首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Porous cellulose acetate (CA) films by breath figure (BF) incorporated with capric acid as form-stable phase change materials (PCMs) were fabricated and characterized for storing and retrieving thermal energy. Effects of different solvents, CA concentration and film thickness on morphology, microstructure and thermal energy storage property of formstable PCMs were investigated by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer and differential scanning calorimetry (DSC), respectively. The results indicated that the prepared CA films were porous with DMF, acetone, and dichloromethane (DCM) as the solvents, and capric acid absorption capacity was as high as 86.9, 75.0 and 82.2 % with the specific surface area of 4.8, 2.8 and 1.8 m2/g. Moreover, porous CA film with 5 % CA concentration and 0.5 mm thickness prepared by using DMF as solvent had larger specific surface area and higher thermal energy storage properties. The fabricated form-stable PCMs could well maintain their PCM characteristics and demonstrated great temperature regulation ability and had potential applications in building energy conservation.  相似文献   

2.
In order to prepare antimicrobial regenerated cellulose fibers from blended spinning solutions, three non-water soluble polymeric guanidine derivatives, polyhexamethylene guanidine dodecyl benzene sulfonate (PHGDBS), polyhexamethylene guanidine dodecyl sulfate (PHGDSA), and polyhexamethylene guanidine laurylsulfonate (PHGLSO) were synthesized. And the chemical structure of these agents was verified by element analysis, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H-NMR). The antimicrobial activity of the three agents as well as cellulose films containing PHGDBS was also studied. The results showed that the compounds we prepared had strong properties against both bacterial and fungus, including Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Candida albicans, and Aspergillus niger. Moreover, it was found that three antimicrobial agents were insoluble in water but they can dissolve in solvents of cellulose such as 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) and N-methylmorpholine-N-oxide monohydrate (NMMO·H2O). Meanwhile, it was also proved that [BMIM]Cl had little effect on the antimicrobial properties of these agents. The cellulose films containing only 1.0 wt% PHGDBS showed 99.94 % and 96.95 % bacterial reduction rates for S. aureus and E. coli, respectively. Moreover, still over 91 % of bacterial reduction was maintained after 15 laundering cycles. It suggests that the three agents will be suitable to prepare antimicrobial regenerated cellulose fibers or films.  相似文献   

3.
This work is focused on the development of gel-like formulations, potentially applicable as biodegradable lubricating greases obtained by dispersing eucalyptus Kraft cellulose pulp, or its methylated derivative, in an ethyl cellulose/castor oil medium. The effects that concentration and weight ratio of the different cellulosic derivatives exert on the rheological properties, thermal resistance and mechanical stability of these oleogels were studied. The evolution of linear viscoelasticity functions with frequency was very similar to that found for traditional lubricating greases. In general, linear viscoelastic functions increase with Kraft cellulose pulp or methylcellulose concentrations and ethyl cellulose/Kraft cellulose pulp weight ratio. However, the relative elasticity of gel-like dispersions based on ethyl cellulose/Kraft cellulose pulp is not affected by the composition of these thickener blends, which allows the application of an empirical superposition method to obtain generalized master curves for describing the viscoelastic response of these formulations. On the contrary, the relative elasticity of methylcellulose-based gel-like dispersions depends on the composition of methylated cellulose pulp/ethyl cellulose blends. An Arrhenius-type equation can be used to quantify the linear viscoelastic functions thermal dependence of these gel-like dispersions. Moreover, formulations prepared using Kraft cellulose pulp/ethyl cellulose blends show appropriate mechanical stabilities to be used as bio-lubricating greases.  相似文献   

4.
A two step process was used for the modification of a cellulose/chitin mixed fibers: the first step was an alkali treatment with a NaOH solution (20 %), which was followed by the reaction with one of the reagents such as Nisopropylacrylamide, p-hydroxybenzoic acid, gallic acid, or eugenol. Both the samples activated with the alkali treatment and modified with chemicals were characterized by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermal analysis. Results revealed the morphological and structural changes of the fiber surface after the surface grafting, which significantly altered the cellulose/chitin mixed fiber properties. Thermal analysis results showed an increase in the thermal stability of the treated samples. Antioxidant activity of cellulose/chitin mixed fibers modified with phenolic compounds showed that the efficiency depends on the chemical nature of phenolic compound.  相似文献   

5.
The proximate composition of pulp, skin and seeds of prickly pear cactus (Opuntia ficus indica) was investigated and is reported on a dry weight basis. The most abundant component of the pulp and skin was ethanol-soluble carbohydrates. Pulp contained glucose (35%) and fructose (29%) while the skin contained essentially glucose (21%). Protein content was 5.1% (pulp), 8.3% (skin) and 11.8% (seeds). Starch was found in each of the three parts of the fruit. Pulp fibers were rich in pectin (14.4%), skin and seeds were rich in cellulose (29.1 and 45.1%, respectively). Skin was remarkable for its content of calcium (2.09%) and potassium (3.4%). Prickly pear is a neglected nutritional source which should be more widely used because of its potential nutrient contribution.  相似文献   

6.
This paper describes the synthesis of novel thermally stable and organo-soluble poly(ether-imide)s (PEIs) by polycondensation reaction of a new synthesized diamine with different dianhydrides. Bis [4-(4-amino phenoxy)-2,5-dimethyl phenyl] paratolyl methane (6) as a new compound containing ether groups and bulky moiety of triphenyl methane was successfully prepared by a three step reaction. First, the diol compound (3) was prepared by a solvent free reaction of 2,5-dimethylphenol (1) with 4-methylbenzaldehyde (2). Then, the diol (3) was converted to dinitro (5) by reaction with 4-fluoronitrobenzene. Finally, dinitro (5) was reducted through the reaction with Pd/C 10 %. The structure of diamine (6) and resulting poly(ether-imide)s (8a-d) confirmed by 1HNMR, FTIR spectroscopy and elemental analysis (CHN). Also the properties of poly(ether-imide)s (8a-d) were investigated by mean of thermal gravimetric analysis (TGA), differantial thermal gravimetric (DTG), differential scanning calorimetry (DSC), solubility tests and inherent viscosity. The resulted polymers show excellent thermal stability, good solubility in aprotic polar solvent and inherent viscosities between 0.37-0.50 dl/g.  相似文献   

7.
A series of flexible and tough polyimide (PI) microfibrous mats (PI-1~PI-4) have been prepared via the one-step electrospinning procedure with the organo-soluble PI resins as the starting materials. For this purpose, four PI resins were first synthesized by the chemical imidization reaction from 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and four aromatic diamines containing rigid-rod moieties in their molecular skeletons, respectively. The PI resins derived from 6FDA and aromatic diamines, including PI-1 from 2-(4-aminophenyl)-5-aminobenzimidazole (APBI), PI-2 from 2-(4-aminophenyl)-5-aminobenzoxazole (APBO), PI-3 from 4,4′-diaminobenzanilide (DABA), and PI-4 from 2-chloro-4,4-diaminobenzanilide (Cl-DABA) exhibited good solubility in polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). Flexible and tough microfibrous mats were successfully prepared by a one-step electrospinning procedure from the PI/DMAc solution (solid content: 15–20 wt%; absolute viscosity: 8000–10000 mPa·s). The derived PI mats exhibited good whiteness according to the CIE Lab measurements with W (whiteness) values as high as 94.31, L (lightness) values higher than 94.00, b* (yellowness) values as low as 2.98 and yellow indices (YI) as low as 4.87. In addition, the prepared PI mats exhibited excellent thermal and dimensional stability with the glass transition temperatures (Tg) higher than 345 °C and linear coefficients of thermal expansion (CTE) as low as 27.8×10-6 /K.  相似文献   

8.
In this study, a new approach consisting of chemical treatment steps followed by electrospinning process was applied to produce cellulose nanofibers from wheat straws. Wheat straws were initially pretreated by NaOH solution to open the complex structure of raw materials and remove non-cellulosic materials. Then, acid and alkali hydrolysis was separately performed to eliminate hemicellulose and soluble lignin. Also, bleaching processes were implemented to remove the insoluble lignin. Cellulose nanofibers were produced by electrospinning of various concentrations of cellulose in different solvents including sodium hydroxide/urea/thiourea, pure trifluoroacetic acid (TFA), and TFA/methylene chloride. Images obtained by Scanning Electron Microscope (SEM) showed long and uniform nanofibers produced from electrospinning of cellulose/TFA/methylene chloride solution. An epoxy based laminated composite was prepared by a lamina of cellulose microfiber and electrospun nanofiber mat using hand lay-up composite manufacturing method. The fracture surface of the epoxy nanocomposite was analyzed by SEM images. In addition, the mechanical properties of laminated epoxy composites were compared with pure epoxy by conducting tensile and impact tests. Tensile test results showed that the ultimate tensile strength, elongation, and modulus of laminated epoxy nanocomposites were significantly increased. Moreover, it was found that by adding a nanofiber lamina in the epoxy composite, the impact resistance was significantly improved as a result of crack growth prevention.  相似文献   

9.
Three low-cost types of complex solvents systems were carried out to dissolve cellulose, which were NaOH/urea/acetamide, NaOH/urea/tetraethyl ammonium chloride, and NaOH/acetamide/tetraethyl ammonium chloride. As an effective dissolution, NaOH/acetamide/tetraethyl ammonium chloride behaved as the optimum system, and the solubility was 89 % under the conditions of: NaOH 8 wt%, acetamide 10 wt%, tetraethyl ammonium chloride 6 wt%, distilled water 76 wt%, and freezing temperature ?5°C. With the analysis of Ubbelohde viscometer, infrared spectra (FTIR), wide-angle X-ray diffraction (XRD), and thermogravimetric analysis (TGA) for the original and regenerated cellulose samples, it was indicated that the viscosity-average molecular weight had no significant changes in the dissolution process, the crystalline structure of cellulose was converted to cellulose II from cellulose I in native cellulose, and the regenerated cellulose had a good thermal stability.  相似文献   

10.
Cellulose carbonate was prepared by the reaction of cellulose pulp and CO2 with treatment reagents, such as aqueous ZnCl2 (20–40 wt%) solution, acetone or ethyl acetate, at −5–0°C and 30–40 bar (CO2) for 2 hr. Among the treatment reagents, ethyl acetate was the most effective. Cellulose carbonate was dissolved in 10% sodium hydroxide solution containing zinc oxide up to 3 wt% at −5–0°C. Intrinsic viscosities of raw cellulose and cellulose carbonate were measured with an Ubbelohde viscometer using 0.5 M cupriethylenediamine hydroxide (cuen) as a solvent at 20°C according to ASTM D1795 method. The molecular weight of cellulose was rarely changed by carbonation. Solubility of cellulose carbonate was tested by optical microscopic observation, UV absorbance and viscosity measurement. Phase diagram of cellulose carbonate was obtained by combining the results of solubility evaluation. Maximum concentration of cellulose carbonate for soluble zone was increased with increasing zinc oxide content. Cellulose carbonate solution in good soluble zone was transparent and showed the lowest absorbance and the highest viscosity. The cellulose carbonate and its solution were stable in refrigerator (−5°C and atmospheric pressure).  相似文献   

11.
Chitosan cross-linked bamboo pulp fabric (CCBPF) was prepared by treating the oxidized bamboo pulp fabric with the chitosan aqueous acetic acid solution. FTIR spectroscopy was used to examine the chemical bonding between chitosan and oxidized bamboo pulp fabrics, X-ray diffraction and thermogravimetry were used to detect the cellulose structure. The impact of the periodate oxidation and chitosan treatment on the physical properties of bamboo pulp fabrics was evaluated by determining the aldehyde content, weight loss, mechanical strength, wrinkle recovery angle, and moisture regain of fabrics as well as chitosan content in the composite chitosan-bamboo pulp fabrics. Antibacterial activity of the CCBPF against Staphylococcus aureus and Escherichia coli was investigated in vitro experiments. The results indicated that the aldehyde groups in the periodate oxidized bamboo pulp cellulose were reacted with the amino groups of chitosan to form Schiff base, and the resultant CCBPF displayed good wrinkle recovery angle and moisture regain. In comparison with those of the oxidized bamboo pulp fabric, the CCBPF exhibited a lower thermal stability, the crystallinity decreased from 42.73 % to 39.15 %, the mechanical strength of CCBPF had no significant change, and the CCBPF showed excellent antibacterial activity against both types of bacteria which was durable till 50 washes.  相似文献   

12.
Bamboo cellulose (BC) is hydrophilic, biodegradable and inexhaustible. The bamboo cellulose membrane (BCM) is one of the best materials to replace petroleum-based polymer film for water purification. In this study, the N-methylmorpholine-N-oxide (NMMO) was used as a solvent to dissolve cellulose 6 wt.%, and regenerated cellulose membrane was prepared by phase inversion. A new kind of cellulose nanofiltration membrane (BC-NFM) was obtained by the hydrolysis and carboxymethylation of dense cellulose membrane (BCM). The modification was carried out through hydrolysis followed by carboxymethylation. The BC-NFM was characterized by XRD, FT-IR, SEM and thermal analysis. BC-NFM performance evaluation instrument were used to evaluate retention rate and water flux of nanofiltration membrane. BCM was immersed in 1 mol/l NaOH and 3 wt/v.% chloroacetic acid solution to obtain BC-NFM. By calculating, pore size of nanofiltration membrane was 0.63 nm. With a pressure of 0.5 MPa, the water flux of nanofiltration membrane for Na2SO4 solution was 10.32 l/m2h, and the retention rate was 68.4 %. The water flux for NaCl solution was 13.12 l/m2h, and the retention rate was 34.9 %. And the retention rates were 93.0 % and 98.9 % for methyl orange and methyl blue, respectively. The stability of the nanofiltration membrane was measured by the thermal analyzer, following the order of BC>BCM>BC-NFM. The prepared cellulose nanofiltration membrane exhibited good stability in water treatment process, and can be used to remove organic compounds in aqueous solutions.  相似文献   

13.
The chemical composition and the structure of macromolecular components of grape stalks from red grape pomaces have been evaluated. These are composed mainly of cellulose (30.3%), hemicelluloses (21.0%), lignin (17.4%), tannins (15.9%) and proteins (6.1%). Among hemicelluloses the xylan was the most abundant (ca. 12%). The parameters of cellulose unitary cell, average diameter of nanofibrils and the degree of crystallinity (75.4%) were assessed by X-ray scattering analysis. The xylan was partially acetylated glucuronoxylan (DS = 0.49) possessing the Xylp:MeGlcpA ratio of 25:1. The lignin of grape stalks was suggested to be of HGS type with H:G:S molar proportion of 3:71:26 as revealed by analysis of nitrobenzene oxidation products. Among alkali soluble condensed tannins procyanidins prevailed over prodelphinidins. The abnormal response of grape stalks to kraft pulping, leading to poorly delignified fibrous material, was attributed to a particular lignin structure and it structural association with other macromolecular components of grape stalks.  相似文献   

14.
The present study aimed to convert starch and potato peel waste to nanocrystals. Starch nanocrystals were prepared using two methodologies: direct acid hydrolysis and enzyme pretreatment followed by acid hydrolysis. Direct hydrolysis broke down the starch granules to nanocrystals in 12 days. Enzyme pretreatment with starch hydrolytic enzymes (α-amylase and amyloglucosidase) reduced the time for preparation of starch nanocrystals by 6 days. Starch nanocrystals of optimum size were obtained with both the treatments and the resultant size ranged from 10 to 50 nm. Nanocrystals were disk-like platelets in appearance. Cellulose nanocrystals were derived from cellulosic material in the potato peel. Cellulose was isolated from peel waste with alkali treatment. Further, cellulose nanocrystals from potato peel and cellulose microcrystalline were prepared by acid hydrolysis. Microscopic images revealed that the aqueous suspension of cellulose nanocrystals derived from potato peel were single rod shaped, whereas those derived from cellulose microcrystalline were rod-like nanoparticles, agglomerated in the form of bundles including some of the rods in single units (well separated). The size of potato peel nanocrystals ranged from 40 to 100 nm (length) and cellulose microcrystalline ranged from 4 to 20 nm (diameter) by 110 to 250, given 4 to 20 nm (length), respectively. As starch nanocrystals as well as cellulose nanocrystals are derived from biopolymer, both can be considered safe for humans and the environment. Moreover, the biodegradable nature of these nanocrystals makes them superior over metallic nanoparticles, particularly in the field of nanocomposites.  相似文献   

15.
This study is an attempt to investigate the feasibility of alkali pre-treatment to activate surface hydroxyl groups of cellulose fibers in order to enhance the deposition efficiency of silver nanoparticles (AgNPs) onto cotton fabrics. Cotton samples were pre-treated with various alkali solutions containing different earth metal hydroxides (LiOH, NaOH, and KOH). The as-prepared samples were then treated with aqueous silver nitrate followed by reduction treatment with aqueous ascorbic acid, which caused in situ formation of AgNPs on fiber surfaces. The surface structure of the fabrics was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis, and colorimetric data. The amount of silver was measured by using inductively coupled plasma-optical emission spectrometer (ICP-OES). Antimicrobial activity was measured against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. It was established that alkali pre-treatment had a substantial effect on the formation and adsorption of AgNPs on the fibers. Alkali pre-treated samples were homogeneously coated by AgNPs with high surface coverage. Alkali type had significant effect not only on the amount of AgNPs on the surface but also on its size. High antibacterial activity against both Gram-positive and Gram-negative strains was also demonstrated, even after 10 cycles washing.  相似文献   

16.
The regenerated cellulose films were prepared by dissolving cotton cellulose pulp directly in room temperature ionic liquid namely, 1-ethyl-3-methylimidazolium acetate at 80 °C, followed by washing/curing in different coagulants namely, methanol, deionized water, methanol-deionized water, and isopropyl alcohol-deionized water. It was found that the type of coagulants employed for curing the cellulose films has a significant influence on the amount of residual ionic liquid entrapped in the films. The amount of residual ionic liquids was 2.68, 1.01, 0.84, and 0.75 wt.% for the films cured with deionized water, isopropyl alcohol-deionized water, methanol, and methanol-deionized water, respectively. The DTG peaks of regenerated cellulose films showed two decomposition temperatures at 280 °C and 320 °C. Among all the cases studied, deionized water curing case showed the lowest decomposition temperature, attributed to entrapment of large residual ionic liquid in it. Electromechanical characteristic of the regenerated cellulose films was also investigated.  相似文献   

17.
Nannochloropsis oceanica can accumulate lipids and is a good source of polar lipids, which are emerging as new value-added compounds with high commercial value for the food, nutraceutical, and pharmaceutical industries. Some applications may limit the extraction solvents, such as food applications that require safe food-grade solvents, such as ethanol. However, the effect of using ethanol as an extraction solvent on the quality of the extracted polar lipidome, compared to other more traditional methods, is not yet well established. In this study, the polar lipid profile of N. oceanica extracts was obtained using different solvents, including chloroform/methanol (CM), dichloromethane/methanol (DM), dichloromethane/ethanol (DE), and ethanol (E), and evaluated by modern lipidomic methods using LC-MS/MS. Ultrasonic bath (E + USB)- and ultrasonic probe (E + USP)-assisted methodologies were implemented to increase the lipid extraction yields using ethanol. The polar lipid signature and antioxidant activity of DM, E + USB, and E + USP resemble conventional CM, demonstrating a similar extraction efficiency, while the DE and ethanol extracts were significantly different. Our results showed the impact of different extraction solvents in the polar lipid composition of the final extracts and demonstrated the feasibility of E + USB and E + USP as safe and food-grade sources of polar lipids, with the potential for high-added-value biotechnological applications.  相似文献   

18.
Cellulose was isolated from plant material for the first time in 1839 by the French chemist Anselme Payen. In recent years, due to the need in reduce the world’s environmental problems, there has been an increase in studies related to the physical and chemical factors of cellulose. It is important to emphasize that experiments and studies with a cellulose occur individually, because of the variation in the amount of cellulose and the extraction method that differs from plant to plant. In the present study, we determined the optimal conditions for cellulose extraction of jute fiber, using the response surface method. The Box-Behnken Design (BBD) was used statistically evaluate the ratio effects of sodium hydroxide (NaOH) and sodium hypochlorite (NaClO), temperature and extraction time in the process used. The analysis of the results showed a significant variable in the linear and quadratic terms of the temperature and also a significant level of interaction in the effect between the variables of temperature and time. Besides this, the BBD used for the analysis of the extraction yield, resulted in a polynomial regression of second order, in complete agreement with experimental results, with R2=0.9627 (p<0.05). The optimal condition was obtained in a ratio of 1.3 at 45 °C for 2 h. Under the best possible conditions, the obtained experimental value is in accordance with the value predicted by the model, thus indicating a model combination and success to optimize the extraction conditions of the jute fiber pulp in the response surface methodology.  相似文献   

19.
Cellulose fibres and cellulose nanocrystals were extracted from rice husk. Fibres were obtained by submitting the industrial rice crop to alkali (NaOH) and bleaching treatments. Nanocrystals were extracted from these fibres using sulphuric acid (H2SO4) hydrolysis treatment. The material obtained after each stage of the treatments was carefully characterized and its chemical composition was determined. Morphological investigation was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy showed the progressive removal of non-cellulosic constituents. X-ray diffraction (XRD) analysis revealed that the crystallinity increased with successive treatments. The thermal stability of the rice husk fibres and cellulose nanocrystals was also investigated using thermogravimetric analysis (TGA).  相似文献   

20.
Silk mask paper with different adsorbability was prepared by changing the beating degree of silk pulp and the basis weight of silk paper, and photocatalytic silk mask paper was prepared by loading nanometer titanium dioxide (nano-TiO2) on the silk mask paper, then degradation of formaldehyde by silk mask paper loading nano-TiO2 under daylight lamps and ultraviolet lamps were investigated, respectively. Results showed that silk mask paper could adsorb formaldehyde and had higher adsorption efficiency in the initial stage, and the adsorption/desorption equilibrium could be basically achieved in 60 minutes. The adsorption capacity of silk mask paper made from silk pulp with beating degree of 45 oSR was relatively low, and it increased with the increase of beating degree, but there was little change in adsorption when the beating degree of silk pulp exceeded 65 oSR. Under daylight lamps, 26.61 %, 31.42 % and 38.21 % of formaldehyde could be degraded in 180 minutes by silk mask paper loading 1 wt%, 3 wt% and 5 wt% nano-TiO2, respectively. However, under ultraviolet (UV) lamps, 46.23 %, 55.47 % and 66.38 % of formaldehyde could be degraded within the same time, respectively. More formaldehyde could be degraded by photocatalytic silk mask paper under UV lamps than under daylight lamps, and the more the load of nano-TiO2 on the silk mask paper, the higher the degradation rate of formaldehyde within the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号