首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

2.
The interface of fiber-reinforced composites has remained a vexing problem that limits the use of the excellent properties of carbon fiber (CF) in composite applications. In the present study, waterborne polyurethane (WPU) hybrid sizing agents were prepared to improve the performances of CFs and the interface strength of CF/PA6 composites. The structural and mechanical properties of the single-CF and CF/PA6 composites were systematic investigated. The results showed that the mechanical properties of the CF/PA6 composites were significantly improved by adding of WPU hybrid sizing agent. The tensile and flexural strengths of the WPU/SiO2/Al2O3 hybrid sizing agent treated CF/PA6 composites were increased by 24.0 % and 25.7 % than those of no-sizing treated CF/PA6 composites, respectively.  相似文献   

3.
In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the internal bond strength of the composites were negatively influenced by increasing coir fiber content. However, the flexural strength, the tensile strength, and the hardness of the composites improved with increasing the coir fiber content up to 60 wt %. The flame retardancy of the composites improved with increasing coir fiber content. The results suggest that an optimal composite panel formulation for automotive interior applications is a mixture of 60 wt % coir fiber, 37 wt % PP powder, and 3 wt % MAPP.  相似文献   

4.
In this study, the maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) is used as the compatilizer for polylactic acid (PLA)/carbon fiber (CF) composites. The effects of SEBS-g-MA on the mechanical properties, thermal behavior, interfacial compatibility, and electrical characteristics of composites are then evaluated. The mechanical property tests indicate that when the amount of compatilizer increases, the tensile properties and flexural property of the composites decrease while their impact strength increases. The SEM results show that the compatilizer can decrease the interstices between PLA and CF, and thereby augments their interfacial compatibility. The differential scanning calorimetry (DSC) results confirm that the compatilizer results in a greater crystallization temperature and a greater crystallinity of the composites. The electrical characteristic results indicate that neither PLA nor SEBS-g-MA is not interfered with the conductive network that is constructed by CF, which is exemplified by an average electromagnetic shielding effect of above ?30 dB. This study confirms that SEBS-g-MA can improve interfacial compatibility and toughness, as well as attain good electrical characteristics of PLA/CF composites.  相似文献   

5.
A useful reinforcement for carbon fiber (CF) composites was found by performing the assisted electrophoretic deposition (EPD) of graphene oxide (GO) for carbon nanotubes (CNTs) onto the CF surface. GO-assisted EPD of CNTs was conducted without the use any other pre-treatment or additives in order to avoid destroying the structure of the CNTs and to facilitate preparation of stable dispersion that was suitable for EPD. The presence of GO-CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the epoxy (EP). In contrast to the pristine CF/EP composite, the GO-CNTs/CF/EP composite exhibited a 64.6 % increase in interlaminar shear strength. Meanwhile, the water absorption of the composites decreased from 0.36 wt.% to 0.14 wt.%. The variable surface morphology, surface roughness, surface free energy and surface chemical composition of the CF were considered to have had an effect on the interfacial properties of the CF/EP composites; these effects could be seen using atomic force microscopes, scanning electron microscopes, X-ray photoelectron microscopes and contact angle analysis characterizations.  相似文献   

6.
We prepared long carbon fiber (LCF)-reinforced thermoplastic composites using a compatibilizer of itaconic acid grafted polypropylene (PP-g-IA). We confirmed the structure of PP-g-IA and investigated the compatibilizing effects of PPg- IA on LCF/polypropylene composites. The tensile strength, tensile moduli, flexural strength, and flexural moduli of the composites increased with increasing PP-g-IA content in the thermoplastic composites. Using single pull-out analyzing system, we found PP-g-IA improved interfacial strength between the carbon fiber and PP matrix. The thermal properties of the composites were measured by thermogravimetric analysis (TGA). We could observe that LCF enhanced the mechanical properties and thermal decomposition temperature of the polypropylene (PP) composites, compared with neat PP. The fractured surfaces of PP/PP-g-IA/LCF composites showed that PP-g-IA was effective for improving the interfacial adhesion between LCF and PP matrix.  相似文献   

7.
Polymer matrix composites (PMCs) owing to their outstanding properties such as high strength, low weight, high thermal stability and chemical resistance are broadly utilized in various industries. In the present work, the influence of silanized CaCO3 (S-CaCO3) with 3-aminopropyltrimethoxysilane (3-APTMS) coupling agent at different values (0, 1, 3 and 5 wt.% with respect to the matrix) on the mechanical behavior of basalt fibers (BF)/epoxy composites was examined. BF-reinforced composites were fabricated via hand lay-up technique. Experimental results from three-point bending and tensile tests showed that with the dispersion of 3 wt.% S-CaCO3, flexural strength, flexural modulus, tensile strength and tensile modulus enhanced by 28 %, 35 %, 20 % and 30 %, respectively. Microscopic examinations revealed that the development of the mechanical properties of fibrous composites with the incorporation of modified CaCO3 was related to enhancement in the load transfer between the nanocomposite matrix and BF as well as enhanced mechanical properties of the matrix part.  相似文献   

8.
A study on the tensile and flexural properties of jute-glass-carbon fibers reinforced epoxy hybrid composites in inter-ply configuration is presented in this paper. Test specimens were manufactured by hand lay-up process and their tensile and flexural properties were obtained. The effects of the hybridization, different fibers content and plies stacking sequence on the mechanical properties of the tested hybrid composites were investigated. Two-parameter Weibull distribution function was used to statistically analyze the experimental results. The failure probability graphs for the tested composites were drawn. These graphs are important tools for helping the designers to understand and choose the suitable material for the required design and development. Results showed that the hybridization process can potentially improve the tensile and flexural properties of jute reinforced composite. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy or jute/epoxy laminas. Also, it is realized that incorporating high strength fibers to the outer layers of the composite leads to higher flexural resistance, whilst the order of the layers doesn’t affect the tensile properties.  相似文献   

9.
The fiber-reinforced syntactic foam is a type of lightweight materials. In this paper, hollow glass microspheres/epoxy syntactic foams reinforced by carbon fibers are prepared. Carbon fibers of five mass fractions are used to obtain five types of reinforced syntactic foams. The effect of the fiber content and soaking corrosion on the flexural properties of syntactic foams are investigated. The results of soaking test show that the moisture rate in distilled water is greater than that in seawater. The flexural test results show that the flexural strength of syntactic foams increases obviously by adding fibers. The maximum value increases 25.5 % than that of composites without adding fibers when fiber-mass fraction is 5 %. Soaking corrosion reduces the flexural properties of the syntactic foams. The flexural strengths of syntactic foams immersed in water and seawater with 5 % fiber-mass fraction decrease 34.4 % and 37.5 % respectively. The main reasons of the flexural strength reduction of syntactic foams with soaking corrosion are discussed.  相似文献   

10.
Soyprotein-jute fiber composites developed using water without any chemicals as the plasticizer show much better flexural and tensile properties than polypropylene-jute composites. Co-products of soybean processing such as soy oil, soyprotein concentrate and soy protein isolates are inexpensive, abundantly available and are renewable resources that have been extensively studied as potential matrix materials to develop biodegradable composites. However, previous attempts on developing soy-based composites have either chemically modified the co-products or used plasticizers such as glycerol. Chemical modifications make the composites expensive and less environmentally friendly and plasticizers decrease the properties of the composites. In this research, soyprotein composites reinforced with jute fibers have been developed using water without any chemicals as plasticizer. The effects of water on the thermal behavior of soyproteins and composite fabrication conditions on the flexural, tensile and acoustic properties of the composites have been studied. Soyprotein composites developed in this research have excellent flexural strength, tensile strength and tensile modulus, much higher than polypropylene (PP)-jute fiber composites. The soyprotein composites have better properties than the PP composites even at high relative humidity (90%).  相似文献   

11.
The effects of chemical treatment on the flexural and impact properties of sugar palm fiber reinforced high impact polystyrene (HIPS) composites were studied. Two types of concentration of alkali solution (4 % and 6 %) and also two types of percentage of compatibilizing agent (2 % and 3 %) have been used in this study. The alkaline treatment is carried out by immersing the fibers in 4 % and 6 % of alkali solution for 1 hour. A 40 wt. % of alkali treated sugar palm fiber (SPF) was blended with HIPS using Brabender machine at temperature of 165 °C. The second treatment was employed by compounding mixture of sugar palm fibers and HIPS with 2 and 3 % of compatibilizing agent using the same procedure. The composites plate with dimensions of 150×150×3 mm was produced by using the hot press machine. The flexural strength, flexural modulus and impact strength of composites were measured and the values were compared to the untreated composites. Improvement of the mechanical properties of the composites has been shown successfully. Alkali treatment using 6 % NaOH solution improve the flexural strength, flexural modulus and impact strength of the composites as amount 12 %, 19 % and 34 % respectively, whereas compatibilizing agent treatment only showed the improvement on the impact strength, i.e. 6 % and 16 % improvement for 2 % and 3 % MAH respectively.  相似文献   

12.
In the first stage, polyethylene terephthalate (PET) fibers and Kevlar fibers are combined at a blending ratio of 80/ 20 wt% in order to form PET/Kevlar nonwoven fabrics. Two pieces of PET/Kevlar nonwoven fabrics that enclose a carbonfiber (CF) interlayer are then needle punched in order to form PET/Kevlar/CF (PKC) composites. In the second stage, the sandwiches compose PKC composites as the top and the bottom layers, as well as an interlayer that is composed of a spacer fabric and polyurethane (PU) foam. PU foams have different densities of 200, 210, 220, 230, and 240 kg/m3. These resulting nonwoven fabric/spacer fabric/PU foam sandwiches are then tested using a drop-weight impact test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that the optimal properties of sandwiches occur with their corresponding PU foam density as follows: an optimal residual stress (240 kg/m3), an optimal compressive strength (240 kg/m3), and an optimal bursting strength (220 kg/m3). In addition, the sandwiches reach the HF1 level according to the horizontal burning test results. They also have an average electromagnetic interference shielding effectiveness of -48 dB, as well as a sound absorption coefficient of 0.5 in a frequency between 1500-2500 Hz, which indicates a satisfactory sound absorption effect. The nonwoven fabric/spacer fabric/PU foam sandwiches proposed in this study are mechanically strong, sound absorbent, and fire retardant, and can be used in construction material and electromagnetic shielding composites.  相似文献   

13.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

14.
Polystyrene (PS) composites with nanofibrous structure consisting of multi-walled carbon nanotubes (MWCNTs) with 0-10 wt.% of nanofiller have been fabricated via electrospinning technique. The surface morphology and thermal properties of the composites were evaluated by scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The SEM analysis of the composite nanofibers samples revealed that the average diameter of the nanofibers increases with increasing MWCNTs content. The resultant MWCNTs/PS composite nanofibers diameters were in the range of 391±63 to 586±132 nm. The thermal stability of composites was increased after addition of MWCNTs to PS matrix. The electrical conductivity of the composites with different weight percentage of MWCNTs was investigated at room temperature. Electrical conductivity of MWCNTs/PS composite nanofiber followed percolation theory having a percolation threshold V c= 0.45 vol% (~0.75 wt. %) and critical exponent q=1.21. The electrical conductivity and thermal properties confirmed the presence of good dispersion and alignment MWCNTs encapsulated within the electrospun nanofibers. The electromagnetic interference (EMI) shielding effectiveness of the MWCNTs/PS composites was examined in the measurement frequency range of 8.2-12.4 GHz (X-band). The total EMI shielding efficiency of MWCNTs/PS composite nanofibers increased up to 32 dB. The EMI shielding results for MWCNTs/PS composite nanofibers showed that absorption loss was the major shielding mechanism and reflection was the secondary mechanism. The present study has shown the possibility of utilizing MWCNTs/PS composite nanofibers as EMI shielding/absorption materials.  相似文献   

15.
We prepared itaconic acid based dispersants (IBDs) by the copolymerization of itaconic acid with acrylic acid, acrylamide, or vinyl sulfonic acid, and compared the efficacy of the IBDs on carbon fiber (CF) dispersion in a water-based system, against that of sodium dodecyl sulphate (SDS) which is widely used as a dispersing agent. The procedure to fabricate nonwoven CF (NCF)/PP composites using IBDs includes the following steps: the synthesis of IBDs, the dispersion of CFs in water by the IBDs, the formation of a NCF, and hot pressing of NCF with polypropylene (PP) layer. We determined the tensile, thermal properties, and the electrical conductivity of non-woven CF/PP composites. It was found that using IBDs as a CF dispersing agent led to the CF/PP composites having better tensile, thermal, and electrical properties, as compared to when SDS was used as a dispersing agent.  相似文献   

16.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

17.
In this study, flax shive (FS) and extracted flax shive (EFS) were fully characterized. The results showed that EFS presented lower noncellulose content, smaller porous tunnels and better thermal stability than FS. The 5 % weight loss temperature of EFS was over 200 °C, which can meet the requirements of the processing conditions for the natural fiber reinforced polymer composites. Consequently, the flax shive and extracted flax shive reinforced PP composites were prepared and characterized. It was found that the thermal stability of EFS/PP composites was better than that of FS/PP composites, and both FS and EFS behaved as nucleation agents, which could accelerate the crystallization process of PP in the composites. Mechanical test showed that EFS could be used as a reinforcing material for PP composite when compatibilizer was applied. The flexural strength and modulus of the composites containing 30 % EFS were about 8 % and 100 % higher than that of pure polypropylene, respectively.  相似文献   

18.
This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites’ flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.  相似文献   

19.
This study presents the mechanical and thermal properties of environment-friendly composites made from recycled newspaper fibers reinforced recycled poly(ethylene terephthalate) (rPET) resin with the addition of styrene-ethylene-butylene-styrene grafted maleic anhydride (SEBS-g-MA) as compatibilizer. The effect of SEBS-g-MA addition (i.e., 10 phr) by using a twin-screw extruder to the rPET resin, followed by different fiber content (5, 10 and 15 wt.%) on the tensile, flexural and impact properties of the composites were determined. Stiffness of composites increased significantly compared to those of rPET/SEBS-g-MA blend. Fiber addition resulted in moderate increases in both tensile and flexural strength of the composites. Scanning electron microscope (SEM) photomicrographs of the impact fracture surfaces demonstrate good adhesion at 5 and 10 % fiber content. Differential scanning calorimetry (DSC) showed that the presence of newspaper fibers enhanced the nonisothermal crystallization kinetics and crystallinity. Thermal stability of the composites was improved as indicated by thermogravimetric analysis (TGA).  相似文献   

20.
In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号