首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work the natural madder dye (Rubia tinctorum L.) was applied to the simultaneous dyeing and functionalization of polyester (PET) fabric. In the first part of the study the color performance and the durability were revealed for exhaustion dyed fabric. The dyed fabric was then characterized with respect to ultraviolet (UV) protection ability and antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). CIELab color coordinates, namely the positive a* and b* values, confirmed a yellow/orange color of the dyed fabric. From durability tests, the color showed a moderate to good light fastness and good to excellent fastness to washing and rubbing. The madder dye improved both the UV protective performance and the antibacterial activity of the fabric. With 3 % on weight of fiber (owf) the UV protection factor increased up to 106, and the antibacterial activity up to 86 % against both types of bacteria tested.  相似文献   

2.
The use of natural dyes and natural finishes on textiles has become a matter of significant importance because of the increased environmental awareness to avoid some hazardous synthetic dyes and synthetic chemicals. The Delonix regia stem shells were extracted in distilled water methanol and ethanol solvents. Phytochemical analysis was carried out for the presence of bioactive chemical constituents such as saponin, terpenoid, flavonoid, glycoside, phenol and tannin using the standard procedure. All the tests showed positive for the presence of components except saponin in methanol and ethanol extract. The qualitative antibacterial analysis was done by AATCC 147 method with excerpts from three different solvents both against S. aureus (gram-positive) and E. coli (gram-negative) bacteria. Delonix regia stem shell extract (DSE) in distil water was used for natural dyeing of mulberry silk fabric. Pre-mordanting and post-mordanting of silk fabric were carried out using alum and myrobalan mordants. Treated fabrics showed a substantial increase in colour depth (K/S) and adequate wash, light and rubbing fastness properties without and with mordanted and dyed silk fabrics. Quantitative antibacterial analysis by AATCC 100 method was done on dyed silk fabric which showed very good resistance both against bacteria S. aureus and E. coli bacteria. Dyed silk fabric also showed good to very good ultraviolet (UV) protection property. The physicochemical composition of the untreated and without mordant treated silk fabrics were analysed by attenuated total reflection (ATR) Fourier transforms infrared (FTIR) spectroscopy, scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and atomic absorption spectrophotometer (AAS). In addition to that wash, durability was also measured of dyed silk fabric for antibacterial and ultraviolet protection (UPF) properties according to AATCC 61 2A washing method.  相似文献   

3.
The fabric used for intimate apparel is widely required to have excellent antibacterial and comfort performances. In order to improve its antibacterial ability, this paper studied chitosan-silver finishing on the cotton knitted fabric. The study indicates that the chitosan-silver attached to the fabric exhibits excellent antibacterial action against the typical bacteria of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureu). The anti-bacterial mechanism of chitosan-silver against E. coli and S. aureu were investigated. To guarantee its prominent comfort performance, measurements were made on the finished fabric of its air permeability, water vapor transmission, hydrophily, surface friction and bending ability against the control fabric, which is currently used for intimate apparel. The antibacterial and comfort performances were compared between the tested fabrics. The results show that the air permeability and the hydrophily of the finished cotton fabric are significantly better than the control one, while the water vapor transmission, the surface friction and the adjustable rate remain similar to each other. The bending rigidity of the finished fabric is slightly better due to the attachment of chitosan within accepted threshold. The dual compounding theory of chitosan-silver proves to be useful for a higher synergistic effect of anti-bacteria, lower whiteness degradation and overall optimization of comfort performance. This dual compounding theory of chitosan-silver is valuable for improving antibacterial and comfort performances of intimate apparel.  相似文献   

4.
There has been growing interest in the use of bioresource waste for natural dyeing and finishing. This paper discusses dye extraction from the novel source fruit shell waste of Sterculia foetida and its application on mulberry silk fabric to confer aesthetic coloration and wellness properties such as ultra-violet (UV) protection and antibacterial properties. Treated fabrics showed a substantial increase in color depth and adequate wash, light, and rubbing fastness properties for dyed silk fabrics with and without mordanting. Pre-and post-mordanting of silk fabrics were carried out using mordants such as alum, harda (myrobalan), and copper sulfate. UV-visible spectrophotometric analysis of fruit shell extract (FSE) at different pHs and FSE with three different mordants at neutral pH was used to understand the phenomena of dye-fiber interaction. The treated fabrics characterised by ATR-FTIR, SEM-EDS, and XRD analysis indicate the nature of dye fiber interaction justifying the multifunctional properties. The treated fabric also showed very good ultraviolet protection property and antibacterial properties both against S. aureus and E. coli bacteria even after ten washes. The results indicate that Sterculia foetida fruit shell extract offers an excellent potential as coloration, antibacterial, and ultraviolet protective agent for mulberry silk fabric.  相似文献   

5.
A water soluble quaternary ammonium chitosan derivative, N-benzyl-N,N-diethyl chitosan quaternary ammonium salt (BDCQA), was prepared for antibacterial finish of cotton textiles. The effects of concentrations of finish agents and treatment time on the add-on ratio of cotton treated BDCQA (BDCQA-cotton) were studied in details. The morphology and thermal property of BDCQA-cotton were characterized by scanning electron microscopy (SEM) and thermagravimetric (TG) analysis. Gram-positive bacterium Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus), Gram-negative bacterium Escherichia coli (E. coli) and drug-resistant bacterium Methicillin-resistant Staphylococcus aureus (MRSA), were used to evaluate the antibacterial activity and durability of BDCQA-cotton. The results showed that BDCQA-cotton possessed good antibacterial activity and high durability against broad spectrum bacterium. The preliminary investigation on the antibacterial mechanism was discussed in this work.  相似文献   

6.
A novel antibacterial agent polysulfopropylbetaine (PSPB) bearing carboxyl groups was synthesized and its application on cotton fabric to provide durable antibacterial property was also presented. The successful synthesis of PSPB and its immobilization onto the cotton fabric surface were verified by a series of tests including FTIR, 1H NMR, XPS and SEM. Viable cell counting method was employed to investigate antibacterial properties of the finished cotton fabrics. It was found that the cotton fabrics treated with PSPB were endowed with desirable antibacterial activity against both gram-negative bacteria Esherichia coli (E.coli, AATCC 6538) and gram-positive bacteria Staphylococcus aureus (S.aureus, AATCC 25922), with the bacterisotatic rates of 99.69 % and 99.95 %, respectively. Notably, the bacterial reduction rates still maintained over 90 % against both bacteria even after 50 consecutive laundering cycles. Moreover, tests concerning the hydrophilicity, air permeability, water vapor transmission, mechanical properties as well as thermal properties were carried out systematically. The experimental results indicated the hydrophilic performance, air permeability and moisture penetrability of the cotton fabrics finished with PSPB were improved greatly in spite of a slight reduction in thermal performance and little obvious influence on mechanical performance. The antibacterial cotton fabric has the potential to be applied in sportswear, underwear, household textiles, medical fields and much more.  相似文献   

7.
The present study has been focused on the extraction of natural dyes from Syzygium cumini (L.) Jambolan fruit dry seed endosperm and investigation of their phytochemicals and pharmacological characteristics. Dyes were prepared using aqueous, acidic, alcoholic and alkaline extraction techniques. UV spectral studies of the dyes showed a variation in absorption maxima and their color varied with respect to the pH and the solvent used during extraction. The dye was prepared from Jambolan fruit dry seed endosperm showed good antibacterial activity. The aqueous extraction of Jambolan fruit dry seed endosperm was able to inhibit the growth of many bacterial strains viz S. lutea, E.coli, P. aeruginosa, Pseudomonas fluorescens and S. aureus etc. The antimicrobial property of the dyes was used in developing antimicrobial fabric.  相似文献   

8.
In this work, dopamine hydrochloride, an environmental friendly compound, was applied on polyester fabric through conventional simple impregnation method in alkaline solution (pH=8.5) at room temperature. In situ spontaneous oxidative polymerization of dopamine form polydopamine (PDA) along with aminolysis of polyester fabric surface. Also, a range of colored polyester fabric were successfully achieved by formation of polydopamine adhesive coating layer at different concentration of dopamine hydrochloride (0.001-4 g/l). Fourier transform infrared spectroscopy and field emission scanning electron microscopy showed deposition of polydopmaine on the polyester fabric surface. The modified colored polyester fabric showed reasonable durability against washing, rubbing and light. The treated polyester fabric with 2 g/l dopamine hydrochloride as optimum concentration indicated not only lower spreading time for water droplet and electrical resistance with higher tensile strength but also very good bactericidal activity against Staphylococcus aureus and Escherichia coli.  相似文献   

9.
Fruits obtained from shrubs of the Crataegus elbursensis (C. elbursensis) plant demonstrate significant antioxidant and antibacterial properties. In this study, natural dye was sono-extracted from fresh and dried fruits and applied in dyeing and antibacterial finishing of wool. The maximum sono-extraction yield was obtained when optimal conditions of ethanol/ water (4/1 v/v) as extracting solvent, time 30 min, pH 4, temperature 50 oC, and C. elbursensis concentration 10 g/l were used. When wool yarns were dyed with the extracted natural dye, the maximum dye uptake was achieved using dye concentration 75 % owf, and dyeing condition of 100 oC, 60 min, pH 4, and LR 100:1. Different metal salts like aluminum sulfate, copper sulfate, and tin chloride were applied on wool by pre-mordanting method and their effects on dye uptake, color variation, and color fastness were examined. Results showed that the natural dye itself had relatively high uptake and good color fastness on un-mordanted wool. Further, each mordant had different effect on dye uptake, color variation, and color fastness properties depending on its coordination ability with dye molecules and wool chains. Moreover, dyed yarns showed good antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria.  相似文献   

10.
In this research, a facile and cost effective method is presented for in-situ synthesis of cuprous oxide nanoparticles on polyester fabric along with surface modification by using one pot wet chemical method at boil. Copper sulfate (CuSO4), sodium hypophosphite (SHP) and polyvinylpyrrolidone (PVP) were used as precursor, reducing agent and stabilizer, respectively. Further, monoethanolamine (MEA) was used as pH adjustment and also modifier of polyester surface introduced amide and hydroxyl functional groups on the fabric. The images of FESEM, mapping, patterns of EDX, UV-visible absorbance spectrum, FTIR analysis and X-ray diffraction pattern confirmed the successful processing. The treated samples showed excellent antibacterial properties (100 %) toward both Staphylococcus aureus and Escherichia coli pathogen bacteria. Also, the results of cytotoxicity test proved no harmful effects on the human dermal fibroblasts for the treated sample with the lower concentration of the materials having white color with good antibacterial activities. The treated samples also indicated very good UV protection properties as well as improved wettability and mechanical properties. They are also sensitive to ammonia through immediate color change when contacted with ammonia solution. The above mentioned processing method can be used for production of polyester fabric with multifunctional properties for using in the various textile industries.  相似文献   

11.
L-cysteine (Cys) and silver nanoparticles (Ag NPs) were successfully linked onto the cotton fabric surfaces. The Cys molecules were covalently linked to the cotton fibers via esterification with the cellulose hydroxyl groups, and the Ag NPs tightly adhered to the fiber surface via coordination bonds with the Cys thiol groups. As a result, the Ag NPs coating on the cotton fabric showed an excellent antibacterial function with an outstanding laundering durability. The bacterial reduction rates (BR) efficiency reached 100 % for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). After 50 consecutive laundering cycles, the bacterial reduction rates (BR) against E. coli and S. aureus were maintained over 97 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

12.
In this study, durable antibacterial cotton fabrics were prepared by a simple two-step impregnation method. Firstly, thioglycolic acid (TGA) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then silver nanoparticles (Ag NPs) were immobilized on the cotton fabric surface via coordination bonds with the TGA thiol groups. As a result, the mean size of Ag NPs coating on the cotton fabric is around 74 nm, and these functionalized cotton fabrics show superior antibacterial properties and excellent laundering durability. After withstand 50 laundering cycles, the obtained cotton fabrics still showed outstanding bacterial reduction rates (BR) against both S. aureus and E. coli, and the rates are all higher than 97 %. Therefore, this method to prepare antibacterial cotton fabric shows great potential applications in socks, cosmetic, and medical textiles.  相似文献   

13.
In this study, we synthesized a novel N-halamine precursor, sulfuric acid mono-[2-(4-[4-chloro-6-(2-[4,4- dimethyl-2,5-dioxo-imidazolidin-1-yl]-ethylamino)-[1,3,5]triazin-2-ylamino]-benzenesulfonyl)-ethyl] ester sodium (TB), which contains two reactive groups of monochloro triazine reactive groups and bis-sulphatoethylsolphone reactive groups. The structure of TB is similar to iso-bifunctional group reactive dyes and could be coated on cotton fabrics by covalent bonds through a reactive dyeing process. The cotton coated with TB was characterized by FTIR and SEM. After chlorination, the treated cotton fabrics showed excellent antibacterial efficacy and inactivated all inoculated S. aureus (ATCC 6538) and E. coli O157: H7 (ATCC 43895) within 1 min of contact. Over 85 % of tensile strength retained both in warp and weft directions after treatment and chlorination. Almost 80 % of active chlorine can be regained by treating with household bleach after extensive washing and long time storage.  相似文献   

14.
In this work, we developed a new method that can achieve immobilization and protection of the Cu NPs coating on the cotton fabrics by a simple two-step impregnation method. Firstly, L-cysteine (Cys) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then Cu NPs were introduced on the fabric surface in the presence of a protective reagent, citric acid. Due to the doubled stabilization acts of Cys and citric acid, the Cu NPs immobilized on the fabric surface showed an excellent antibacterial effect and outstanding laundering durability. As a result, the mean size of the Cu NPs coating on the cotton fabric is about 62.4 nm, and the modified cotton fabrics showed satisfactory antibacterial ability against both S. aureus and E. coli, which the bacterial reduction rates are all higher than 98 % even withstand 50 washing cycles. Therefore, this method to prepare antibacterial cotton fabrics showed great potential applications in socks, cosmetic, and medical textiles.  相似文献   

15.
One step thermochromic pigment printing and antibacterial functionality of cotton (100 %) and cotton/polyester blend (50/50 %) were demonstrated in this study. The improvement in antimicrobial activity against G+ve (Bacillus cereus) and G-ve (E. coli), and pigment printability were achieved by inclusion of Ag-NPs (30 g/kg) into pigment printing paste followed by printing and microwave curing at 700 W for 5 min. Modes of interactions were proposed, and surface modification was also confirmed by SEM and EDX analysis that proved the presence of Ag-NPs in cotton and cotton/ polyester blended samples. The results indicated that the colour fastness to wash and rubbing was excellent, the surface roughness reduced, and exhibited good antibacterial activity against Bacillus cereus and E. coli bacteria.  相似文献   

16.
A new fiber-reactive chitosan derivative was synthesized in two steps from a chitosan of low molecular weight. First, a water-soluble chitosan derivative, N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (short for HTCC), was prepared by reacting chitosan with 2,3-epoxypropyltrimethylammonium chloride. Second, HTCC was further modified by reacting with N-(hydroxymethyl)-acrylamide to prepare a fiber-reactive chitosan derivative, O-methyl acrylamide quaternary ammonium salt of chitosan (short for NMA-HTCC), which can form covalent bonds with silk fiber under alkaline conditions. The chemical structure of NMA-HTCC was characterized by Fourier transform infrared spectrum (FTIR) and nuclear magnetic resonance (NMR). The substitution degree of HTCC and the double-bond content of NMA-HTCC were tested. Then NMA-HTCC was used for antibacterial finishing of Bombyx Mori silk fabric. The results showed that silk fabric treated with NMA-HTCC had a significantly improved antibacterial activity to Staphylococcus aureus and Escherichia coli, and the antibacterial activity of silk fabric finished by NMA-HTCC was much better than that finished by chitosan and HTCC. Bombyx Mori silk fabric modified with NMA-HTCC demonstrated excellent durable antibacterial activity, even after 50 repeated launderings, the bacterial reduction rate of silk fabric maintained over 95 %.  相似文献   

17.
A series of copolyesters (Co-PETs) containing poly(ethylene glycol) (PEG), 5-sodiumsulfodimethyl isophthalate (DMS), and dimethyl isophthalate (DMI) were synthesized via the conventional two-step melt-polycondensation method. The synthesized Co-PETs were characterized by 1H-NMR spectroscopy, FT-IR spectroscopy, differential scanning calorimeter (DSC), and thermogravimetric analyzer (TGA). The DSC results showed that the melting temperature (T m) and the heats of fusion (ΔH m) of Co-PETs decreased with increasing the DMS content in Co-PET, while the inclusion of PEG did not affect their thermal properties significantly. The water absorption and the water contact angle of the Co-PET films were found to be significantly affected by the DMS content rather than PEG content. The moisture-related cooling properties of the fabric samples made of Co-PET 5 as well as PET were evaluated by using liquid moisture management tester (MMT) and Q max measurements. The MMT and Q max results indicated that Co-PET 5 fabric containing DMS 1.0 mol% and PEG 10.0 wt% in Co-PET seemed to be a good candidate for the fabric having durable cooling effects.  相似文献   

18.
In the present study, a novel eco-friendly production of silk fabrics dyed with different natural dye bath concentrations (40, 80, 120, 160, 200 and 240 g/l) extracted from neem (Azadirachta indica) leaves was developed. The surface morphology of the fabrics was examined by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy to characterize the chemical structure of the fabrics. The SEM images of the undyed fabric show that the fabric was tightly woven with little porosity between the fibres with dozens of silk threads in orthogonal directions. By increasing the neem concentration, a scale of fine particles grew on the surface of the silk fabrics with little macroscopical defects was demonstrated. The fiber diameters and tightness between filaments were significantly increased. The FTIR displayed that, neem dye does not change the characteristic peaks of the silk fabrics. Also, the evaluation of the antimicrobial activity of the undyed and neem dyed silk fabrics was monitored for Gram positive and Gram negative bacteria in addition to yeasts and fungi by using the agar diffusion method. The comparison between the different dye bath concentrations was based on the inhibition zones obtained after incubation. The antimicrobial activity in leaf extract of neem was estimated in Staphylococcus aureus, Bacillus subtilis and Lactobacillus cereus (Gram positive bacteria); Escherichia coli (Gram negative bacteria); Candida albicans and Candida tropicalis (yeasts); and Aspergillus niger and Fusarium solani (fungi). The results emphasized that, the highest neem dye bath concentration (240 g/l) was found to display good inhibitory effect against the Gram positive and reasonable activity against the Gram negative bacteria. Furthermore, the different dye bath concentrations possess no activities against yeast and fungi. In conclusion, the data reveal that the increase of neem dye concentration does not damage the silk fabric; however, it improves its antimicrobial activity by incorporating with antimicrobial agent. The current study highlighted that using neem leaves had beneficial effect in controlling the pathogenic microbial organisms.  相似文献   

19.
In this paper, thermotropic liquid-crystal microcapsules of cholesteric liquid crystal (CLC) as core material and melamine-formaldehyde (M-F) as shell material were prepared via in-situ polymerization. The core material of CLC herein was mixture of cholesteryl oleyl carbonate (COC) and cholesterol pelargonate (CPE). The optimal preparation conditions were assured based on the serial trial experiments. It was found that the prepared CLC microcapsules had spherical shape and smooth surface, and the mean particle size was about 8-10 μm. The FT-IR spectra and SEM images confirmed that the M-F shell was successfully fabricated on the surface of CLC core material. Finally, the CLC microcapsules were treated on the fabric, and the treated fabric showed color change between 33.4 °C and 38.0 °C, which is appropriate for human comfortable feeling. CIE L*a*b* values were obtained, and it confirmed the treated fabric had good color change performance. In this paper, the cholesteric liquid crystal (CLC) showed its excellent ability to change color, and the experiment result also proved that CLC microcapsules for preparing thermotropic fabric is reasonable and practicable.  相似文献   

20.
Two functional compounds were successfully extracted from neem (Azadiracta indica): a tannin-rich natural dye and an antibacterial agent. The dye was extracted from the bark using water, and the antibacterial from the leaf using methanol. These were used to dye hemp fabrics. Higher color strength values (K/S) were found when dyeing was conducted at a higher dye concentration, elevated temperature, and longer dyeing time. Optimal results were achieved when using 5 %w/v of extracted powder at 100 °C for 60 min. The resulting fabrics appeared reddish-brown, and were rated as good to excellent for color fastness against washing, water, sea water, and perspiration. The antibacterial agent from the neem leaf was extracted by Soxhlet apparatus at 65 °C with methanol as solvent. The dyed and antibacterial-finished hemp fabrics were tested against Staphylococcus aureus, following the percentage reduction test of AATCC 100. The treated fabrics demonstrated a 99.99 % reduction in Staphylococcus aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号