首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study proposes a combination for reciprocal reinforcement between warp knitting spacer fabrics and PU foams. PET/Kevlar nonwoven fabrics are made with an 80:20 ratio and an incorporation of various needle-punching speed of 100, 150, 200, 250, and 300 needles/min. Ascribing to having an optimal bursting strength, sound absorption coefficient, and limited oxygen index (LOI), the PET/Kevlar nonwoven fabric that is made by 200 needles/min are selected to be combined with a glass-fiber fabric by applying needle punch in order to form a surface layer. Next, warp knitting spacer fabrics and the nonwoven fabrics are laminated, followed by being combined with polyurethane (PU) foam that are featured with different densities of 200, 210, 220, 230, and 240 kg/m3 in order to form spacer fabric/PU foam composites with multiple functions. The composites are then tested with a drop-weight test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that all spacer fabric/PU foam composites reach a horizontal burning level of HF1, and their sound absorption coefficients at 2500-4000 Hz also suggest a satisfactory sound absorption. In particular, the optimal residual stress and compressive strength are present when the composites contain 210 kg/m3 PU foam. Similarly, the optimal bursting strength of the composites occurs when they are composed of 230 kg/m3 PU foam. The spacer fabric/PU foam composites are proven to have high strengths, sound absorption, and fire retardant, and thus have promising potentials for use as construction materials and light weight composite planks.  相似文献   

2.
Polylactic acid (PLA) has received considerable attention as a biomass material for the textile industry. To use a PLA fabric in the textile industry, suitable postprocessing that can promote hydrophilicity of such fabrics is required. Here, hydrolytic action of a proteolytic enzyme (alcalase from Bacillus licheniformis) on PLA fibers was evaluated. In addition, the effects of an additive on the enzymatic hydrolysis were analyzed. The results revealed that the optimal enzymatic-hydrolysis conditions for this alcalase are pH 9.5, temperature 60 °C, enzyme concentration 50 % on weight of fabric (owf), and Lcysteine concentration of 3 mM. PLA fabrics were hydrolyzed effectively, however; there was no damage to these fabrics judging by tensile strength and surface observations. X-ray diffractometry identified a new peak (at 2θ=18.5 °), implying a morphological change caused by the treatment. Moreover, hydrophilic properties such as moisture regain and dyeing properties were enhanced by this proteolytic enzymatic hydrolysis. Therefore, according to this study, enzymatic hydrolysis is a suitable finishing method for improvement of hydrophilicity of PLA fabrics.  相似文献   

3.
Biodegradable products are parts of a natural cycle. The biopolymers and the fibers that can be produced from them are very attractive on the market because of the positive human perception. Therefore, PLA being a well known biodegradable fiber and some conventional fibers were selected for the current study to examine the differences between them and to emphasize the importance of biodegradability beside fabric performance. 14.8 tex (Ne 40/1) combed ring spun yarns produced from biodegradable fiber PLA, new generation regenerated fibers Modal and Tencel, synthetic and blends 50/ 50 % cotton/polyester and 50/50 % viscose/polyester, polyester were selected as yarn types and by using these yarns, six knitted fabrics were produced and some important yarn and fabric properties were compared. In this context, moisture and the tensile behavior of yarns and pilling, bursting strength, air permeability and moisture management properties of the test fabrics are discussed.  相似文献   

4.
Small diameter vascular grafts were fabricated from pure Polyurethane (PU) as well as PU reinforced with a tubular weft-knitted fabric. The tensile properties of the reinforced composite vascular grafts were compared with that of the tubular fabric itself and the pure PU vascular grafts. The elasticity and strength of the reinforced vascular grafts were improved compared with the tubular fabric. Strength of the reinforced vascular grafts was 5–10 times of the strength of the pure PU vascular grafts. Expanding the tubular fabric to increase the inner diameter of the reinforced vascular graft reduced the graft’s strength and initial modulus, but the difference was reduced as the PU content was increased. For grafts of the same inner diameter, increasing the PU content increased the thickness and strength of the graft wall, which led to a general increase in the strength and initial modulus of the composite vascular grafts.  相似文献   

5.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

6.
Polyurethanes are polymers with urethane linkages in their backbone. It is prepared by polyaddition polymerization between isocyanates and polyols, which produce different chemical, physical, and mechanical properties depending on their types and characteristics. Previous reports of polyurethane foams prepared by using PEG polyol indicated prominent features in the elasticity and recovery of the foams. However, it is necessary to improve the mechanical strength of these materials. In this study, polyurethane foams were prepared using a PLA/PEG polyol mixture and 1,6-hexamethylene diisocyanate. PLA polyol was synthesized by the direct condensation polymerization of lactic acid. The polyurethane foams were characterized using FE-SEM analysis, FT-IR spectroscopy, water absorbency measurement, and mechanical property measurement. In FE-SEM analysis, it was shown that the PLA content of polyol mixture significantly affected the porous structure. FT-IR spectra confirmed that urethane linkages formed between the PLA/PEG polyols and the isocyanates. The water absorbency decreased due to the hydrophobicity of PLA. With respect to the mechanical properties, the breaking stress and the Young’s modulus increased with increasing PLA content. When the PLA content of polyols was 60 and 70 percent, the breaking strain was significantly higher than those of other polyurethane foams.  相似文献   

7.
In the first stage, polyethylene terephthalate (PET) fibers and Kevlar fibers are combined at a blending ratio of 80/ 20 wt% in order to form PET/Kevlar nonwoven fabrics. Two pieces of PET/Kevlar nonwoven fabrics that enclose a carbonfiber (CF) interlayer are then needle punched in order to form PET/Kevlar/CF (PKC) composites. In the second stage, the sandwiches compose PKC composites as the top and the bottom layers, as well as an interlayer that is composed of a spacer fabric and polyurethane (PU) foam. PU foams have different densities of 200, 210, 220, 230, and 240 kg/m3. These resulting nonwoven fabric/spacer fabric/PU foam sandwiches are then tested using a drop-weight impact test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that the optimal properties of sandwiches occur with their corresponding PU foam density as follows: an optimal residual stress (240 kg/m3), an optimal compressive strength (240 kg/m3), and an optimal bursting strength (220 kg/m3). In addition, the sandwiches reach the HF1 level according to the horizontal burning test results. They also have an average electromagnetic interference shielding effectiveness of -48 dB, as well as a sound absorption coefficient of 0.5 in a frequency between 1500-2500 Hz, which indicates a satisfactory sound absorption effect. The nonwoven fabric/spacer fabric/PU foam sandwiches proposed in this study are mechanically strong, sound absorbent, and fire retardant, and can be used in construction material and electromagnetic shielding composites.  相似文献   

8.
A porous complex structured woven fabric was manufactured to maximize the moisture transition ability of the prepared fabric by increasing the absorptive property of the fabric through surface modification using plasma, which is a dry modification method. Porous single and complex structured woven fabrics were produced by applying pattern, porosity, and plasma technology, including fabric patterning based on the sheath/core complex structure, the formation of porosity by removing the weft thread or warp thread, and hydrophilic surface treatment using plasma and the improvement in water absorption of different fabrics by the porous and plasma treatment was investigated. Therefore, two different types of fabrics were prepared. One is the porous single structured FAB-SINGLE fabric which was taken out in the direction of the Polyester (PET) warp thread of a general single structure to form a porous. Another is FAB-COMPLEX fabrics that the water-soluble polylactic acid (PLA) yarns with a 1.7 to 2.0 times longer absorption distance than that of PET yarns were inserted into the weft threads, and the PLA yarns were dissolved in a solvent to form the porous complex fabric. And then the physical properties and water absorption of the two types of fabric were compared after the plasma treatment. The results showed that when the FAB-SINGLE fabric, which has porosity induced by the removal of the warp threads in a certain gap, was plasma treated for 5 min, the contact angle was decreased to the extent that a measurement of the contact angle was impossible, whereas the fabric that had not undergone a plasma treatment had a contact angle of 123.6 o. The contact angle of the FABCOMPLEX with porosity caused by the dissolution of the PLA yarns was reduced from 76.8 o to 0 o after 3 minutes of a lowtemperature plasma treatment, indicating that the hydrophilic property was increased. In addition, the water absorption measurements showed that the absorption height was increased from 2.3 cm of the fabric sample that had not been treated with plasma to the highest absorption height of 8.3 cm, suggesting that the water absorption also increased with the improvements in moisture transition ability by the plasma treatment. The physical tensile strength of the fabrics was not changed by the plasma treatment, despite the changes on the fabric surface, suggesting that the combination of double complex structures and the plasma treatment helped improve the water absorption.  相似文献   

9.
Recycled polyols from waste polyurethane (PU) foams were grafted onto PU to improve the properties such as tensile strength, shape recovery, low-temperature flexibility, and water compatibility. The recycled polyol was either purified by column chromatography before grafting or was used directly for grafting. The soft segment melting temperature of PU did not notably increase with the addition of polyol, whereas the glass transition temperature increased with increased polyol content. The tensile strength sharply increased at low polyol content and decreased at high polyol content, while the strain at break did not significantly change with an increase in polyol content. The shape recovery at 10 oC notably improved compared with unmodified PU and remained high after four cyclic tests. Polyol-grafted PU demonstrated better lowtemperature flexibility and reduced the water vapor permeability of PU membranes. Overall, grafting recycled polyol onto PU significantly improved the tensile stress, shape recovery, and low-temperature flexibility of PU.  相似文献   

10.
Electrospun web may possibly be widely applied to protective garments or specialty textiles due to its high level of protection as well as comfort. Of particular interest in this study is to develop waterproof-breathable fabric by applying electrospun web of polyurethane directly onto the substrate fabric. The optimal electrospinning condition was examined with regards to the concentration, applied voltage and tip-to-collector distance. Solvent-electospinning of polyurethane was performed at the optimum condition, using N,N-dimethylacetamide as solvent. The thickness of 0.02 mm of electrospun web was applied onto the polyester/nylon blended fabric. For comparison, the polyester/nylon fabrics were coated with 0.02 mm thickness of polyurethane resin membranes adopting four different conditions. The electrospun PU web/fabric was compared to resin coated fabrics in terms of water-proof and breathable properties. The electrospun web applied fabric showed higher air permeability, vapor transmission, and thermal insulation properties than resin coated fabrics, which can be translated as greater comfort sensation of electrospun applied fabrics. However, water resistance value of electrospun web applied fabric did not reach that of resin coated fabrics.  相似文献   

11.
In this study, Polylactic Acid (PLA) nonwoven fabric and thermoplastic polyurethane (TPU) honeycomb air cushion (TPU-HAC) were employed to form an impact resistant layer for functional knee pads. PLA nonwoven fabric has low manufacture cost and flexibility of the honeycomb air cushion improved the quality of functional knee pad sold in the market. This study focused on the strength of PLA nonwovens and the impact resistance of TPU honeycomb air pads. The PLA fibers and low-melting-point (low-Tm) PLA fibers are used as raw materials to fabricate PLA nonwoven fabric. The PLA fibers and low-melting-point PLA fibers were mixed at weight ratios of 10, 20, 30, 40, and 50 %. PLA nonwoven fabric and TPU-HAC materials were combined in a sandwich structure to protect against impact. Impact resistance was evaluated using a falling-weight impact-resistance machine. Experimental findings indicate that changing various layers can improve the impact resistance of the sandwich structure of the TPU-HAC materials. A TPU-HAC layer with a thickness of 2/8/10 mm optimized the impact resistance. In 25 J falling-weight impact test, the TPU-HAC layer 2/8/10 mm provides an impact resistance of 2932 N; the PLA/TPU-HAC composite had the best impact resistance; 2516 N. PLA nonwoven fabric had the best mechanical properties with low-Tm PLA fibers at 30 % weight. The impact resistance achieved using above combination of materials met the level 2, range 3 impact values mentioned in EN 14120 standards.  相似文献   

12.
As the use of high performance textiles has grown, the need for chemical finishes to provide the fabric properties required in the special applications has grown accordingly. In this project, a series of water dispersible polyurethanes dispersion (CS-PUs) with multipurpose performance profile was developed using isophorone diisocyanate (IPDI), polyethylene glycol (PEG), 2,2-dimethylol propionic acid (DMPA) and chitosan (CS) for textile applications. In two step synthesis process, NCO functional PU prepolymers prepared by reacting IPDI, PEG, and DMPA were extended with varying molar quantities of chitosan followed by structural characterization through FTIR. The prepared CS-PU dispersions were applied onto the dyed and printed poly-cotton blend fabrics. The performance behavior of the treated fabric in terms of crease recovery, tear strength, tensile strength, and antibacterial properties was evaluated by applying standard test methods. These investigations show that the CS-PU dispersions can be applied as antibacterial textile finishes with significant improvement in the physical and mechanical properties of poly-cotton fabrics.  相似文献   

13.
The paper focuses on the application of ultrasonic energy in textile laundering. In recent years, there has been an increasing interest in ultrasonic energy application in textile industry; however, the effect of ultrasonic laundering on the thermophysiological properties of knitted fabrics has not been studied yet. This study was conducted by using polylactic acid (PLA), cotton, polyethylene terephthalate (PET), and poly acrylic (PAC) fibres containing yarns and their blends. Knitted fabrics, single pique, were made from these yarns by using weft knitting machine. The fabrics were washed ten times for 15 and 60 minutes under 40 °C by using conventional and ultrasonic washing methods. The main aim was to determine the effect of washing methods on the thermophysiological properties of the fabrics. It is also aimed to analyse and evaluate the thermophysiological properties of the PLA fabrics. The incorporation of 100 % PLA and cotton/PLA yarns into single pique knitted fabrics has been attempted to produce for the first time and studied their thermal comfort properties. The results show that the washing processes have a critical importance for the tested fabrics in terms of thermal conductivity, thermal resistance, thermal absorbtivity, water vapour permeability, and heat loss. It has been also demonstrated that the fabric cleaning by using ultrasonic method enhanced the properties of tested fabrics such as thermal conductivity and % recovery. It was also noted that 15 minutes ultrasonically washed fabrics had significantly lower thermal resistance as compared to conventionally washed fabrics.  相似文献   

14.
In this study, the dimensional, physical and thermal comfort properties of the plain knitted fabrics made from 50/50 blend of modal viscose fiber in microfiber form with cotton fiber are compared with those of the similar fabrics made from 50/50 blend of conventional modal viscose fiber with cotton fiber and made from 100 % cotton fiber. All the fabric types are produced in three different stitch lengths. The slight differences among the fabric types are observed in terms of the stitch density results and the dimensional constants calculated in the fully relaxed state. In the fully relaxed state, the dimensional K values of the modal microfiber blended knitted fabrics are found to be more closely resemble those of the cotton fabrics rather than those of the conventional modal fiber blended fabrics. The lowest fabric thickness and bursting strength results are obtained for the modal microfiber blended fabrics. The modal microfiber blended fabrics reveal lower air permeability than the conventional modal fiber blended fabrics and higher air permeability than the cotton fabrics. It is also observed from the thermal comfort results that the modal microfiber blended fabrics have the lowest thermal resistance and the highest thermal absoptivity values. The thermal conductivity results of the modal microfiber blended fabrics are lower than those of the cotton fabrics and higher than those of the conventional modal fiber blended fabrics. Because of the highest thermal absorptivity values, the modal microfiber blended fabrics provide the coolest feeling when compared with the other two fabric types.  相似文献   

15.
Electroless metal plated fabrics are favorable to be used as e-textiles due to the excellent conductivity and peculiar properties of textiles such as flexibility. But, the electrical durability is not enough to be used as e-textiles. Therefore, we applied polyurethane(PU)-sealing (single-sealing vs. double-sealing) onto the electroless metal plated polyester fabrics (Ripstop vs. Mesh) to reinforce the electrical durability. We investigated the changes of electrical properties of the PU-sealed metal plated fabrics after laundering by a multi-meter, examined the surface changes using scanning electron microscope, and checked the metal existence using energy dispersive X-ray spectroscopy. And, we finally proved the possibility of the fabric strips as transmission lines by alternating conventional earphone lines. PU double-sealing showed higher performance on Ripstop polyester fabrics even after being laundered 10 times, which was almost the same as Cu-based typical conductive lines did.  相似文献   

16.
A modified ring spinning technique has been recently developed by incorporating false twisting devices into the conventional ring frame. Its application on the coarser yarn counts (7–32 Ne) showed notable advantages in modified yarn and fabric performance. More recently, it was noted that this technique can also be applied for producing finer cotton yarns. Thus this paper aims to carry out a systematic study of the physical properties of the finer modified yarns (80 Ne) and woven fabrics with respect to the conventional ones. Physical properties of conventional and modified single yarns were evaluated and compared. These two types of single yarn were used for the production of woven fabrics. Moreover, the above two types of single yarn were also plied and used for the production of woven fabrics under a commercial condition. All woven fabrics were assessed in terms of fabric tensile strength, tearing strength, abrasion resistance, fabric weight, and air-permeability as well as other fabric performance measured by the Kawabata Evaluation System (KES). Experimental results showed that finer modified yarns and fabrics exhibit higher strength, lower hairiness, and improved abrasion resistance, slightly better compression property, and smoother surface with relatively larger thickness.  相似文献   

17.
In this study, the dimensional and some physical properties of plain knitted fabrics made from 50/50 bamboo/cotton blended yarns are investigated. In order to see the differences and similarities, the results are then compared with those for similar fabrics knitted from 50/50 conventional viscose/cotton and 50/50 modal/cotton blended yarns. Each fabric type was produced with three different stitch lengths. After all fabrics were dyed under identical dyeing conditions, they were subjected to dry and full relaxation treatments. For dimensional properties of fabrics, course, wale and stitch densities were measured. Then, by calculating statistically best-fit lines passing both through the experimental points and the origin, dimensional constants i.e. k values were predicted in terms of the fiber types. The result show that each fabric type knitted from bamboo/cotton, viscose/cotton and modal/cotton blended yarns behaves in a similar manner. However, in both dry and fully relaxed states, the modal/cotton knitted fabrics tend to have slightly higher k values than the bamboo/cotton and viscose/cotton knitted fabrics. For physical properties, fabric weight per unit area, thickness, bursting strength, air permeability and pilling were evaluated. The results show that the weight, thickness and air permeability values are independent of the fiber type. Plain knitted fabrics from modal/cotton blended yarns have the highest bursting strength values. Plain knitted fabrics from bamboo/cotton blended yarns tend to pill less.  相似文献   

18.
A novel biodegradable polylactic acid-based polyurethane (PU) was synthesized via a chain extension reaction between hydroxylated polylactic acid (PLA-OH) and hydroxylated tung oil (HTO) using 1,6-hexamethylene diisocyanate (HDI) to link the two polyols and dibutyltin dilaurate (DBTDL) as a catalyst. Both PLA-OH and HTO, as polyols, were separately synthesized in our laboratory. Three different molecular weights of PLA-OH prepolymers were used, and the molar ratio of PLA-OH to HTO was also changed to investigate the effect of these two parameters on the structure and properties of the final PUs. Chemical structures of PLA-OH, HTO, and final PUs were investigated by Fourier transform infrared (FTIR) and Hydrogen-1 nuclear magnetic resonance (1HNMR) spectroscopies. Thermal transitions and thermal stability of the final PUs were, respectively, studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The FTIR and 1HNMR results showed that the chain-extension reaction of the two polyols with HDI was sufficiently achieved. The TGA results showed that the polyurethanes based on the lower molecular weight PLA segments were more thermally stable; it was not degraded up to 270 °C. DSC results showed that incorporating HTO in the PU chains led to formation of more flexible PU chains, while the glass transition temperatures of the PUs of higher PLA-OH molecular weights were higher than those of lower ones.  相似文献   

19.
Treatment of polyacrylonitrile (PAN) onto m-aramid fabric was carried out by pad-dry-cure method using dimethylformamide (DMF) dissolved acrylic fiber solution. The obtained PAN treated m-aramid fabric was dyed using exhaustion method with basic dyes. The effect of PAN treatment on fabric stiffness property was acceptable with acrylic fiber solutions ranging from 1 wt% to 4 wt%. Whilst, more than 4 wt% PAN treated fabrics exhibited undesirable stiffness. The dyeing results showed that PAN treated m-aramid fabrics exhibited a significant increase in color strength when compared to untreated fabric, arising from an increase in anionic dye sites (styrene SO3 ? group). Wash fastness was comparable to that of untreated fabric, indicating the strong interaction between dye molecules and the PAN. Rubbing fastness of treated fabrics was not affected by treatments with PAN concentrations lower than 4 wt%. Further increase in PAN concentration led to poorer rubbing fastness property due to the problem of surface dyeing. For light fastness, the PAN treatment failed to improve the light fastness property which is the main disadvantage of basic dyeing of aramid fabric. Finally, in case of PAN treatments with the range of 1 wt% to 4 wt%, the flame retardancy property of PAN treated m-aramid fabrics was found not affected by the percent add-on. However, above 4 wt% PAN treatment, the flame retardancy performance became deteriorated.  相似文献   

20.
A simple and effective method for impregnation of p-aramid (Kevlar®) fabric with shear thickening fluid (STF) has been developed in this research. Kevlar fabric was impregnated with STF in two stages in a sequential manner. Three levels of pressure (0.5, 1 and 2 bar) were used in each stage of impregnation. It was observed that impact energy absorption by Kevlar fabrics, impregnated with STF in this newly developed method, increased significantly as compared to untreated Kevlar fabrics and Kevlar fabrics treated with STF in conventional way (single step impregnation). Better results were obtained when the first impregnation pressure was higher than that of the second, even with same combination of pressures. Such fabrics also showed a much higher STF add-on (~18 %) as compared to that of fabrics impregnated in single step (3-5 %). Low velocity ballistic tests also confirmed the advantages of the new method as sequentially impregnated fabric showed 124.8 % and 24.4 % increase in impact energy absorption compared to untreated and STF impregnated Kevlar fabrics in single step, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号