首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of disperse dyes and their intermolecular interactions have important impacts on dyeing and printing performances for polyester fabrics. The fluorine dyes show some unique molecular stability and photochemical properties. The dyeing property of the azo dye containing trifluoromethyl group for polyester fabrics, 4'-(N-acetoxyethyl-Nethyl)- amino-2-bromine-4-nitro-6-trifluoromethylazo- benzene (D1), was investigated and compared with the similar structure disperse dye. The results show that the high color yield and good exhaustion of the dyed PET fabrics could be obtained. The polyester fabrics dyed with D1 had excellent light fastness. Its single crystal was prepared and the supramolecular interactions were solved by X-ray diffraction. Dye D1 formed triclinic crystals in a trimeric packing mode. The C-F bond distances of CF3 are 1.2730 Å, 1.2240 Å and 1.2900 Å, respectively. The two benzene rings linked azo unit (-N=N-) are obviously twist. The dihedral angle of the two benzene rings is 50.23 o. There are six weak hydrogen bonds around trifluoromethyl group in the intramolecule and intermolecule. The excellent light stability of the dye should be attributed to its unique supramolecular structure.  相似文献   

2.
Kim  Sam Soo  Leem  Su Gyung  Ghim  Han Do  Kim  Joon Ho  Lyoo  Won Seok 《Fibers and Polymers》2003,4(4):204-209
The effect of padding solution on the microwave heat dyeing of polyester fabric was studied extensively. Polyester fabrics were impregnated in aqueous urea solution and aqueous sodium chloride solution for 10 min and then dyed for 7 min by microwave apparatus (2 450 MHz, 700 W) under optimum conditions which provide good exhaustion. Aqueous solutions of urea and sodium chloride showed more effective than water as a padding solution for microwave heat dyeing. The type of solvent added in padding media and its concentration significantly affects the K/S values of dyed polyester fabric. Added solvents such as n-hexane, acetone, and dimethyl formamide were also more effective than 100% water as padding media for the microwave heat dyeing. It is supposed that the effect of used solvents on dyeing property of polyester fabrics depends on the solubility parameter difference between solvent and polyester fabric.  相似文献   

3.
The aim of this study was to examine the influence of dyeing on antibacterial efficiency of corona activated polyamide and polyester fabrics loaded with colloidal Ag nanoparticles as well as the influence of the presence of Ag nanoparticles on the color change of dyed fabrics. C.I. Acid Green 25 and C.I. Disperse Blue 3 were used for dyeing of polyamide fabrics and C.I. disperse violet 8 for polyester fabrics. The color change of polyamide fabrics depends on the dye type, which was generally lower compared to polyester fabrics. Antibacterial efficiency of Ag loaded fabrics was tested against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli. Corona activated polyester and polyamide fabrics showed excellent antibacterial efficiency independently of order of dyeing and Ag loading. The morphology of fibers loaded with Ag nanoparticles was assessed by SEM and atomic absorption spectroscopy for elemental analysis.  相似文献   

4.
The cotton fabrics were pretreated by sodium 2-(2,3-dibromopropionylamino)-5-(4,6-dichloro-1,3,5-triazinylamino)-benzenesulfonate (DBDCBS) at alkaline condition of room temperature and then dyed with four disperse dyes having amino groups (C.I. Disperse Yellow 9, C.I. Disperse Red 11, C.I. Disperse Blue 56 and C.I. Disperse Violet 1) at acidic condition of high temperature. A novel hetero-bifunctional bridge compound,DBDCBS, has two reactive groups such as dichloro-s-triazinyl group andα, β-dibromopropionylamido group. The first has reactivity towards hydroxy group of cellulosic fiber and the second shows reactivity towards amino groups of disperse dye containing amino groups. The results indicate that it is possible to dye polyester/cotton blend at one-bath dyeing using one kind of disperse dye containing amino groups. Therefore, two kinds of dyeing methods such as two-bath process one-bath dyeing and one-bath process one-bath dyeing were investigated and their dyeabilities were compared. The differences between these two methods were negligibly small so that perfect one-bath one-step dyeing of polyester/cotton blend by one kind of disperse dye was achieved.  相似文献   

5.
The dyeing and color fastness properties of two reactive-disperse dyes containing a sulfatoethylsulfone group on nylon, PET and N/P mixture fabrics were examined. The rate of dyeing on nylon fabric was greatly dependent upon dye bath pH. The final dye uptakes at all pH, however, were as high as 97 %. Color strength of the dyed nylon fabric linearly increased up to 0.5 %owf and then slowed down over 1 %owf dyeing. Washing and rubbing fastness of the dyed nylon fabric were excellent, but grade of light fastness was moderate. Dyeability of the reactive-disperse dyes on PET fabric was not much affected by pH, and K/S values of PET fabric dyed at pH 5–8 were lower than those of nylon fabric at all pH examined. Buildup and color fastnesses properties on PET fabric showed the same tendency with nylon fabric. The rate of dyeing of the reactive-disperse dyes on nylon fabric was faster than on PET fabric when both fabrics were dyed simultaneously in the same dye pot, resulting in higher color strength of nylon than PET. The reactive-disperse dyes were found to be adequate to the one-bath, one-step dyeing of N/P mixture fabric when applied at pH 5 and 120 °C.  相似文献   

6.
In this study, mild acid based chelating agents (glycolic acid, gluconic acid, ethylenediaminetetraacetic acid, and citric acid) were used for the dyeing of polyester fabrics with metal sensitive disperse dye in closed dyeing process. The chelating and pH adjustment efficiencies were compared in disperse dyeing condition. In the comparative analysis with different chelating agents, glycolic acid showed a higher chelation efficiency and consequently showed higher dye bath exhaustion and color strength. Slight differences in the color fastness of the dyed samples obtained by employing four different chelating agents were observed.  相似文献   

7.
The surface of silk is modified by a cationic reagent, N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride(CHTAC) in order to enable the fibre to be dyed with superfine pigments by an exhaust process. The effects of cationization pretreatment conditions such as the amount of cationic reagent, pH, treatment temperature and time on color yield are discussed in detail. The result shows that the condition suitable for modification treatment is that the concentrationc of cationic reagent is 10 g/l, pH 8, liquor to goods ratio of 100:1 and 60°C for 30 min. The white index decreases with the increase of alkali of cationic treatment. The crock fastness and wash fastness of silk dyed by pigment exhaust dyeing achieve 3–4 and 4 scale, respectively. The treated silk fabrics still retain a soft handle because the bending rigidity B and hysteresis 2HB increase slightly after cationization pretreatment and dyeing procedure. It has been demonstrated that properties of surface modified silk dyed with superfine pigment by exhaust process are acceptable.  相似文献   

8.
A series of hybrid materials composed of zirconia, silica, and thiazole dyes were synthesized from zirconium npropoxide (ZNP) and tetraethoxysilane (TEOS) using heteroaryl 2-amino-thiazole azo dyes, and prepared via the sol-gel process. The heterocyclic 2-amino-thiazole azo dyes underwent a hydrolysis-condensation reaction with an appropriate proportion of ZNP under a catalyst, using a constant ratio of vinyltriethoxysilane (VTES) and TEOS. The structures of these hybrid materials composed of zirconia/silica/thiazole dyes were characterized using Fourier transform infrared (FT-IR) analysis. The surface morphologies of the polyethylene terephthalate (PET) fabrics were evaluated using scanning electron microscopy (SEM). The SEM images demonstrated the uniform dyeing of the PET fabrics, which confirmed the reaction of the hybrid materials with the PET fabrics. The water contact angle, washing fastness, color uniformity, and warmth retention of the PET fabrics dyed with the hybrid materials composed of the zirconia/silica/thiazole dyes were evaluated. The evaluation results indicated that these fabrics offered enhanced warmth retention properties and good water repellency.  相似文献   

9.
A series of hybrid materials composed of boehmite/silica/thiazole dyes and prepared via the sol-gel process is synthesized from aluminum isopropoxide (AIP) and tetraethoxysilane using heteroaryl 2-amino-thiazole azo dyes. Heterocyclic 2-amino-thiazole azo dyes undergo a hydrolysis-condensation reaction with an appropriate proportion of AIP under a catalyst, at a constant ratio of vinyltriethoxysilane (VTES) and tetraethoxysilane (TEOS). The structures of these hybrid materials composed of boehmite/silica/thiazole dyes are characterized using Fourier transform infrared (FT-IR) analysis. The surface morphology of polyethylene terephthalate (PET) fabrics is evaluated using scanning electron microscopy (SEM). SEM images show uniform dyeing of the PET fabrics that confirms the reaction of the hybrid materials with the PET fabrics. The water contact angle, washing fastness, color evenness, air permeability, and warmth retention of the PET fabrics dyed with hybrid materials composed of boehmite/silica/thiazole dyes are evaluated. The evaluation results indicate improved warmth retention property and good water repellency.  相似文献   

10.
Dyeing and color fastness properties of a reactive disperse dye containing an acetoxyethylsulphone group on PET, Nylon, silk and N/P fabrics were examined. The reactive disperse dye exhibited almost the same dyeing properties on PET fabric as a conventional disperse dye except the level of dye uptake. The most appropriate pH and dyeing temperature for the dyeing of Nylon fabric were 7 and 100°C respectively. The build-up on Nylon fabric was good and various color fastnesses were good to excellent due to the formation of the covalent bond. Application of the reactive disperse dye on silk fabric at pH 9 and 80°C yielded optimum color strength. The rate of dyeing on Nylon fabric was faster than that on PET fabric when both fabrics were dyed simultaneously in a dye bath, accordingly color strength of the dyed Nylon was higher. The reactive disperse dye can be applied for one-step and one-bath dyeing of N/P mixture fabric with good color fastness.  相似文献   

11.
The aim of this study was to investigate the antimicrobial activity of C.I. Basic Red 18:1 (D1) and C.I. Basic Yellow 51 (D2) cationic dyes and dyed acrylic fabrics against the common pathogens Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. C.I. Basic Red 18:1 dye was most effective against the test bacteria E. coli, S. aureus and P. aeruginosa in vitro whereas C.I. Basic Yellow 51 had a lesser effect. The acrylic fabrics dyed with these dyes, however, showed less antimicrobial activity depending on the dyeing depth. It can be said that acrylic fabrics dyed with these dyes inhibit bacterial growth.  相似文献   

12.
The wool fabrics were treated by ultraviolet (UV) radiation and then dyed with Camellia sinensis (L.) O. Ktze var. waldensae (S.Y.Hu) Chang (yellow-bud tea) extract using meta-mordant dyeing method. The results indicated that the hydrophilicity of wool fabrics was improved after UV radiation treatment, which was conducive in improving color performance for the meta-mordant dyeing with yellow-bud tea extract of wool fabrics. The optimal dyeing process was that the powdered extract (5.0 % o.w.f) and the CuSO4 (2.0 % o.w.f) were added to the dyeing liquor, the pH value was adjusted to 3.5-4.0 by HCOOH, the wool fabrics treated by UV radiation for 10 min and then were dyed at a bath ratio of 1:50 under 95 °C for 70 min. By means of three-factor quadratic current rotation revolving design (TQCRRD) method, the computation results of the mathematical equations and models indicated that UV radiation was the most important factor for meta-CuSO4 dyeing with yellow-bud tea extract for wool fabrics.  相似文献   

13.
Setting of wool fabrics during dyeing is an acute industrial dilemma facing most of wool dyers. Therefore, wool fabrics were dyed with acid, basic, as well as mono- and bi-functional reactive dyes in the presence of selected aliphatic and aromatic anti-setting agents; namely 3,3-dithiodipropionic acid (DTDPA), dithiodiglycolic acid (DTDGA), 5,5-dithio-bis(2-nitrobenzoic acid) (DTBNBA), dithiodibutyric acid (DTDBA), 2,2-dithiodisalicylic acid (DTDSA), and 6,6-dithiodinicotinic acid (DTDNA). The effect of incorporating the said thiol/disulfide-exchangers into the dyeing bath of wool on its dimensional stability was assessed. The influence of the proposed anti-setting agents on the dyeability of wool with the said reactive dyes was monitored. The alteration in the chemical composition of the dyed fabrics was monitored by determining their sulfur and nitrogen contents, cysteine content, and the solubility degree in alkaline solution. The used reagents were found to be effective in stabilization of wool during dyeing with reactive dyes to different extents depending on the nature of the used anti-setting agent. Limited change in the chemical composition of the dyed samples was monitored without affecting their dyeability with the said dyes. The mechanism of interaction of these reagents with wool fabrics during dyeing was proposed.  相似文献   

14.
The aim of this study is to examine the efficacy of the coconut fiber on the sound absorption and thermal insulation performance towards the composite nonwoven fabrics. The 2D polyester fiber and 12D fire retardant three-dimensional hollow crimp polyester fiber are individually mixed with 4D low-melting point polyester fiber (4DLMf) to produce 2D polyester nonwoven fabric (2D-PETF) and 12D polyester nonwoven fabric (12D-PETF) respectively. Subsequently, the coconut fiber (CF) is then laminated with the 2D-PETF and 12D-PETF to fabricate two types of PET/CF composite boards through the multiple needle-punching techniques. Accordingly, the sound absorption, thermal insulation, Limiting Oxygen Index and relative mechanical properties of the PET/CF composite boards are evaluated properly. The experimental results reveal that both types of PET/CF composite boards possess excellent thermal insulation performance and fire resistance property. Also, for both types of PET/CF composite boards, the average sound absorption coefficient increases with the increased amount of CF.  相似文献   

15.
Azohydroxypyridone disperse dyes containing a fluorosulfonyl group were dyed on PET/cotton blends and their dyeing and fastness properties were investigated. Specially, the azohydroxypyridone dyes containing a nitro group in place of the fluorosulfonyl group in the para position to azo group were synthesized in order to compare their dyeing and fastness properties on PET/cotton blends with those of fluorosulfonyl-substituted analogues. As these dyes can be alkali cleared in the same bath, a one-bath dyeing method was used and the results were compared with that of a conventional two-bath dyeing method. In particular, the cross-staining of cotton was studied in order to assess their suitability for the one-bath dyeing of PET/cotton blends.  相似文献   

16.
TiO2 contents in yarns can influence color yield so that dyeing quality of industrial poly ethylene terephthalate (PET) yarns can be improved through the adjustment of TiO2 contents. To evaluate the dyeing performance of color yield, the chips which included the different TiO2 contents of 330, 550, and 1,100 ppm respectively were used to produce the yarns of different TiO2 content by a spin-draft machine. The physical and structural properties of the yarns were measured to investigate effect of the TiO2 contents on them. Dye uptake and dyeing rate were also evaluated using a colorimeter to compare the yarns having different TiO2 contents. The experimental results showed that there were no appreciable variation in physical and structural properties among the yarn samples and no difference were observed among the dyed fabric samples with regard to dyeing uptake and dyeing rate. However, the color yield of dyed fabrics increased as TiO2 contents decreased in the yarns especially when the fabric samples were dyed to pale shade. The physical reasoning could be proposed on why the yarns having low TiO2 contents appeared to have higher color yield after dyeing.  相似文献   

17.
In order to get stronger interaction between dyes and PET fabrics, the ester groups were introduced into biomass alizarin. 1,2-diacetoxyanthraquinone was synthesized in high yield by treating biomass alizarin with different esterification conditions. The di-esterified alizarin was characterized and confirmed by FT-IR, HPLC-MS, and 1H-NMR. The build-up property and the dyeing performance of alizarin and esterified alizarin on PET were investigated, respectively. The results show that the optimum esterification condition is treating biomass alizarin with acetic anhydride and anhydrous sodium acetate at 60 °C for 1.5 h. The build-up property of esterified alizarin is better than that of the biomass alizarin. Moreover, samples dyed with esterified alizarin without auxiliary and mordant can exhibit good levelness and fastness property. It means that the esterified alizarin is supposed to perform environment friendly dyeing for PET fabric.  相似文献   

18.
3,3'-[1,2-ethanediylbis (oxy-2,1-ethanediyl)]-bis[1-methyl-imidazolium]-dibromide (DImDBr), a gemini imidazolium ionic liquid, was synthesized for the modification and dyeing promotion of poly(ethylene terephthalate) (PET) filaments. The results showed that parameters such as treatment temperature, time, and DImDBr concentration played a critical role on the tensile strength and tensile strength retention of modified PET filaments. The optimal treatment parameters of the PET filaments were 120 °C for 90 min with addition of 6 % ionic liquid. The influence of disperse dyeing parameters (temperature, time, and dye concentration) on DImDBr modified PET filaments were also studied. The disperse dyed PET filaments (after treatment with DImDBr) exhibited a desirable color strength (K/S value), excellent soap washing fastness, light fastness, and rubbing fastness. Furthermore, the native PET filaments and DImDBr treated PET filaments were characterized by FT-IR, XRD, DSC, TGA, and SEM. Density functional theory (DFT) simulation showed the presence of two kinds of hydrogen bonds (C-H/O and O-H/Br) and eight strong hydrogen bonds in the DImDBr/cis-PET monomers, while only three hydrogen bonds were found in the DImDBr/trans-PET monomers. The structural transformation from the crystalline phase to the amorphous phase (FT-IR, XRD, and DFT simulation) after DImDBr modification confirmed the dyeing promotion of PET filaments at lower temperature.  相似文献   

19.
A series of some novel hybrid materials prepared via a sol-gel process have been synthesized from methyltrimethoxysilane and titanium n-butoxide with heterocyclic thiazole azo dyes. Silica/titania/thiazole azo dyes hybrid materials were synthesized via a sol-gel process with a precursor system. Alternatively, the heterocyclic thiazole azo dyes were catalytically processed by means of hydrolysis-condensation reactions with appropriate amounts of a mixture of vinyltriethoxysilane, methyltrimethoxysilane, and titanium n-butoxide at a fixed molar ratio. The structure of these hybrid silica/titania/thiazole dye materials was characterized by Fourier transform infrared (FT-IR) analysis. The surface morphology of processed PET/PA6 nonwoven fabrics was evaluated by scanning electron microscopy (SEM). SEM images showed uniform dyeing, thereby confirming the reaction of the hybrid materials with the PET/PA6 nonwoven fabrics. The water contact angle, washing fastness, color evenness, air permeability, and weatherability characteristics of the as-prepared dyed PET/PA6 nonwoven fabrics were subsequently evaluated. Results revealed improved weatherability and good water repellency. Further, it was also revealed that dyeing and finishing could be achieved in a single bath, which is advantageous to reduce processing costs.  相似文献   

20.
The dyeing of cationized cotton fabric with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride 69% (Quat 188) using Cochineal dye was studied using both conventional and ultrasonic techniques. Factors affecting dye extraction and dye bath exhaustion were investigated. The results indicated that the dye extraction by ultrasound at 300 W was more effective at lower temperatures and times than conventional extraction. Also, the colour strength values obtained were found to be higher with ultrasound than with conventional techniques. However, the results showed that the fastness properties of the dyed fabrics with ultrasound are similar to those of the conventional dyed fabrics. The scanning electron microscope (SEM) and X-ray diffraction (XRD) were measured for cationized cotton fabrics dyed with both conventional and ultrasound techniques, thus showing the sonicator efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号