首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionalization of cellulosic nanofibers was established to develop antibacterial bandages. The functionalization was conducted through preparation of carboxymethyl cellulose (CMC) containing different metal nanoparticles (MNPs) such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs) and zinc nanoparticles (ZnNPs). Fourier Transform Infrared spectroscopy was used to characterize CMC containing MNPs and scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX) to study the surface morphology of CMC with and without MNPs. Furthermore, back scattering electron detector was used to show the position of metal nanoparticles on the microcrystalline CMC. In addition, UV-visible spectroscopy was used to confirm MNPs formation. Nanofiber mats of CMC containing MNPs were synthesized using electrospinning technique. Surface morphology of electrospun CMC containing MNPs was characterized using SEM. The obtained data revealed that elctrospun CMC nanofibers containing MNPs were smooth and uniformly distributed without bead formation. The average fiber diameters were in the range of 150 to 200 nm and the presence of MNPs in the nanofiber did not affect the size of the electrospun nanofiber diameter. Transmission electron microscopy (TEM) images displayed that MNPs were existed inside and over the surface of the electrospun nanofibers without any agglomeration. The average particle diameters of MNPs were 29-39 nm for ZnNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Moreover, Water uptake of electrospun nanofiber mats and the release of MNPs from nanofibers were evaluated. Nevertheless, electrospun CMC nanofibers containing MNPs had an excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus.  相似文献   

2.
This article presents a non-complex method of producing biodegradable polylactide (PLA) fiber mats containing Al2O3-Ag nanopowder which display strong antimicrobial activities against E.coli and S. lutea. The method of preparing fiber mats was electrospinning. This article also gathers the results of the analysis of morphology and mechanical properties of both the Al2O3 nanopowder and the PLA-Al2O3/Ag fiber mats. The examination of the Al2O3 nanopowder was conducted with the use of a scanning electron microscope (SEM) and surface area measurements (BET). The morphology of the PLAAl2O3/Ag fiber mats was examined using SEM and TEM. The results of the study confirm the great potential of the electrospun PLA-Al2O3/Ag fiber mats for antibacterial application.  相似文献   

3.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

4.
Synthesis of biocompatible polymer nanofibers is valuable, due to their use as a cover for burns and as a replacement for bandage because of their antimicrobial properties. In this study, electrospinning of chitosan(Ch) and nanofibers synthesis with antibacterial properties was investigated. Nanofibers with antibacterial properties were synthesized by electrospun of Ch/poly(L-lactide)(PLA)/Imipenem(Imi) polymer solution. The results showed that the optimized ratio of Ch/PLA polymer solution was ratio of 50:50 and Ch 2 wt% and PLA 10 wt% polymer solution was the best weight percentage for nanofiber preparation. Also, the average diameter of Ch/PLA/Imi nanofibers was 143 nm and measured with ImageJ software. Afterwards, the antibacterial properties of Imi as additives (with different percentages) was studied in the polymer solution. The scanning electron microscopy (SEM) images and antibacterial tests were showed that the electrospun of Ch/PLA/Imi polymeric nanofibers were effective against Gram negative bacteria Escherichia coli (E. coli) and inhibited growth of E. coli. The growth and viability percentage of fibroblast cells with nanofibers in αMEM culture are at desirable levels after 6 days.  相似文献   

5.
Well-aligned PMIA nanofiber mats were fabricated by electrospinning and then hot-stretching along the fiber axis was used to improve the mechanical properties of nanofibers in this paper. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to characterize the morphology and properties of nanofibers. The results showed that the nanofibers became thinner and better alignment than the as-spun nanofibers after hotstretching, and the average diameter of the nanofibers decreased with the increasing of the tensile force. In the same time, hotstretching improved the crystallinity and T g of the as-spun PMIA nanofibers. The tensile strength and modulus of the hotstretched nanofiber mats peaked at ca.50 % and ca.196 % respectively at the tensile force of 12 N compared with the as-spun nanofiber mats.  相似文献   

6.
In this work, the pure polyacrylonitrile (PAN) nanofibers and PAN/FeCl3 composite nanofibers were prepared by an electrospinning process. Electrospinning solution properties including viscosity, surface tension and conductivity, had been measured and combined with the results of Scanning electron microscopy (SEM), Atomic force microscope (AFM) and Micro Combustion Calorimeter (MCC) to investigate the effects of FeCl3 on the structure, surface morphology and combustion property of electrospun PAN nanofibers, respectively. It was found from SEM images that the diameters of composite nanofibers were decreased with the addition of FeCl3, which was attributed predominantly to the increased conductivity of the polymer solutions compared to viscosity and surface tension. The AFM analyses revealed that the surface morphology of electrospun nanofibers changed from smooth and wrinkle-like structure (without FeCl3) to rough and ridge-like structure (with FeCl3). The results characterized by MCC showed that the loading of FeCl3 decreased the heat release rate (HRR) and improved the combustion property of composite nanofibers.  相似文献   

7.
By hydrothermal treatment, α-Fe2O3 with club and date pit-like structures were successfully prepared using amphiphilic diblock copolymer poly(styrene-b-acrylic acid) (PS-b-PAA) micelle as soft template. The particles were characterized by fourier transform infrared (FTIR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The influence of factors on the morphologies of α-Fe2O3 particles, such as the compositions and concentration of copolymer, and existence of citric acid, has been discussed.  相似文献   

8.
Titanium dioxide (TiO2) is one of the excellent photocatalysts used for degradation of environmetal pollutants. In this work, 2.5, 5.0 and 7.5 wt.% of silver (Ag)-loaded TiO2 nanofibers of mean size 52–134 nm were synthesized by electrospinning method. These electrospun nanofibers were calcined at 500 °C to enable the transformation of Rutile (R) phase to Anatase (A), elimination of reaction moieties from the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading on the morphology, crystal structure, phase transformation, and band gap of these electrospun nanofibers have been characterized by scannining electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), raman spectroscopy and UV-visible spectroscopy. These nanofibers exhibited a red-shift in the absorbance edge and a significant enhancement of light absorption in the wavelength range of 250–550 nm. These electrospun nanofibers were investigated for photodecomposition of methylene blue (MB), and photocatalytic decolorization rates were determined by pseudo-first-order equation. The rate constants for the pure and those of 2.5, 5.0, and 7.5 wt% Agloaded TiO2 nanofibers were computed to be 0.1439 min-1, 0.1608 min-1, 0.1876 min-1, and 0.2251 min-1 respectively.  相似文献   

9.
By combining the organic-inorganic hybridization, wet phase inversion, and electrospinning, novel electrospun polyurethane (PU) membranes with in-situ generated nano-TiO2 were prepared, which satisfied the requirements of an ideal wound dressing. The morphology of the PU-TiO2 mats and the cross sectional morphologies of the membranes were characterized by a scanning electron microscopy (SEM). The average diameter of the individual fibers obtained from the solutions was 341±12 nm. SEM micrographs with higher magnification further showed that the in-situ generated TiO2 particles were well-separated and dispersed homogeneously in the membranes. The average sizes of TiO2 particles were increased from 31 to 57 nm, with the increase of nano-TiO2 concentration. The water vapor transmission rates (WVTRs) of the membranes were in the range of 373.55–3121.86 g/m2·d and decreased gradually with the increase of nano-TiO2 concentration. The water absorption of various PU membranes was in the range of 210.90–397.98 % which was enough to prevent wound beds from exudate accumulation. Shake flask testing indicated that the PU membrane exhibited antibacterial efficiency against Pseudomonas aeruginosa (Ps. aeruginosa) and Staphylococcus aureus (S. aureus) due to in-situ generated of nano-TiO2. These electrospun nanofibrous membranes also had no toxic effect and showed good and immediate adherence to L929 cells.  相似文献   

10.
Meta-aramid fibers were dissolved in four different solvent systems (DMAc, DMF, NMP, and DMSO) and two kinds of salts (LiCl and CaCl2) were also introduced in this paper. Meta-aramid fibers had a limited solubility in above four solvents, however, fast dissolution could be obtained after adding a certain amount of salt (LiCl or CaCl2). The concentration of salts was found to be an important role in affecting meltaging, dissolving time and viscosity of electrospun solution. Electrospun meta-aramid nanofibers mats were successfully prepared. A series of characterizations had been carried out by using SEM. The results shows the diameter of meta-aramid nanofibers ranging from 100 to 500 nm. The average diameter of the nanofibers increased with the concentration of meta-aramid fiber solution and the salt solution. A preferable morphology of meta-aramid nanofibers could be obtained under LiCl/DMAc system. While the electrospun nanofibers made in CaCl2/DMAc solvent system had a better performance in thermal stability than that prepared in LiCl/DMAc system. Among the four kinds of prepared nanofibers, the nanofibersmat electrospun in LiCl/DMAc system with a concentration of meta-aramid solution at 11 wt% exhibit the best mechanical properties.  相似文献   

11.
Silver nanoparticles imbedded in polyacrylonitrile (PAN) nanofibers and converted into carbon nanofibers by calcination was obtained in a simple three-step process. The first step involves conversion of silver ions to metallic silver nanoparticles, through reduction of silver nitrate with dilute solution of PAN. The second step involves electrospinning of viscous PAN solution containing silver nanoparticles, thus obtaining PAN nanofibers containing silver nanoparticles. The third step was converting PAN/Ag composites into carbon nanofibers containing silver nanoparticles. Scanning electron microscopy (SEM) revealed that the diameter of the nanofibers ranged between 200 and 800 nm. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) showed silver nanoparticles dispersed on the surface of the carbon nanofibers. The obtained fiber was fully characterized by measuring and comparing the FTIR spectra and thermogravimetric analysis (TGA) diagrams of PAN nanofiber with and without imbedded silver nanoparticles, in order to show the effect of silver nanoparticles on the electrospun fiber properties. The obtained carbon/Ag composites were tested as gram-class-independent antibacterial agent. The electrosorption of different salt solutions with the fabricated carbon/Ag composite film electrodes was studied.  相似文献   

12.
Gelatin is one of the most promising biomaterials due to its excellent biocompatibility and biodegradability. In order to improve the antimicrobial activity of gelatin, gelatin nanofibers containing silver nanoparticles were prepared by electrospinning gelatin/AgNO3/formic acid system, followed by UV irradiation. They were characterized by UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. It was observed that the silver nanoparticles, which presented quasi-sphere shaped and 9–20 nm average diameters, were generated on the surface of the gelatin nanofibers. The size of the silver particles can be adjusted by changing the content of AgNO3. With increasing the amount of AgNO3, the average diameters of fibers decreased. The gelatin-Ag nanocomposites were found effective against Staphylococcus aureus and Pseudomonas aeruginosa. From these results, it is expected that the electrospun antimicrobial gelatin nanofiber mat can be used as an excellent wound dressing.  相似文献   

13.
PLA fibrous mats containing nanoalumina filler were fabricated by electrospinning method. The morphology of the mats was characterized by SEM, and TEM. In vitro biocompatibility of the electrospun fiber mats was also evaluated. Indirect cytotoxicity evaluation of the fiber mats with human skin fibroblasts revealed that the materials were non-toxic to living cells. The cells cultured on the fibrous mat exhibited normal cells shapes and were integrated well with surrounding fibers. The obtained results confirmed the potential for use of the electrosupun PLA/Al2O3 fiber mats for biomedical application.  相似文献   

14.
In the present study, we introduce poly(caprolactone) (PCL) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals has been employed to synthesize HAp NPs through calcination of bovine bones. Typically, a colloidal gel consisting of PCL/HAp has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were characterized for FE-SEM, TEM, XRD and FTIR which confirmed nanofibers were well-oriented and had good dispersion of HAp NPs. Parameters affecting the utilization of the prepared nanofibers in various nano-biotechnological fields have been studied; for instance, the bioactivity of the produced nanofiber mats was investigated while incubated with stimulated body fluid (SBF). The results from incubation of nanofibers in SBF indicate that incorporation of HAp strongly activates precipitation of the apatite-like materials because the HAp NPs act as seeds that accelerate crystallization of the biological HAp from the utilized SBF.  相似文献   

15.
Titanium dioxide/polyvinylidene fluoride (TiO2/PVDF) composite was prepared by electrospinning process to enhance the dielectric properties for application as a gate insulator in organic thin-film transistors (OTFTs). Scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction were employed to characterize the as-prepared samples, and then their dielectric constants were investigated by impedance analysis. The impedance results show that the dielectric constant of the electrospun TiO2/PVDF nanofibers is higher than those of other samples, demonstrating that electrospun TiO2/PVDF composite can be a proper candidate for gate insulators in OTFTs.  相似文献   

16.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

17.
The tussah silk fibroin (TSF) nanofibers with 611 nm diameters were prepared by electrospinning with the solvent hexafluoroisopropanol (HFIP). And then, the TSF nanofibers were crosslinked by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide (EDC/NHS) crosslinking agent. The morphology and microstructure of the crosslinked TSF nanofibers were characterized by scanning electron microscopy (SEM), Fourier transforms infrared analysis (FTIR), X-ray diffraction, Instron electronic strength tester, and cell culture. After treatment with EDC/NHS crosslinking agent, the TSF nanofibers swelled and its average diameter increased from 611 to 841 nm. FTIR and X-ray diffraction results demonstrated that random coil, ??-helix, and ??-sheet co-existed in the TSF nanofiber mats, but the content of ??-sheet increased from 25.26 to 45.34 %, and the random coil content decreased from 32.47 to 24.94 %. Compared with the electrospun pure TSF nanofiber mats, the crosslinked TSF nanofiber mats exhibited a lower breaking tenacity and initial modulus, which were 5.51 MPa and 9.86 MPa, respectively. At the same time, the extension at break of the crosslinked TSF nanofiber achieved 109.38 %. In cell culture evaluation, the crosslinked TSF nanofibers were found to support cell adhesion and spreading fibroblast L373 and bone marrow mesenchymal stem cells (BMSCs), which had potential utility in a range of tissue engineering.  相似文献   

18.
Electrically conductive nanofibers were fabricated from elastic polyurethane (PU) and PU/multiwalled carbon nanotubes (MWCNTs) nanocomposite by electrospinning method. The nanocomposites were electrospun at various MWCNTs loading. Electron microscopy was used to investigate nanofibers morphology and dispersion of MWCNTs in the electrospun nanofibers. The results showed that the presence of the MWCNTs promoted the creation of fibrous structures in comparison with the PU without MWCNTs. On the other hand, increasing the MWCNTs content resulted in a slight increase in the average fiber diameter. TEM micrographs and mechanical properties of the electrospun mats indicated that the homogeneous dispersion of MWCNTs throughout PU matrix is responsible for the considerable enhancement of mechanical properties of the nanofiber mats. Electrical behavior of the conductive mats was also studied, in view of possible sensor applications. Cyclic experiments were conducted to establish whether the electrical properties were reversible, which is an important requirement for sensor materials.  相似文献   

19.
Lotus-leaf-like nanofibrous surfaces were prepared by electrospinning hydrophobic poly(vinylidene fluoride) (PVDF) from a mixed solvent of N,N-dimethylformamide (DMF) and acetone. PVDF fibrous mats with a bead-on-string morphology were generated because the nonpolar acetone decresed the viscosity of the PVDF solution and promoted the evaporation of the solution during electrospinning process. The morphology of the nanofibirous surface was examined by scanning electron microscopy. Micron-sized beads were introduced to the electrospun PVDF mats, resulting in enhanced hydrophobicity of the electrospun mats. The addition of a small amount (0.05 vol%) of acetic acid to the polymer solution effectively improved the bead-on-string morphology of the electrospun mats, and led to a higher water contact angle (WCA). The electrospun PVDF fibrous mat showed a maximum WCA of 148.5° due to the appropriate surface roughness.  相似文献   

20.
In the present study, nano-sized Pt/WO3-carbon nanofiber, Pt-Pd/WO3-carbon nanofiber and Pt-Ru/WO3-carbon nanofiber electrocatalysts were synthesized and the performance of prepared catalysts were compared with catalysts coated carbon black for the oxygen reduction reaction (ORR). The morphology and structure of prepared catalysts were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The SEM images showed that the catalyst nanoparticles were well dispersed on the both carbon nanofiber and carbon black supports. Electrochemical measurements including linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) tests were applied to investigate the potential of the fabricated electrodes on the ORR. The results demonstrated that the catalysts based on carbon nanofibers showed a significant increase of activity toward the ORR. Also, the Pt/Pd coated carbon nanofibrous electrode showed the highest electrochemical activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号