首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
滨海沙地木麻黄人工林细根的生产、分解及周转研究   总被引:1,自引:0,他引:1  
在福建省惠安县赤湖林场用根钻法和分解袋法对18年生木麻黄人工林细根生物量、分解及周转进行了研究.结果表明,18年生木麻黄活细根生物量平均为6.693 t · hm-2,死细根平均为2.292 t · hm-2,细根生物量具有明显的季节动态,活细根和死细根生物量年变化均为双峰型,活细根生物量峰值出现在1月和7月,死细根出现在3月和7月.用试验期间不同时间数据拟合得到木麻黄细根分解回归方程:x/x0=1.06e-0.0014t.应用模拟方程计算出木麻黄分解1年的干重损失率理论值(35.96%)与实测值(38.19%)较为接近.木麻黄细根半分解时间为537 d,95%分解时间为2 181 d.结合木麻黄人工林在不同季节的细根生物现存量,18年林龄木麻黄细根年死亡量分别为1.825 t · hm-2,年生长量为3.173 t · hm-2,年周转0.474次.  相似文献   

2.
Despite its importance to energy flow and nutrient cycling the process of fine root decomposition has received comparatively little detailed research. Disruption of the fine root-soil interface during preparation of root litterbags for decomposition studies could affect decay rates and nutrient mobilization in part by altering the community of decay organisms. We compared rates of decomposition and nutrient release from fine roots of pine between litterbags and intact cores and characterized the fungal community in the decomposing roots. Fine root decomposition was about twice as fast overall for intact cores than litterbags, and rapid mobilization of N and P was observed for roots in cores whereas nutrients were immobilized in litterbags. Fungal communities characterized using 454 pyrosequencing were considerably different between decaying roots in intact cores and litterbags. Most interesting, taxa from ectomycorrhizal fungal orders such as Boletales, Thelephorales and Cantharellales appeared to be more common in decaying roots from cores than litterbags. Moreover, the rate of N and P mobilization from decaying fine roots was highly correlated with taxa from two orders of ectomycorrhizal fungi (Thelephorales, Cantharellales). Although we caution that DNA identified from the decaying roots cannot be conclusively ascribed to active fungi, the results provide tentative support for a significant role of ectomycorrhizal fungi in decomposition and nutrient mobilization from fine roots of pine.  相似文献   

3.
Abstract

Litter fall and its decomposition rate play an important role in nutrient recycling, carbon budgeting and in sustaining soil productivity. Litter production and the decomposition rate were studied on commonly planted broad-leaved Eucalyptus (Eucalyptus globulus, Eucalyptus camaldulensis, Eucalyptus saligna) and coniferous (Juniperus procera, Cupressus lusitanica, Pinus patula) plantation species and compared with the adjacent broad-leaved natural forest. The production of litter was recorded by litter traps and the decomposition rate was studied by nylon net bag technique. Litter production under broad-leaved plantation species and natural forest (that varied from 9.7 to 12.6 Mg ha?1 y?1) was significantly higher (p<0.05) than that under coniferous species (that varied from 4.9 to 6.6 Mg ha?1 y?1). The average concentration of C and N in fresh mature leaves was higher than in leaf-litter fall, implying that both C and N were either sorbed in the plant system or lost through decomposition, leaching or erosion during the leaf-litter fall period. The amount of N, which potentially returned to the soil through the leaf-litter fall, tended to be higher in natural forest than in Eucalyptus plantations. The residual litter mass in the litter bag declined with time for all species. The annual dry matter decay constant (k) varied from 0.07 m?1 in Pinus patula to 0.12 m?1 in Eucalyptus saligna. The half-time (t0.5) decay varied from 6.0 for Eucalyptus saligna to 9.7 months for Pinus patula. The results suggest that the decomposition rate in Pinus patula was relatively lower than the other species and the litter production under broad-leaved Eucalyptus was comparatively higher than that in coniferous species. Overall the litter decomposition was fast for all species. The higher litter production and its relative faster rate of decomposition is a positive aspect to be considered during species selection for the restoration of degraded habitats given other judicious management practices such as prolonging the rotation period are adhered to.  相似文献   

4.
Fine root (diameter < 2 mm) production, mortality and decomposition have been poorly estimated at ecosystem scales due to technical limitations. The soil coring method can accurately assess fine root biomass and necromass, but the concurrent growth, death and decomposition processes were not reasonably assessed during the sampling period, leading to greatly biased rate estimates. We developed a dynamic-flow method with two variations to address these processes by combining the soil coring method with an improved decomposition experiment. For a certain interval i (1 ≤ i) in the growing season, the dead fine roots were classified into fine roots dying before the start of interval i (GⅠ-i) and those dying during interval i (GⅡ-i). The decompositions of GⅠ-i and GⅡ-i were separately quantified and integrated into a modified mass balance model to estimate the production, mortality and decomposition. An example study conducted in a secondary Mongolian oak (Quercus mongolica Fischer ex Ledebour) forest showed that fine root production, mortality and decomposition were greatly underestimated by conventional soil coring methods failing to address the simultaneous growth, death and decomposition processes but overestimated by the method in which the decompositions of GⅠ-i and GⅡ-i were not separately determined and the decomposition rate was assumed to be constant. The dynamic-flow method greatly improved the accuracy of fine root estimates and can be widely applied to forests.  相似文献   

5.
6.
Four major tea management practices (organic, pollution‐free, conventional, and semi‐natural) are employed in Chinese tea plantations at present. These practices can induce changes in the physiochemical parameters, microorganism community and enzyme activity in tea plantation soil. However, understanding of their effects on soil nematodes is still scarce. This study aimed to investigate whether and how different management practices affect the biodiversity, function, and structure of soil nematode communities in tea plantation habitats. The soil nematode community structures and ecological indices were determined from the soil samples collected more than 6 y after their respective farming practices were first applied, and different management practices did not greatly affect soil nematode community evenness or species diversity, but organic practice increased nematode trophic diversity, common species diversity, and species richness. Pollution‐free practice considerably increased fungivorous nematodes, and both pollution‐free and conventional practice decreased bacterivorous nematodes markedly in the subsurface layers of soil. Predator and omnivorous nematodes were found to be more abundant in semi‐natural plantation. Organic practice was more sustainable and suitable for tea cultivation, with the greatest biodiversity, best nutrient conditions, higher and more stable C/N ratio and lower interference in the food web.  相似文献   

7.
Eddy-covariance measurements of net ecosystem exchange of CO2 (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (RE) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall. In the first (drier) year the annual NEE, GEP and RE were lower than the sums in the second (normal) year, and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year.Although the net primary production (NPP) in the first year was 23% lower than that of the second year, the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first, dry year than in the second, normal year. The time variations in NEE were followed by NPP, because in these young Eucalyptus plantations NEE is very largely dominated by NPP, and heterotrophic respiration plays only a relatively minor role.During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation, and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0.8 kPa. Nighttime fluxes of CO2 during calm conditions when the friction velocity (u*) was below the threshold (0.25 m s−1) were estimated based on a Q10 temperature-dependence relationship adjusted separately for different classes of soil moisture content, which regulated the temperature sensitivity of ecosystem respiration.  相似文献   

8.
The accumulation of nutrients by a bamboo plantation and their rate of uptake and release through litter fall was determined. The nutrients in the above-ground living biomass increased linearly with plant age. The balance of nutrients showed an increase in loss by litter fall, and annual nutrient accumulation and enrichment ratio were enhanced with age. Annual percentage turnover showed no consistent trend. Enrichment ratios were in the order of K>N>Mg>Ca>P. In conclusion, precautions are necessary during the exploitation of bamboo plantations on a large scale in order to prevent nutrient depletion of the soil. Received: 7 January 1996  相似文献   

9.
为了揭示桂西南尾巨桉人工林生长过程中的生物量和生产力的变化特征,本文采用固定标准地法对广西宁明县1、2、3和4年生尾巨桉人工林的生物量及生产力进行了研究。研究结果显示:尾巨桉人工林乔木层生物量随林龄的增大而逐步积累,分别为9.02、46.53、73.67和97.20t/hm~2,其中干材所占的比例随着林龄的增加而明显增大,树枝、干皮和树叶所占的比例则呈现相反的变化趋势。各林龄乔木层净生产力分别为每年9.02、23.26、24.56和24.30 t/hm~2,不同林龄净生产力的比例均以干材最大,其次是树根、树枝和树皮,最小是树叶。1~4年生尾巨桉人工林生林下植被生物量为5.42~8.62 t/hm~2,随林分生长过程而逐渐积累。研究结果可为该地区桉树人工林的经营管理提供科学依据。  相似文献   

10.
Although enzyme activities were extensively investigated in soils with reference to abiotic environmental conditions and human impact, their role in litter decomposition is not fully understood. Therefore, decomposition rates and enzyme activities were studied using nylon bags and three litter types buried in silty‐loamy Cambisols and Luvisols in northern, central, and southern Germany under similar averaged temperature and precipitation and a maritime to continental gradient. After 180 d, the ash‐free mass remaining ranged between 15% and 68% for the Triticum, Secale, and Lolium litter. The enzyme activities were mainly controlled by the litter type and the decomposition time and less but significant by site. The highest decomposition rate occurred at the central German site for Lolium litter associated with highest arginine ammonification and urease activity in litter. In contrast, the recalcitrant Secale and Triticum litter were decomposed more rapidly at the northern and southern site where urease, protease, and arginine ammonification was high in the bulk soil. The β‐glucosidase activity was similar in soil and litter at the three locations and was not correlated to the velocity of litter decomposition. Since the abiotic environmental factors at the maritime to continental gradient did not explain the site‐specific velocity of both rapidly decomposing and refractory litter, enzyme activities related to the N cycling like arginine ammonification and urease activity were recognized to velocity of litter decomposition.  相似文献   

11.
To evaluate the influence of irrigation and fertilization on the productivity of E. globulus a field experiment was started in 1986 in Central Portugal. The nutrients accumulated in the biomass and their allocation to the various biomass components as well as the changes in soil chemical characteristics were also followed. Irrigation and fertilization resulted in a significant increase of biomass production during the first 2 yr. A similar trend occurred with the net primary production and leaf litterfall. The differences between treatments in the amounts of accumulated nutrients in the aboveground biomass were similar to those of biomass accumulation. However, there was a small but consistent effect related to the average concentration of nutrients in the plant tissues. This effect occurred essentially in the leaves and branches. The concentration of N and P in the leaf litterfall was higher in the fertilized treatments than in the others. Fertilization alone induced a slight increase in the soil pH values, C content, exchangeable Ca and available P levels. Such increase was more pronounced in the fertilized with dripping irrigation treatment. This was due to the accumulation of nutrients in the wetted soil volume.  相似文献   

12.
Ethylene production and decomposition in soils   总被引:6,自引:0,他引:6  
Six soils differing in texture and use were investigated for their ability to produce and decompose ethylene. In addition, changes in methane and CO2 concentrations were monitored. The effects of organic amendments and different water tensions were studied, and a method using low concentrations of acetylene as an inhibitor of ethylene degradation was tested. Possible reduction of acetylene to ethylene was identified by the use of CO or NH4 +-N, of which the latter turned out to be the more reliable method. This reduction only occurred in a grassland soil. Under aerobic soil conditions, gross ethylene production rates of up to 4.7pmol g–1 h–1 could be measured. Highest ethylene production and lowest ethylene decomposition was detected in a spruce forest soil. Fine textured soils produced more ethylene than coarse textured soils. Amended soils produced more ethylene at –100kPa and –5kPa than at 0kPa water tension. Ethylene decomposition was most effective in soils from deciduous woodlands and reached rates of up to 137pmol g–1 h–1. Parallels between ethylene and methane decomposition were observed. The addition of 5mgg–1 glucose and 1mgg–1 methionine not only promoted ethylene production but also inhibited ethylene decomposition. Received: 4 April 1997  相似文献   

13.
Soil organic carbon (SOC) dynamics and nutrient availability determine the soil quality and fertility in a Chinese fir plantation forest in subtropical China. Uniformly 13C-labeled Chinese fir (Cunninghamia lanceolata) and alder (Alnus cremastogyne) leaf litter with or without 100 mg NH4+ or NO3 were added to the soil. The purpose was to investigate the influence of N availability on the decomposition of the litter and native SOC. The production of CO2, the natural abundance of 13C–CO2, and the inorganic N dynamics were monitored. The results showed that Chinese fir (with a high C:N ratio) and alder (with a low C:N ratio) leaf litter caused significant positive priming effects (PEs) of 24% and 42%, respectively, at the end of the experiment (235 d). The PE dynamics showed that positive PE can last for at least 87 d. However, the possible occurrence of a significant negative PE with a sufficient incubation period is difficult to confirm. The application of both NH4+ and NO3 was found to have a stimulating effect on the decomposition of Chinese fir and alder leaf litter in the early stage (0–15 d) of incubation, but an adverse effect in the late stage. Compared with NO3, NH4+ caused a greater decrease in the PE induced by both Chinese fir and alder leaf litter. The effects of NH4+ and NO3 on the PE dynamics had different patterns for different incubation stages. This result may indicate that the stability or recalcitrance of SOC, especially in such plantation forest soils, strongly depends on available leaf litter and application of N to the soil.  相似文献   

14.
Average yield of maize (Zea mays L.) in Mozambique is low, mainly due to low use of inputs in agriculture, high seasonal rainfall variability and inadequate soil preparation. A study conducted in two summer crop seasons (November–March 2012/2013 and 2013/2014) examined the impact of three tillage methods (hand hoeing, strip tillage and conventional tillage), two fertiliser levels (0 and 40% N) and two water supply regimes (rainfed and irrigated) on maize root development and grain yield on a sandy soil in a semi-arid region of Mozambique. Tillage had a major effect on soil penetration resistance, but little effect on root growth and limited effect on yield. Thus, there appears to be little need for loosening on this soil. There was also no interaction between tillage and the other experimental factors, meaning that tillage system can be chosen irrespective of fertiliser and water supply. Irrigation had the largest impact on root and shoot growth and crop yield, increasing yield in season 2 from 670 to 4780?kg ha–1.There was a very strong interaction between fertiliser and water supply, with no yield increase for fertiliser in the rainfed treatment, while combined with irrigation it increased yield by 1590?kg ha–1 in season 1 and 1840?kg ha–1 in season 2. Thus, for the conditions studied here, it was rational to add fertiliser only in combination with irrigation and not in a rainfed system.  相似文献   

15.
采用固定标准地法对广西宁明县连续年龄系列(1~4年)生尾巨桉人工林的碳储量和年碳素固定量进行了研究。结果表明:尾巨桉各器官中碳素含量范围在455.4~502.4 g/kg之间,不同器官碳素含量高低的排列顺序为树叶、树干、树皮、树枝、树根。林分中不同结构层次碳素平均含量高低的排列顺序乔木层、地表凋落物层、灌木层、草本层;0~80 cm土壤碳素含量均随林龄的增长而增加。1、2、3和4年生尾巨桉人工林生态系统碳储量依次为88.42、106.84、122.76和135.30 t/hm~2,其中乔木层碳储量占4.84%~35.04%,灌草层占0.38~1.14%,现存凋落物层占为1.85%~2.48%、土壤层占61.77%~92.90%.4个林龄杉尾巨桉人工林乔木层净生产力依次为9.02、23.26、24.56和24.30 t/(hm~2·a),碳素年净固定量分别为4.30、11.12、11.92和11.84 t/(hm~2·a).  相似文献   

16.
Shammas  K.  O'Connell  A. M.  Grove  T. S.  McMurtrie  R.  Damon  P.  Rance  S. J. 《Biology and Fertility of Soils》2003,38(4):228-235
Amounts of nutrients in harvest residues and their contribution to nutrient cycling were quantified following logging of a Eucalyptus globulus plantation in south-western Australia. An estimated 64 t ha–1 of leaf, bark and branch material less than 3 cm in diameter was deposited on the forest floor during harvesting. Leaves contributed about one-third of the residue dry weight but accounted for almost three-quarters of residue-N stores (299 of 428 kg N ha–1) and 36% to 52% of P, K, Ca, and Mg stores. Stores of nutrients in slash were significant in comparison to amounts in surface soil (0–20 cm). Residue-N amounted to 11% of total surface soil N and cations stored in residues were equivalent to 23–114% of surface soil exchangeable cations. Decomposition of the leaf fraction of slash was rapid with more than 90% of dry weight released during the 105-week study. Bark and branch fractions of diameters 0.5, 1 and 2 cm lost 39%, 37%, 32% and 29% of dry weight, respectively, during the same period. Single and double exponential decay models fitted to the data indicated half lives ranging from 20 weeks for leaves and from 3 to 4 years for bark and the branch fractions. During decomposition, K was leached rapidly from all residue fractions, Mg and P were released at similar rates to dry weight, and Ca and N were released more slowly than dry weight. In the 105-week study period, 250 kg ha–1 of N, 20 kg ha–1 of P, 213 kg ha–1 of Ca, 298 kg ha–1 of K, and 63 kg ha–1 of Mg were returned to the soil from decomposing harvest slash. The leaf fraction was the major contributor to nutrient cycling, accounting for almost all of the N and Ca release and from half to three-quarters of the K, Mg and P released. Amounts of nutrients released from residues in the year following logging greatly exceeded quantities likely to be taken up by the newly established tree crop.  相似文献   

17.
Forests cover one-third of the Earth’s land surface and account for 30-40% of soil carbon (C). Despite numerous studies, questions still remain about the factors controlling forest soil C turnover. Present understanding of global C cycle is limited by considerable uncertainty over the potential response of soil C dynamics to rapid nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application. Here, we present a 15-year-long field study and show an average increase of 14.6% in soil C concentration in the 0-5 cm mineral soil layer in N fertilized (defined as N+ hereafter) sub-plots of a second-rotation Pinus radiata plantation in New Zealand compared to control sub-plots. The results of 14C and lignin analyses of soil C indicate that N additions significantly accelerate decomposition of labile and recalcitrant soil C. Using an annual-time step model, we estimated the soil C turnover time. In the N+ sub-plots, soil C in the light (a density < 1.70 g cm−3) and heavy fractions had the mean residence times of 23 and 67 yr, respectively, which are lower than those in the control sub-plots (36 and 133 yr in the light and heavy fractions, respectively). The commonly used lignin oxidation indices (vanillic acid to vanillin and syringic acid to syringaldehyde ratios) were significantly greater in the N+ sub-plots than in the control sub-plots, suggesting increased lignin decomposition due to fertilization. The estimation of C inputs to forest floor and δ13C analysis of soil C fractions indicate that the observed buildup of surface soil C concentrations in the N+ sub-plots can be attributed to increased inputs of C mass from forest debris. We conclude that long-term N additions in productive forests may increase C storage in both living tree biomass and soils despite elevated decomposition of soil organic matter.  相似文献   

18.

Purpose

The strong role that soil polyphenols play in soil organic matter (SOM) formation affects soil carbon sequestration. N deposition, which comes from man-made fertilizer, influences plant growth and soil biochemical properties therefore greatly regulates soil polyphenol metabolism. The objective of this experiment was to understand the effect of fertilizer form and rate on soil polyphenol dynamics as well as to understand the potential relationship between soil phenols and C accumulation.

Materials and methods

Urea, rapeseed cake, and chicken manure, respectively, referred as N, B, and F in the text, were applied at three rates (low N, medium N, and high N, referred as 1, 2, and 3 in the text, respectively); plots without fertilization were set as control (CK, for short). Seasonal dynamics of soil total polyphenol (Tp) and bound polyphenol (Bp) concentrations were monitored. Polyphenol oxidase (PPO), peroxidase (POD), and soil fluorescein diacetate (FDA) hydrolysis activities, all factors relevant to polyphenol metabolism, were measured simultaneously. The relationship between soil polyphenols and soil C concentration was also determined.

Results and discussion

N-fertilization altered the seasonal change pattern and the accumulation level of soil Tp and Bp, which possibly resulted from the enhancement of soil microbial activities and the change of soil nutrient status. Positive linear correlation was observed between soil Tp and TC (total C) contents, which means fertilization could influence C accumulation through affecting the metabolism of soil polyphenols. Soil chemical characteristics and enzyme activities that relate to soil polyphenol metabolism were influenced by fertilization as well. Mitigated TC increment was observed in most fertilization treatments mainly due to the increased SOM decomposition rate.

Conclusions

Our findings reveal the important role of soil phenols played in C accumulation in a tea plantation due to the significant, positive linear relationship between soil Tp and TC. Long-term studies, combined with soil microorganism community structure, soil humification, and tea leaf litter decomposition experiments, are necessary for fully understanding the role that polyphenols play in soil C cycle.
  相似文献   

19.
In fast-growing tree plantations, decomposition of leaf litter is considered as a key process of soil fertility. A three-month field experiment, spanning both rainy and dry seasons, was conducted to determine how changes in litter decomposition affect the main parameters of litter quality—namely, the concentrations of phenolic and non-phenolic carbon (C) compounds, nitrogen (N), and fibres, and the litter C mineralization rate. This study was conducted to test (1) if these changes vary according to the compound and to the season, and if they are greater for soluble compounds, and (2) if after a three-month period of field decomposition, the chemical composition of the remaining litter drives C mineralization, as measured in laboratory conditions, through a greater influence on the concentration of N and lignin. We found that the concentrations of water- and methanol-soluble phenolic compounds and the concentrations of non-phenolic compounds decreased during decomposition in all plots and in each season, while the fibre and N concentrations increased. The relationships among litter decomposition, C mineralization, and litter quality depended on the season, which strongly suggests that different processes are involved in dry and rainy seasons. The C mineralization rates were driven by soluble organic compounds in the initial litter and by soluble phenolic compounds in the decomposed litter.  相似文献   

20.
Water and nutrients were supplied to anEucalyptus globulus plantation in a controlled experiment in west central Portugal. The trees were planted in a sandy soil at a spacing of 3 × 3 m. The experiment consisted of four treatments: irrigation, irrigation plus fertilization, fertilization without irrigation, and a rain fed and unfertilized control. The quantification of root biomass was carried out 13 mo after planting. When the plantation was 31 mo old, a trench was dug in the soil to uncover the distribution of the roots of individual trees. In the irrigated treatments root biomass was higher than in the control and in the fertilized plots. Differences in fine and coarse root distribution along the soil profile were also observed. In both irrigated treatments roots were concentrated along tree rows, where the irrigation tubes were dripping water or water plus nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号