首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
基于K-means聚类的柑橘红蜘蛛图像目标识别   总被引:3,自引:3,他引:3  
为快速检测红蜘蛛虫害,该研究采用基于Lab颜色模型中a(红/绿)、b(黄/蓝)层信息的K-means聚类法识别彩色图像中的红蜘蛛。试验选取8幅具有不同清晰度的柑橘红蜘蛛图像,采用基于Sobel边缘检测算子的评价函数计算图像清晰度评价值以评价图像清晰度,对比采用灰度法和包含2、3、4或5个聚类中心的K-means聚类法的目标识别效果和识别效率。结果表明,灰度法对8幅图像中红蜘蛛目标识别率平均值为29%,误判率平均值为201%,无法应用于复杂背景图像中的红蜘蛛目标识别。包含5个聚类中心的K-means聚类法对清晰度较高的图像识别率为100%,误判率为0,对清晰度较低的图像识别率为88%,误判率为0;当图像尺寸较小时,包含4个聚类中心的K-means聚类法识别效率与灰度法相当;当图像尺寸较大时,重复计算聚类中心导致识别耗时较长;基于Lab颜色空间的识别算法无法有效识别其他颜色的红蜘蛛,继续研究的方向为引入红蜘蛛形态信息以提高识别准确率和优化聚类中心的选取以降低识别耗时。  相似文献   

2.
基于改进K-means聚类算法的大田麦穗自动计数   总被引:2,自引:5,他引:2  
单位种植面积的小麦麦穗数量是评估小麦产量和小麦种植密度的一个重要参量。为了实现高效、自动地麦穗计数,该文提出了基于改进K-means的小麦麦穗计数方法。该方法建立从图像低层颜色特征到图像中包含麦穗的一个直接分类关系,从而不需要再对图像进行分割或检测。以颜色特征聚类为基础的这种方法能够估计麦穗在空间局部区域中数量,并且在不需要训练的情况下更具有可扩展性。统计试验结果表明,该文算法能够适应不同光照环境,麦穗计数的准确率达到94.69%,超过了传统基于图像颜色特征和纹理特征分割的麦穗计数方法 93.1%的准确率。  相似文献   

3.
野外自然环境下采集的紫色土图像背景复杂,将紫色土区域从背景中分割出来是应用机器视觉对紫色土进一步分析处理的首要工作。该文提出基于自适应密度峰值聚类的野外紫色土彩色图像分割算法。该方法首先构造基于熵的相似度矩阵,从而建立基于类间方差最大化类内方差最小化准则的灰度变换优化模型,求解优化模型获得一个提升了紫色土与背景间分离特性的灰度图像。然后,构建无参的密度公式和一个中心决策度量来自动获取聚类中心,实现在密度峰值聚类算法框架下紫色土图像的自适应分割。最后,设计边界提取与区域填充的后处理算法获得完整的紫色土土壤区域图像。通过使用常规样本集、鲁棒样本集试验测试,结果显示:该文分割算法的初分割平均分割精度分别为93.45%和87.40%,比采用原始密度峰值聚类算法的平均分割精度分别提高3.16和12.47个百分点。经该文算法初分割、后处理,平均分割精度分别提高到96.30%和91.63%,平均耗时分别为0.36和0.35 s。研究结果为野外紫色土彩色图像的自适应分割提供参考。  相似文献   

4.
基于K-means聚类的植物叶片图像叶脉提取   总被引:1,自引:4,他引:1  
植物的叶片是植物最基本、最主要的生命活动场所。叶脉的提取与分析对叶片和整株植物结构的分析有一定的应用价值。该文提出一种基于K-means聚类(clustering)的叶脉提取算法。该算法首先对叶片图像的HSI彩色空间中的I信息进行K-means聚类处理,根据聚类的结果提取叶片边界,并将叶片图像分为受光均匀和受光不均匀的2类。对于受光均匀的叶片图像在聚类结果中直接提取叶脉,而受光不均匀的叶片图像则需去除部分叶肉后再进行一次K-means聚类提取叶脉。结果表明:该算法能有效地降低叶脉提取的错分率。  相似文献   

5.
基于同态滤波和K均值聚类算法的杨梅图像分割   总被引:5,自引:8,他引:5  
针对自然环境下光照不均杨梅果实分割效果不理想问题展开研究。应用同态滤波算法对HSV(色调hue,饱和度 saturation,亮度value)颜色空间下杨梅图像V分量进行亮度增强,以补偿光线。而后针对彩色杨梅图像的颜色特征,结合Lab(L(亮度Lightness),a(色度chromaticity,+a表示红色,?a表示绿色),b(色度 chromaticity,+b表示黄色,?b表示蓝色)颜色空间a、和b分量的特点,应用K均值聚类算法在Lab颜色空间中对彩色杨梅图像进行分割。为了验证该算法的有效性,在100余幅图像中选用15幅因光照不均和生长状态不同而存在不同程度阴影影响的杨梅图像,进行了3组比较试验,先采用K均值聚类算法对光线补偿去除阴影前后的杨梅图像分割结果进行比较;接着,采用基于色差2*R-G-B自适应灰度阈值分割算法和K均值聚类算法2种不同分割算法对去除阴影后的杨梅图像分割结果进行比较;最后,与基于灰度变换法、直方图均衡化方法的图像增强法去除阴影的效果进行对比。试验结果表明,该文算法的分割误差、假阳性率、假阴性率平均值分别为3.78%,0.69%和 6.8%,分别比光线补偿前降低了21.01,12.79 和21.14个百分点;与基于色差(2*R-G-B)自适应灰度阈值分割算法相比,分割误差、假阳性率、假阴性率这3个指标的性能平均提高了12.93,1.45和7.11个百分点;与基于灰度变换法图像增强法比较表明,分割误差、假阳性率、假阴性率平均值分别降低了32.94 ,6.85 和29.65个百分点,与直方图均衡化图像增强法相比,这3个值分别降低了24.92,6.12和33.06个百分点。通过试验结果图的主观判断和评价指标的定量分析,验证了该算法能有效地分割出杨梅目标,保证了杨梅目标在颜色、纹理和形状方面的完整度,研究结果为研究采摘机器人进行杨梅等果实的分割和识别提供参考。  相似文献   

6.
为了减少噪声对苹果采摘机器人的目标识别所带来的影响,对含噪苹果图像的分割方法进行了研究。该研究设计一种针对噪声具有鲁棒性的苹果图像分割方法,首先计算苹果图像的三维空间特征点的紧致性函数,用以构造邻近点的相似矩阵实现苹果图像的去噪效果;再利用离群点矩阵拆分并由其他剩余列向量线性表示,对相似矩阵进行离群点调优实现聚类优化,进而提出基于空间特征的谱聚类含噪苹果图像分割的优化算法,旨在提高分割算法的效率和识别准确率。通过对两幅苹果图像添加不同程度的高斯和椒盐噪声(方差分别为0.01、0.05和0.1的高斯噪声和概率为0.01、0.05和0.1的椒盐噪声)进行试验,分别求出谱聚类方法、基于空间特征的谱聚类方法和该文优化方法的苹果目标图像的分割图,并计算三类方法的分割准确率。该文优化方法对于单个苹果受不同噪声影响下的分割准确率均在99%以上,对于重叠苹果的分割准确率均在98%以上,对于所选取的30幅苹果图在方差为0.05的高斯噪声和概率为0.01的椒盐噪声影响下的平均分割准确率为99.014%。结果表明:谱聚类方法受噪声的影响较大;基于空间特征的谱聚类方法的分割效果受噪声的影响较小,但在边界区域仍然有很多错分的像素;优化方法在边界区域的分割要优于基于空间特征的谱聚类方法;在设定的试验条件下,其分割结果准确率相对于基于空间特征的谱聚类方法和传统的谱聚类方法可分别提高5%~6%和9%~25%。在分割效率方面,该文优化方法的分割时间低于传统的谱聚类算法,且与基于空间特征谱聚类方法接近。研究结果为苹果采摘机器人的快速目标识别提供参考。  相似文献   

7.
图像拼接可以建立宽视角的高分辨率图像,对实现农业智能化有重要作用。基于Kinect传感器的图像拼接方法利用彩色和深度双源信息,能够有效避免图像缺失、亮暗差异、重影等拼接错误,但是存在拼接时间较长和目标植株不明显等情况。针对这一问题,该文提出一种基于Kinect传感器彩色和深度信息的目标植株图像快速拼接方法。首先用K-means聚类算法和植株深度信息提取彩色图像中有效植株区域,再采用SURF(speeded up robust features)算法进行特征点提取,利用相似性度量进行特征点匹配并根据植株深度数据去除误匹配,由RANSAC(randomsampleconsensus)算法寻找投影变换矩阵,最后采用基于缝合线算法的多分辨率图像融合方法进行拼接。室内外试验结果表明:该文图像拼接方法更能突显出目标植株且极大缩短了拼接时间,该方法图像拼接时间只需3.52 s(室内)和7.11 s(室外),较基于深度和彩色双信息特征源的Kinect植物图像拼接方法时间缩短了8.62 s(室内)和38.56 s(室外),且平均匹配准确率达96.8%。该文拼接后图像信息熵、清晰度、互信息、空间频率平均分别为6.34、50.36、11.70、11.28,图像质量较传统方法均有提高。该研究可为监测农业植株生长状态、精确喷洒药物提供参考。  相似文献   

8.
基于K-means和近邻回归算法的Kinect植株深度图像修复   总被引:3,自引:3,他引:3  
沈跃  徐慧  刘慧  李宁 《农业工程学报》2016,32(19):188-194
针对Kinect传感器应用于农业植株检测产生的图像噪声问题,特别是由光线以及传感器自身局限导致的匹配图像目标植株数据的缺失,提出一种基于K-means和近邻回归算法的植株深度检测图像修复方法。首先对Kinect传感器获取的彩色RGB图像进行阈值分割预处理提取植株目标区域,再利用K-means聚类算法去除背景噪声,使得植株目标区域轮廓更加清晰;然后基于配准的彩色图像和深度图像,对获取的深度图像中可疑像素点的深度数据采取近邻回归算法进行修复,再将修复后的深度图像与目标分割后的彩色图像进行植株区域的匹配,并进行二次近邻回归算法修正错误的深度数据,最后获取目标植株深度信息的检测图像。试验结果证明,采用RGB阈值分割和K-means聚类算法植株目标区域分割误差均值为12.33%,比单一RGB阈值分割和K-means聚类分割误差降低了12.12和41.48个百分点;同时结合聚类后的彩色图像对深度数据进行两次近邻回归算法修复深度数据,能够提高深度数据边缘的清晰度,单帧深度数据空洞点进行修复数据的准确度提高。该研究结果可为农业植株检测、植株三维重构、精准对靶喷雾等提供参考。  相似文献   

9.
可能聚类算法(PCA)和可能C-均值聚类算法(PCM)对初始值非常敏感,容易产生一致性聚类。改进型可能C-均值聚类算法(IPCM)能解决PCM的问题,然而IPCM的执行更依赖于参数。IPCM必须计算参数两次,因此聚类时间长。为了克服PCA和IPCM的缺点,进而应用于复杂的遥感图像分割,将PCA和IPCM相结合,提出了一种基于参数优化的改进型可能聚类算法(IPCAOP)。实验表明,IPCAOP在处理遥感图像分割方面明显优于模糊C-均值聚类(FCM)和IPCM。  相似文献   

10.
基于模糊C均值聚类的作物病害叶片图像分割方法研究   总被引:15,自引:10,他引:15  
为提高作物病害图像的分割效果,根据作物病害图像的特点,提出了一种基于模糊C均值聚类算法(FCM)的作物病害图像自适应分割方法.该方法将像素的灰度与其邻域均值作为FCM的输入特征,变换FCM的隶属度函数使其包含图像的局部邻域特性;通过聚类有效性验证分析和试验确定模糊C均值聚类算法(FCM)的最优聚类数、模糊加权指数.运用该方法对棉花病害叶片图像进行分割.结果表明:该方法能较好将病斑部分和正常部分分割开,平均分割误差率小于5%,对作物病害图像的分割处理非常有效.  相似文献   

11.
在大米籽粒检测中经常会有大米籽粒重叠和粘连的现象。将粘连在一起的大米籽粒群分离是图像处理中一项重要而困难的问题。对这一情况,提出了一种有效的分割算法,先对图像进行二值化处理,然后对图像进行数学形态学变换,通过腐蚀运算将大米籽粒群图像层层剥离,直至粘连籽粒分开,再使用膨胀运算和八链码方法恢复出原始的各个大米籽粒个体,从而将大米籽粒群分离开。实验证明,该算法能成功地分离开粘连大米籽粒。  相似文献   

12.
基于混沌优化K均值算法的马铃薯芽眼的快速分割   总被引:1,自引:1,他引:1  
为提高芽眼分割的准确性,该文实现了基于混沌优化K均值算法的马铃薯芽眼的快速分割。K均值算法具有有效性及易于实现的优点,但是容易陷入局部最优值的缺点造成了其聚类结果的不准确。混沌系统由于其遍历性和不重复性,能够以较快的速度执行全局搜索。该文提出的算法的主要思想就是将混沌变量映射到K均值算法的变量中,用混沌变量代替其寻找全局最优值。分割试验结果表明:该文提出的算法,不仅在分割准确性上优于当下流行的K均值算法和模糊C均值算法,而且在运行时间上也更胜一筹,K均值算法和模糊C均值算法分割一幅马铃薯芽眼的图像所需的平均时间分别为2.895 5 s和3.556 4 s,而该文提出的算法仅需1.109 s。当聚类数大于3时,该文提出的算法在运行时间上受聚类数目的影响非常小,这一特点可用于其他一些适合聚类数大于3的农作物上。试验结果还表明,对于该文中的样本,最佳聚类数不宜超过3。最后,精度试验验证了该文提出的算法能够对样本中的马铃薯芽眼实现完全,无遗漏的分割,总的分割精度为98.87%,其中,对正常的马铃薯芽眼分割精度可达100%,对特殊马铃薯的芽眼分割精度为91.67%,总体分割精度较好。因此,该文提出的算法能够为后续种薯的自动切块提供参考。  相似文献   

13.
昆虫数字图像的分割技术研究   总被引:17,自引:4,他引:17  
以棉铃虫为例,利用数字图像技术对昆虫图像的分割技术进行了研究。主要介绍了简单直方图分割算法、最佳熵阈值分割算法、模糊集合熵阈值分割算法以及极小误差法阈值分割算法。结果表明,简单直方图分割算法和模糊集合熵阈值分割算法能够获得较好的分割结果,其中模糊集合熵阈值分割算法获得的分割结果更符合实际需要。而最佳熵阈值分割结果因为包含了太多的背景像素而最不符合实际需要,极小误差阈值分割结果则难以反映出棉铃虫鳞翅上的斑纹特征,不符合进一步特征提取的要求。  相似文献   

14.
融合K-means与Ncut算法的无遮挡双重叠苹果目标分割与重建   总被引:2,自引:7,他引:2  
重叠苹果目标的准确分割是采摘机器人必须解决的关键问题之一。针对现有重叠苹果目标分割方法不能保留重叠部分轮廓信息的问题,提出了一种无枝叶遮挡的双果重叠苹果目标分割方法。该方法首先利用K-means聚类算法进行图像分割以提取苹果目标区域,然后利用Normalized Cut(Ncut)算法提取苹果目标轮廓,以实现未被遮挡苹果目标完整轮廓的准确提取,最后利用Spline插值算法对遮挡的苹果目标进行轮廓重建。为了验证算法的有效性,对20幅无枝叶遮挡双果重叠的苹果图像进行试验,并将该算法与寻找2个有效凹点用其连线分割重叠苹果目标,把分离的2个轮廓分别用Hough变换重建轮廓的方法进行对比。试验结果表明,对于图像中未被遮挡的苹果目标,利用该研究算法的平均分割误差为3.15%,提取的苹果目标与原始图像中苹果目标的平均重合度为96.08%,平均误差比Hough变换重建算法低7.73%,平均重合度高9.71%,并且该研究算法能够很好地保留未被遮挡苹果目标的完整轮廓信息,提高了分割精度。对于重叠被遮挡的苹果目标,平均分割误差和平均重合度分别为5.24%和93.81%,比Hough变换重建算法的平均分割误差低11.35%,平均重合度高12.74%,表明该算法可以较好地实现重叠被遮挡苹果目标的轮廓重建,研究结果可为实现枝叶遮挡影响下的多果重叠目标分割与重建提供参考。  相似文献   

15.
[目的]探索K-means聚类方法在黑龙江省坡耕地类型区划分上应用的可行性,为各市(县)坡耕地水土保持规划和治理提供依据。[方法]利用K-means聚类方法对黑龙江省70个低山丘陵区市(县)进行科学区划。[结果]低山区市(县)共21个,丘陵区县市共49个。[结论]所选16个分类指标的显著性均小于0.05,证明分类结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号