首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

2.
Polyglycolic acid-poly lactic glycolic acid (PGA-PLGA) electrospun nanofibers containing silver nanoparticles have been produced and twisted into the nanofibrous yarn. The morphology of nanofibers and produced yarns, as well as the mechanical properties of the yarns, were investigated. Furthermore, in vitro antibacterial properties and in vitro degradation behavior of yarns containing various silver nanoparticles were studied. SEM images confirmed that the addition of the silver nanoparticles into the polymer solution increases the fiber diameters. The result of the mechanical test of the yarns alone and used in two different forms of the knots was measured and results showed that the strength of the yarns without the knot was significantly more than that of others. The biodegradability test showed that the mechanical properties and the weight of the yarns were quickly reduced after subjecting to in vitro condition. The result of the antibacterial test indicated that the nanofiber yarns containing %3 silver nanoparticles were the most appropriate sample with a considerably antibacterial activity against both gram-positive bacterium Staphylococcus aureus and gram-negative bacterium Escherichia Coli with inhibition zones of 8.1 and 9.5 mm, respectively; which demonstrated that silver nanoparticles retained their effectiveness after the electrospinning process. Therefore the nanofibrous yarns containing silver nanoparticles could be successfully produced by the electrospinning process with the proper antibacterial property as a candidate for the surgical sutures.  相似文献   

3.
Silver nanoparticles imbedded in polyacrylonitrile (PAN) nanofibers and converted into carbon nanofibers by calcination was obtained in a simple three-step process. The first step involves conversion of silver ions to metallic silver nanoparticles, through reduction of silver nitrate with dilute solution of PAN. The second step involves electrospinning of viscous PAN solution containing silver nanoparticles, thus obtaining PAN nanofibers containing silver nanoparticles. The third step was converting PAN/Ag composites into carbon nanofibers containing silver nanoparticles. Scanning electron microscopy (SEM) revealed that the diameter of the nanofibers ranged between 200 and 800 nm. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) showed silver nanoparticles dispersed on the surface of the carbon nanofibers. The obtained fiber was fully characterized by measuring and comparing the FTIR spectra and thermogravimetric analysis (TGA) diagrams of PAN nanofiber with and without imbedded silver nanoparticles, in order to show the effect of silver nanoparticles on the electrospun fiber properties. The obtained carbon/Ag composites were tested as gram-class-independent antibacterial agent. The electrosorption of different salt solutions with the fabricated carbon/Ag composite film electrodes was studied.  相似文献   

4.
The tussah silk fibroin (TSF) nanofibers with 611 nm diameters were prepared by electrospinning with the solvent hexafluoroisopropanol (HFIP). And then, the TSF nanofibers were crosslinked by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide (EDC/NHS) crosslinking agent. The morphology and microstructure of the crosslinked TSF nanofibers were characterized by scanning electron microscopy (SEM), Fourier transforms infrared analysis (FTIR), X-ray diffraction, Instron electronic strength tester, and cell culture. After treatment with EDC/NHS crosslinking agent, the TSF nanofibers swelled and its average diameter increased from 611 to 841 nm. FTIR and X-ray diffraction results demonstrated that random coil, ??-helix, and ??-sheet co-existed in the TSF nanofiber mats, but the content of ??-sheet increased from 25.26 to 45.34 %, and the random coil content decreased from 32.47 to 24.94 %. Compared with the electrospun pure TSF nanofiber mats, the crosslinked TSF nanofiber mats exhibited a lower breaking tenacity and initial modulus, which were 5.51 MPa and 9.86 MPa, respectively. At the same time, the extension at break of the crosslinked TSF nanofiber achieved 109.38 %. In cell culture evaluation, the crosslinked TSF nanofibers were found to support cell adhesion and spreading fibroblast L373 and bone marrow mesenchymal stem cells (BMSCs), which had potential utility in a range of tissue engineering.  相似文献   

5.
In this study, we developed optimal multifunctional electrospun wound dressings possessing an antibacterial activity and rich in iron, a vital trace element for cell growth. Therefore, synthetic ferric oxide nanoparticles (α-Fe2O3 NPs) were ultrasonically dispersed into preheated gelatin-glycerol solution. A variety of techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA), in-vitro swelling-degradation studies and antibacterial tests) were used to characterize the electrospun mats. The results highlight that α-Fe2O3 NPs could be successfully dispersed into the electrospun gelatin nanofibers. The electrospun ferric oxide-gelatin-glycerol nanofibrous mats revealed free beads nanofibers with appropriated swelling-degradation behavior. It was observed that addition of α-Fe2O3 NPs enhanced the antibacterial activity of electrospun mats against positive and negative bacteria.  相似文献   

6.
Easy fabrication, porosity, good mechanical properties, and composition controllable of the electrospun nanofiber mat make this material a promising candidate for wound dressing applications. In the present study, nylon6/gelatin electrospun nanofiber mats are introduced as novel wound dressing materials. The introduced mats were synthesized by electrospinning of nylon6 and gelatin mixtures, three mats containing different gelatin content were prepared; 10, 20 and 30 wt%. Interestingly, addition of the gelatin did not affect the mechanical properties of the nylon 6, moreover the mat containing 10 wt% gelatin revealed higher mechanical properties due to formation of spider-net like structure from very thin nanofibers (~10 nm diameter) bonding the main nanofibers. Biologically study indicates that gelatin incorporation strongly enhances the bioactivity performance as increasing the gelatin content linearly increases the MC3T3-E1 cell attachment. Overall, the obtained results recommend exploiting the introduced mats as wound dressing material.  相似文献   

7.
Silica nanofibers containing silver nanoparticles were successfully prepared using sol-gel chemistry and electro-spinning technique. Solution of tetraethly orthosilicate in ethanol containing silver nitrate was aged to have sufficient viscosity and electrospun to form nanofibers. Upon thermal treatment, the gelation reaction between silanols was completed in the prepared silica nanofibers, and at the same time, silver ions in the nanofiber changed to metallic silver or silver oxides. The reduction of silver ions could be also achieved by UV irradiation, and the generated silver nanoparticles were present preferentially on the surface of the silica nanofibers. On testing release behavior of silver ions, it was found that most of silver remained in the silica nanofiber. The silica nanofibers containing silver nanoparticles exhibited excellent antibacterial and deodorant properties.  相似文献   

8.
Synthesis of biocompatible polymer nanofibers is valuable, due to their use as a cover for burns and as a replacement for bandage because of their antimicrobial properties. In this study, electrospinning of chitosan(Ch) and nanofibers synthesis with antibacterial properties was investigated. Nanofibers with antibacterial properties were synthesized by electrospun of Ch/poly(L-lactide)(PLA)/Imipenem(Imi) polymer solution. The results showed that the optimized ratio of Ch/PLA polymer solution was ratio of 50:50 and Ch 2 wt% and PLA 10 wt% polymer solution was the best weight percentage for nanofiber preparation. Also, the average diameter of Ch/PLA/Imi nanofibers was 143 nm and measured with ImageJ software. Afterwards, the antibacterial properties of Imi as additives (with different percentages) was studied in the polymer solution. The scanning electron microscopy (SEM) images and antibacterial tests were showed that the electrospun of Ch/PLA/Imi polymeric nanofibers were effective against Gram negative bacteria Escherichia coli (E. coli) and inhibited growth of E. coli. The growth and viability percentage of fibroblast cells with nanofibers in αMEM culture are at desirable levels after 6 days.  相似文献   

9.
Gelatin is one of the most promising biomaterials due to its excellent biocompatibility and biodegradability. In order to improve the antimicrobial activity of gelatin, gelatin nanofibers containing silver nanoparticles were prepared by electrospinning gelatin/AgNO3/formic acid system, followed by UV irradiation. They were characterized by UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. It was observed that the silver nanoparticles, which presented quasi-sphere shaped and 9–20 nm average diameters, were generated on the surface of the gelatin nanofibers. The size of the silver particles can be adjusted by changing the content of AgNO3. With increasing the amount of AgNO3, the average diameters of fibers decreased. The gelatin-Ag nanocomposites were found effective against Staphylococcus aureus and Pseudomonas aeruginosa. From these results, it is expected that the electrospun antimicrobial gelatin nanofiber mat can be used as an excellent wound dressing.  相似文献   

10.
Cellulose nanowhisker (CNW) reinforced electrospun Bombyx mori silk fibroin (SF) nanofibers were fabricated. The morphology, structure, and mechanical properties of nanofibers were investigated by FE-SEM, TEM, FTIR, and tensile testing. It was found that the nanofiber size decreased obviously from 250 nm in the unreinforced mat to 77–160 nm in the CNW reinforced mats depending on the CNW content due to the increased conductivity of spinning dope. In the reinforced mats, the CNWs were embedded in the SF matrix separated from each other, and aligned along the fiber axis. There was a positive correlation between the CNW content and the tensile strength and Young’s modulus of reinforced mats. However the strain at break dropped gradually with the increase of CNW. When the CNW content was 2 w/w%, the tensile strength and Young’s modulus of reinforced SF nanofiber mats were about 2 times higher than those of unreinforced mat.  相似文献   

11.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

12.
Electrically conductive nanofibers were fabricated from elastic polyurethane (PU) and PU/multiwalled carbon nanotubes (MWCNTs) nanocomposite by electrospinning method. The nanocomposites were electrospun at various MWCNTs loading. Electron microscopy was used to investigate nanofibers morphology and dispersion of MWCNTs in the electrospun nanofibers. The results showed that the presence of the MWCNTs promoted the creation of fibrous structures in comparison with the PU without MWCNTs. On the other hand, increasing the MWCNTs content resulted in a slight increase in the average fiber diameter. TEM micrographs and mechanical properties of the electrospun mats indicated that the homogeneous dispersion of MWCNTs throughout PU matrix is responsible for the considerable enhancement of mechanical properties of the nanofiber mats. Electrical behavior of the conductive mats was also studied, in view of possible sensor applications. Cyclic experiments were conducted to establish whether the electrical properties were reversible, which is an important requirement for sensor materials.  相似文献   

13.
A series of blend nanofiber mats comprising poly(vinyl alcohol) (PVA) and polyurethane (PU) were prepared by dual-jet electrospinning in various parameters. Orthogonal experimental design was used to investigate how those parameters affected on fiber diameters and fiber diameter distribution. Altogether three parameters having three levels each were chosen for this study. The chosen parameters were tip-to-collector distance (TCD), voltage and tip-to-tip distance (TTD). Fiber diameters, thermal properties, mechanical properties and hydrophilicity of the blend nanofiber mats were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile test, contact angle and water absorption test, respectively. The results showed that the optimum conditions for PVA/PU blend nanofiber mats fabricated by dual-jet electrospinning were TCD of 20 cm, voltage of 18 kV and TTD of 4 cm. Besides, the thermal stability of PVA/PU blend nanofiber mats had been improved compared with pure nanofibers. Furthermore, the elongation and tensile strength of the blend nanofiber mats were significantly increased compared with pure PVA and pure PU, respectively. And the blend nanofiber mats exhibited well hydrophilicity.  相似文献   

14.
Well-aligned PMIA nanofiber mats were fabricated by electrospinning and then hot-stretching along the fiber axis was used to improve the mechanical properties of nanofibers in this paper. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to characterize the morphology and properties of nanofibers. The results showed that the nanofibers became thinner and better alignment than the as-spun nanofibers after hotstretching, and the average diameter of the nanofibers decreased with the increasing of the tensile force. In the same time, hotstretching improved the crystallinity and T g of the as-spun PMIA nanofibers. The tensile strength and modulus of the hotstretched nanofiber mats peaked at ca.50 % and ca.196 % respectively at the tensile force of 12 N compared with the as-spun nanofiber mats.  相似文献   

15.
As a kind of high-performance fibers, PTFE fiber has been widely used in many fields because of its unique characteristics. In this study, the poly(tetrafloroethylene) (PTFE) nanofibers manufactured by electrospinning method was reported. The gel-spinning solution of poly(tetrafluoroethylene)/poly(vinyl alcohol)/boric acid (PTFE/PVA/BA), which was prepared by the gel process of the mixture of PTFE, PVA, BA and redistilled water, was electrospun to form PTFE/PVA/BA composite nanofibers. After calcinating, the PTFE nanofibers with diameters of 200 nm to 1000 nm were obtained. The fibers before and after calcinating were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), FT-IR spectrum analysis and X-ray photoelectron spectroscopy (XPS), respectively, and the mechanical and hydrophobic properties of the fibers were also investigated. The results showed that the PTFE nanofiber membranes could be electrospun effectively used the gel-spinning solution of PTFE/PVA/BA, and may realize the applications in the fields of high-temperature filtration, catalyst supports, battery separator and so on.  相似文献   

16.
In the present study, we introduce poly(caprolactone) (PCL) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals has been employed to synthesize HAp NPs through calcination of bovine bones. Typically, a colloidal gel consisting of PCL/HAp has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were characterized for FE-SEM, TEM, XRD and FTIR which confirmed nanofibers were well-oriented and had good dispersion of HAp NPs. Parameters affecting the utilization of the prepared nanofibers in various nano-biotechnological fields have been studied; for instance, the bioactivity of the produced nanofiber mats was investigated while incubated with stimulated body fluid (SBF). The results from incubation of nanofibers in SBF indicate that incorporation of HAp strongly activates precipitation of the apatite-like materials because the HAp NPs act as seeds that accelerate crystallization of the biological HAp from the utilized SBF.  相似文献   

17.
This paper reports on the preparation and characterization of nanofibers and nanofiber/film composites fabricated by electrospinning and dip-coating. The polymers in this study consist of polyurethane, nylon-6, and silicone. Scanning electron microscopy (SEM), fiber distribution, X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR) and tensile tests were conducted. The electrospun nylon-6 nanofiber/dip-coated silicone film (dried for 5 min) showed the optimum tensile strength and strain results, showing an increase in tensile strength of 63 % compared to pure nylon-6 nanofiber alone. XRD and FTIR verified the presence of individual polymers in the composite matrix. The electrospun PU nanofiber produced the biggest fiber diameter, while electrospun nylon-6, and PU/nylon-6 produced uniform fiber diameters, with PU/nylon-6 obtaining very random and curved fiber morphology.  相似文献   

18.
Polystyrene (PS) composites with nanofibrous structure consisting of multi-walled carbon nanotubes (MWCNTs) with 0-10 wt.% of nanofiller have been fabricated via electrospinning technique. The surface morphology and thermal properties of the composites were evaluated by scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The SEM analysis of the composite nanofibers samples revealed that the average diameter of the nanofibers increases with increasing MWCNTs content. The resultant MWCNTs/PS composite nanofibers diameters were in the range of 391±63 to 586±132 nm. The thermal stability of composites was increased after addition of MWCNTs to PS matrix. The electrical conductivity of the composites with different weight percentage of MWCNTs was investigated at room temperature. Electrical conductivity of MWCNTs/PS composite nanofiber followed percolation theory having a percolation threshold V c= 0.45 vol% (~0.75 wt. %) and critical exponent q=1.21. The electrical conductivity and thermal properties confirmed the presence of good dispersion and alignment MWCNTs encapsulated within the electrospun nanofibers. The electromagnetic interference (EMI) shielding effectiveness of the MWCNTs/PS composites was examined in the measurement frequency range of 8.2-12.4 GHz (X-band). The total EMI shielding efficiency of MWCNTs/PS composite nanofibers increased up to 32 dB. The EMI shielding results for MWCNTs/PS composite nanofibers showed that absorption loss was the major shielding mechanism and reflection was the secondary mechanism. The present study has shown the possibility of utilizing MWCNTs/PS composite nanofibers as EMI shielding/absorption materials.  相似文献   

19.
In this study, a kind of hydrogel nanofibers were successfully fabricated via solution blowing of chitosan (CS) and polylactic acid (PLA) solutions mixed with various contents of polyethylene glycol (PEG) to offer hydration. The nanofibers with PEG content varying were average 341-376 nm in diameter with smooth surface and distributed randomly forming three-dimension (3D) mats. Glutaraldehyde (GA) vapor was then applied to impart stability, and the cross-linking reaction mainly occurred between GA and hydroxyl groups which was confirmed by XPS. The hydrogel nanofibers showed quick absorption behavior, high equilibrate water absorption and good air permeability which could help the mats absorbing excess exudates, creating a moist wound healing environment and oxygen exchanging in wound healing. The mats also exhibited good antibacterial activities against E. coil. The combination advantages of nanofibers mats and hydrogel will help it find promising application in wound healing.  相似文献   

20.
Poly(vinyl alcohol) (PVA)/Ag-zeolite nanofiber webs were prepared with different concentrations of Ag-zeolite nanoparticles by the electrospinning technique. Scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Instron, and antibacterial activities analysis were utilized to characterize the morphology and properties of the PVA/Ag-zeolite nanofiber webs. The study results showed that the polymer concentration, applied voltages and tip-to-collector distances were the main factors influencing the morphology of the electrospun nanofiber webs. The introduction of Ag-zeolite nanoparticles improved the mechanical properties and thermal stability of the PVA nanofiber webs. TEM data demonstrated that the Ag-zeolite nanoparticles were well distributed within the nanofiber. FTIR revealed a possible interaction between the PVA matrix and the Ag-zeolite nanoparticles. These fibers showed an antibacterial efficacy of 99.8 % and over against Staphylococcus aureus and Klebsiella pneumoniae at Ag-zeolite concentrations of 1 % and over, because of the presence of the silver nanoparticles in the zeolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号