon storage, habitat for biological activity and water filter and storage. Therefore, one of the main challenges for sustainable agriculture is to produce high yields while maintaining all the other soil functions. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soils that generate those functions. We developed a soil model to simulate the impact of various agricultural management options and climate change on soil functions by integrating the relevant processes mechanistically and in a systemic way. As a special feature, we include the dynamics of soil structure induced by tillage and biological activity, which is especially relevant in arable soils. The model operates on a 1D soil profile consisting of a number of discrete layers with dynamic thickness. We demonstrate the model performance by simulating crop growth, root growth, nutrient and water uptake, nitrogen cycling, soil organic matter turnover, microbial activity, water distribution and soil structure dynamics in a long-term field experiment including different crops and different types and levels of fertilization. The model is able to capture essential features that are measured regularly including crop yield, soil organic carbon, and soil nitrogen. In this way, the plausibility of the implemented processes and their interactions is confirmed. Furthermore, we present the results of explorative simulations comparing scenarios with and without tillage events to analyse the effect of soil structure on soil functions. Since the model is process-based, we are confident that the model can also be used to predict quantities that have not been measured or to estimate the effect of management measures and climate states not yet been observed. The model thus has the potential to predict the site-specific impact of management decisions on soil functions, which is of great importance for the development of a sustainable agriculture that is currently also on the agenda of the ‘Green Deal’ at the European level.  相似文献   

16.
【目的】 优化华北平原农田土壤的施肥措施,实现维持农田作物产量、提升土壤肥力的同时减少温室气体排放。 【方法】 基于长期定位试验观测数据,选取氮磷钾化肥 (NPK)、有机肥配施化肥 (NPKM) 和单施有机肥 (OM) 三个试验处理来评价和验证过程模型 (SPACSYS) 对不同施肥措施下的作物产量、土壤有机碳 (SOC) 和土壤全氮 (TN) 储量及土壤CO2和N2O排放动态变化的模拟效果,并预测至2050年不同施肥情景和肥料配施情景下作物产量、SOC、TN储量及土壤CO2和N2O排放量。 【结果】 统计分析结果表明,SPACSYS模型的小麦和玉米产量模拟值与实测值的相关系数R2为0.63~0.78,RMSE为3.78%~4.86%,EF为0.59~0.73;土壤有机碳和全氮储量模拟值与实测值的R2为0.73~0.89,RMSE为2.69%~3.79%,EF为0.67~0.82;土壤CO2和N2O排放量模拟值与实测值的R2为0.16~0.80,RMSE为4.03%~9.99%,EF为0.24~0.78,相关性均达到显著水平,表明SPACSYS模型模拟值的可靠性和准确性较高。利用该模型进行预测,结果显示到2050年,在当前施氮水平下,减氮50%会显著降低玉米产量约9%;减氮25%,与单施化肥处理相比,有机肥配施化肥处理和单施有机肥处理分别显著提高SOC年均储量约31%和62%,提高TN年均储量约18%和6%,而CO2和N2O年均排放量均没有显著增加。 【结论】 SPACSYS模型可以模拟中国华北平原典型农田冬小麦?夏玉米轮作体系的农作物产量、SOC和TN储量以及土壤CO2和N2O的排放情况。但是模型低估了OM处理的全氮储量,下一步研究需对模型做相应改进。至2050年,施用化肥和有机肥均可不同程度地提高有机碳和全氮储量,且该地区可适当降低氮肥施用量 (减氮25%),并采用有机肥配施化肥或单施有机肥的方式来维持作物产量、提升土壤肥力,同时降低温室气体排放。   相似文献   

17.
非洲狗尾草防治坡耕地水土流失效应的研究   总被引:3,自引:0,他引:3  
为定量研究优良牧草纳罗克非洲狗尾草带的水土保持效应,于2001~2002年在云南昆明进行了研究。试验设纳罗克非洲狗尾草草带(A)、迈洛克高羊茅草带(B)和无草带种植(C)三个处理,坡度在13.2~14°之间;每个处理上部等高种植9 m×2 m玉米,基部种植0.5 m宽的草带,底部设径流收集池。结果表明,三个处理的水土流失量为C>B>A,与对照C相比,处理A的年均径流量、侵蚀量分别减少75.9%、96.4%,处理B分别减少59.2%、88.2%;与B处理相比,处理A减少了40.9%、69.2%,说明结合农作物种植纳罗克非洲狗尾草草带,是一种很好的防治水土流失方法,在云南及南方地区的坡耕地上有着广泛的应用前景。  相似文献   

18.
为评价小麦模型算法集成平台(wheat model algorithms integration platform, WMAIP)在华北平原区的适应性,该研究利用华北平原区4个典型试验站多年试验数据,对WMAIP组成的16个模型进行调参和验证,并利用归一化均方根误差(normalized root mean squared error, NRMSE)选择最优模型,最后评价WMAIP集成模型在华北平原区的适应性。WMAIP中组合的16个模型均能有效地模拟土壤水分动态和冬小麦生长发育指标。发育期模拟误差小于4.2%;2 m土层土壤贮水量模拟误差小于7.0%;生物量和产量模拟误差分别在17.3%~23.7%和10.8%~20.8%之间。单个模型的模拟性能不稳定,调参与验证结果的最优模型存在差异。模型集成可降低华北平原区冬小麦产量的模拟误差,用于集成的模型数量越多,模拟误差越小,选择6个模型进行集成就可获得近似田间试验的模拟误差。以16个组合模型模拟结果的均值作为集成模型的结果,得到生物量和产量的模拟误差分别为18.7%和11.8%。结果表明,WMAIP在华北平原区有较好的适应性,可用于华北平...  相似文献   

19.
土壤大孔隙形态对喀斯特区水土漏失过程的影响   总被引:1,自引:1,他引:0  
在岩溶作用下,喀斯特土壤—表层岩溶带耦合发育,上覆土壤中大孔隙与下伏表层岩溶带中裂隙、管道存在密切的水力联系,然而土壤大孔隙影响土壤—表层岩溶带系统中水土漏失的过程机理尚不清楚。通过人工模拟降雨试验,采用试验微区模拟不同土壤大孔隙形态(出露型、浅埋型、深埋型),并以全土微区为对照,探讨了土壤大孔隙对喀斯特地区水土漏失过程的影响。结果表明:与全土微区相比,土壤大孔隙的存在明显加速了水分的垂直渗漏,其对水分渗漏量的影响表现在峰值不同(出露型 > 浅埋型 > 深埋型 > 全土)。土壤大孔隙也给土壤漏失带来风险性,不同形态土壤大孔隙间土壤漏失存在显著差异,表现为出露型 > 浅埋型 > 深埋型 > 全土。本研究中土壤漏失量总体较少(<10 g),土壤强烈漏失现象只在极端状况下发生(雨强为120 mm/h的出露型土壤大孔隙微区)。漏失泥沙主要以粒径<2 mm的小颗粒为主, > 5 mm的大颗粒仅出现在出露型土壤大孔隙微区。土壤漏失因子(土壤漏失量、漏失土壤细颗粒含量)与水分渗漏因子(水分垂直渗漏出流时间、水分渗漏量)存在显著相关关系,说明土壤漏失主要受到水文过程的驱动。土壤大孔隙形态和降雨强度控制了水分渗漏过程,进而影响到土壤漏失过程。研究结果可为该区石漠化治理和地下水污染防控提供科技支撑。  相似文献   

20.
Global warming due to an anticipated doubling of carbon dioxide concentration in the atmosphere is expected to alter the earth's climate system within the next century. The potential changes in the climate system could affect hydrological cycles and processes. Possible impacts of climate change on water resources should be assessed to evaluate probable adaptation measures. In the Philippines, a preliminary assessment of the vulnerability of water resources to climate change and variability was undertaken. For this particular study, the Angat Reservoir was chosen as the study area. Because of its socioeconomic importance, it is useful to assess its vulnerability to climate change. A rainfall-runoff simulation model, WATBAL, was used to determine the effect of temperature and rainfall changes, based on CO2 doubling, on inflow to the reservoir. Climate change scenarios developed from results from three general circulation models and incremental changes were used. The results showed that changes in temperature and rainfall could affect runoff either positively or negatively. Using the temperature and rainfall changes from the Geophysical Fluid Dynamics Laboratory model there was a 32% increase in runoff, and with the Canadian Climate Centre Model, there was a 15% decrease in runoff. Under a climate scenario generated by the United Kingdom Meteorological Office model, runoff is estimated to increase by 5%. The use of incremental scenarios revealed the strong sensitivity of runoff to changes in rainfall as compared with changes in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号