首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of four intravenous combinations, xylazine (0.7 mg/kg)/methadone (0.1 mg/kg), xylazine (0.7 mg/kg)/buprenorphine (0.004 and 0.006 mg/kg) and acepromazine (0.05 mg/kg)/buprenorphine (0.006 mg/kg) on arterial blood pressure, central venous pressure, heart rate, respiratory rate and blood gases were studied in four experimental ponies. With xylazine/buprenorphine and xylazine/methadone onset of sedation was rapid and obvious and although no surgical or diagnostic procedures were carried out, sedation was judged to be satisfactory for the next 30 to 40 minutes. Onset of sedation after intravenous injection of acepromazine/buprenorphine was slower and less obvious, while its duration was difficult to determine for the ponies could be aroused by noise even when apparently fully sedated. The observations indicated that at the stated doses all the drug combinations should be safe for clinical use.  相似文献   

3.
Single-dose pharmacokinetics of detomidine in the horse and cow   总被引:1,自引:0,他引:1  
The pharmacokinetics of detomidine, a novel analgesic sedative, was studied in the major target species after high (80 micrograms/kg) i.v. and i.m. doses. In addition, drug residues in some organs were determined. Concentrations were measured using a sensitive, detomidine-specific radio-immunoassay method. Rapid absorption following i.m. dosing occurred. Absorption half-lives were 0.15 h (horse) and 0.08 h (cattle). The mean peak concentration in the horse (51.3 ng/ml) was achieved in 0.5 h and in the cow (65.8 ng/ml) in 0.26 h. The areas under the concentration curve after i.m. dosing were 66% (horse) and 85% (cow) of the corresponding i.v. values. Distribution was rapid with half-lives of 0.15 h (horse, i.v.) and 0.24 h (cow, i.v.). The apparent volume of distribution was higher after the i.m. dosing (horse 1.56 l/kg, cow 1.89 l/kg) than after i.v. dosing (horse 0.74 l/kg, cow 0.73 l/kg). Elimination half-lives were 1.19 h (horse) and 1.32 h (cow) for the i.v. dose and 1.78 h (horse) and 2.56 h (cow) for the i.m. dose. Total clearances ranged from 6.7 (horse, i.v.) to 12.3 (cow, i.m.) ml/min/kg. Renal clearances were less than 1% of the total clearances showing negligible excretion of the drug in urine and suggesting elimination by metabolism. A cross-reacting metabolite in urine corresponded to less than 1.5% of the detomidine dose's immunoreactivity. High-dose detomidine increased urine flow significantly. Excretion of detomidine in milk in cattle was extremely low. No detectable amounts were present 23 h after dosing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Purpose The main objective was to record electroretinogram (ERG) parameters of normal thoroughbred mares using the HMsERG, a mini-Ganzfeld electroretinographic unit, and a contact lens electrode. The second objective was to determine whether IV detomidine hydrochloride at 0.015?mg/kg is consistently an effective choice for sedation of horses undergoing this ERG protocol. Methods The study population consisted of 30 normal thoroughbred mares. ERG data were harvested using a protocol that included three different light intensities (10, 3000, and 10?000?mcd?s/m(2) ) and a 30-Hz flicker at 3000?mcd?s/m(2) . Results Mean, median, standard deviation, and estimated normal ranges using the 5-95% of the data for a- and b-wave implicit times (IT), amplitudes (AMP), and b/a ratios were reported. Scotopic results at low intensity (10?mcd?s/m(2) ) had estimated ranges for b-wave IT of 41.8-72.9?ms and AMP of 19.8-173.3?μV. Middle intensity (3000?mcd?s/m(2) ) a-wave IT was 13.2-14.7?ms with a-wave AMP of 68.4-144?μV; the b-wave IT was 28.7-41.5?ms with b-wave AMP of 105.7-271.5?μV; and the b/a ratio was 0.95-2.71. The high-intensity (10?000?mcd?s/m(2) ) average recordings showed an a-wave IT of 13-14.9?ms, a-wave AMP of 85.7-186.8?μV; b-wave IT of 26.6-45.4?ms, b-wave AMP of 104.7-250.6?μV; and a b/a wave ratio of 0.7-2.0. The 30-Hz cone flicker showed an IT of 22.8-28.9?ms and AMP of 44.1-117.1?μV. Conclusions Results of normal thoroughbred ERG responses are reported. The protocol proved to be simple and safe and provided consistent results.  相似文献   

5.
6.

Background

Sedation with α2-agonists in the horse is reported to be accompanied by impairment of arterial oxygenation. The present study was undertaken to investigate pulmonary gas exchange using the Multiple Inert Gas Elimination Technique (MIGET), during sedation with the α2-agonist detomidine alone and in combination with the opioid butorphanol.

Methods

Seven Standardbred trotter horses aged 3–7 years and weighing 380–520 kg, were studied. The protocol consisted of three consecutive measurements; in the unsedated horse, after intravenous administration of detomidine (0.02 mg/kg) and after subsequent butorphanol administration (0.025 mg/kg). Pulmonary function and haemodynamic effects were investigated. The distribution of ventilation-perfusion ratios (VA/Q) was estimated with MIGET.

Results

During detomidine sedation, arterial oxygen tension (PaO2) decreased (12.8 ± 0.7 to 10.8 ± 1.2 kPa) and arterial carbon dioxide tension (PaCO2) increased (5.9 ± 0.3 to 6.1 ± 0.2 kPa) compared to measurements in the unsedated horse. Mismatch between ventilation and perfusion in the lungs was evident, but no increase in intrapulmonary shunt could be detected. Respiratory rate and minute ventilation did not change. Heart rate and cardiac output decreased, while pulmonary and systemic blood pressure and vascular resistance increased. Addition of butorphanol resulted in a significant decrease in ventilation and increase in PaCO2. Alveolar-arterial oxygen content difference P(A-a)O2 remained impaired after butorphanol administration, the VA/Q distribution improved as the decreased ventilation and persistent low blood flow was well matched. Also after subsequent butorphanol no increase in intrapulmonary shunt was evident.

Conclusion

The results of the present study suggest that both pulmonary and cardiovascular factors contribute to the impaired pulmonary gas exchange during detomidine and butorphanol sedation in the horse.  相似文献   

7.
8.
9.
ObjectiveTo describe the pharmacokinetics of detomidine and yohimbine when administered in combination.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing of 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV (D), 2) 0.2 mg kg?1 yohimbine IV (Y) and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV (DY). Each horse received all three dose regimens with a minimum of 1 week in between subsequent regimens. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Data were analyzed using both non-compartmental and compartmental analysis.ResultsThe maximum measured detomidine concentrations were 76.0 and 129.9 ng mL?1 for the D and DY treatments, respectively. Systemic clearance and volume of distribution of detomidine were not significantly different for either treatment. There was a significant increase in the maximum measured yohimbine plasma concentrations from Y (173.9 ng mL?1) to DY (289.8 ng mL?1). Both the Cl and Vd for yohimbine were significantly less (6.8 mL minute?1 kg?1 (Cl) and 1.7 L kg?1 (Vd)) for the DY as compared to the Y treatments (13.9 mL minute?1 kg?1 (Cl) and 2.7 L kg?1 (Vd)). Plasma concentrations were below the limit of quantitation (0.05 and 0.5 ng mL?1) by 18 hours for both detomidine and yohimbine.Conclusion and clinical relevanceThe Cl and Vd of yohimbine were affected by prior administration of detomidine. The elimination half life of yohimbine remained unaffected when administered subsequent to detomidine. However, the increased plasma concentrations in the presence of detomidine has the potential to cause untoward effects and therefore further studies to assess the physiologic effects of this combination of drugs are warranted.  相似文献   

10.
ObjectiveTo describe the effects of alpha2-adrenergic receptor antagonists on the pharmacodynamics of sublingual (SL) detomidine in the horse.Study designRandomized crossover design.AnimalsNine healthy adult horses with an average age of 7.6 ± 6.5 years.MethodsFour treatment groups were studied: 1) 0.04 mg kg?1 detomidine SL; 2) 0.04 mg kg?1 detomidine SL followed 1 hour later by 0.075 mg kg?1 yohimbine intravenously (IV); 3) 0.04 mg kg?1 detomidine SL followed 1 hour later by 4 mg kg?1 tolazoline IV; and 4) 0.04 mg kg?1 detomidine SL followed 1 hour later by 0.12 mg kg?1 atipamezole IV. Each horse received all treatments with a minimum of 1 week between treatments. Blood samples were obtained and plasma analyzed for yohimbine, atipamezole and tolazoline concentrations by liquid chromatography-mass spectrometry. Behavioral effects, heart rate and rhythm, glucose, packed cell volume (PCV) and plasma proteins were monitored.ResultsChin-to-ground distance increased following administration of the antagonists, however, this effect was transient, with a return to pre-reversal values as early as 1 hour. Detomidine induced bradycardia and increased incidence of atrioventricular blocks were either transiently or incompletely antagonized by all antagonists. PCV and glucose concentrations increased with tolazoline administration, and atipamezole subjectively increased urination frequency but not volume.Conclusions and clinical relevanceAt the doses administered in this study, the alpha2-adrenergic antagonistic effects of tolazoline, yohimbine and atipamezole on cardiac and behavioral effects elicited by SL administration of detomidine are transient and incomplete.  相似文献   

11.
ObjectiveTo describe selected pharmacodynamic effects of detomidine and yohimbine when administered alone and in sequence.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV, 2) 0.2 mg kg?1 yohimbine IV and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV. Each horse received all three treatments with a minimum of 1 week between treatments. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Behavioral effects, heart rate and rhythm, glucose, packed cell volume and plasma proteins were monitored.ResultsYohimbine rapidly reversed the sedative effects of detomidine in the horse. Additionally, yohimbine effectively returned heart rate and the percent of atrio-ventricular conduction disturbances to pre-detomidine values when administered 15 minutes post-detomidine administration. Plasma glucose was significantly increased following detomidine administration. The detomidine induced hyperglycemia was effectively reduced by yohimbine administration. Effects on packed cell volume and plasma proteins were variable.Conclusions and clinical relevanceIntravenous administration of yohimbine effectively reversed detomidine induced sedation, bradycardia, atrio-ventricular heart block and hyperglycemia.  相似文献   

12.
This review presents a brief historical prospective of the genesis of regulated medication in the US racing industry of which the nonsteroidal anti-inflammatory drug (NSAID) phenylbutazone (PBZ) is the focus. It presents some historical guideposts in the development of the current rules on the use of PBZ by racing jurisdictions in the US. Based on its prevalent use, PBZ remains a focus of attention. The review examines the information presented in a number of different models used to determine the effects and duration of PBZ in the horse. They include naturally occurring lameness and reversible-induced lameness models that directly examine the effects and duration of the administration of various doses of PBZ. The review also examines indirect plasma and tissue models studying the suppression of the release of arachidonic acid-derived mediators of inflammation. The majority of studies suggest an effect of PBZ at 24 h at 4.4 mg/kg. This reflects and substantiates the opinion of many clinical veterinarians, many of whom will not perform a prepurchase lameness examination unless the horse is free of NSAID. This remains the opinion of many regulatory veterinarians responsible for the prerace examination of race horses that they wish to examine a horse without the possibility of an NSAID interfering with the examination and masking possible musculoskeletal conditions. Based on scientific studies, residual effects of PBZ remain at 24 h. The impact of sustained effect on the health and welfare of the horse and its contribution to injuries during competition remains problematic.  相似文献   

13.
Positive-pressure ventilation is used to provide improved ventilatory support during anesthesia in the horse. Because of the horse's size and the physiologic changes it undergoes during anesthesia, however, the use of positive-pressure ventilation does not always provide the improvement seen in smaller species. Careful attention to respiratory rate, inspiratory pressure, and I:E ratio minimizes the negative aspect of IPPV on the cardiovascular system. The goal of future ventilatory techniques will be to improve oxygenation without cardiovascular compromise and to do so at a reasonable cost to the client.  相似文献   

14.
15.
Clinical use of epidural xylazine in the horse   总被引:1,自引:0,他引:1  
Xylazine was administered into the epidural space of nine horses to facilitate various perineal manipulations (ie rectovaginal laceration repair, replacement of prolapsed rectum and urethral extension). The resulting caudal analgesia was sufficient for all procedures. The duration of analgesia from a single injection of epidural xylazine (0.17 to 0.22 mg/kg bodyweight) was at least 3.5 h. No horses were ataxic during or after the treatment. This trial demonstrates that xylazine given into the epidural space of horses provides prolonged regional analgesia which is sufficient for clinical use.  相似文献   

16.
Complications following the use of the cuffless large animal endotracheal tube during general anesthesia in 2 horses are reported. One horse developed laryngeal edema during recovery. The edema was treated successfully with dexamethasone, but severe laryngeal trauma was confirmed 24 hours later at necropsy. The second horse had a swollen tongue and had difficulty eating for 3 days after anesthesia. The condition resolved without treatment. this report is a reminder of the potential damage which can occur from endotracheal intubation.  相似文献   

17.
The reversal of detomidine-induced sedation with iv atipamezole was studied in 6 horses. All horses were injected iv with 10 μg and 20 μg/kg bwt detomidine and 15 min later this was followed by 6-, 8- and 10-fold doses of iv atipamezole. Atipamezole caused a quick arousal in all horses with minor side effects. Bradycardia, rhythm disturbances and head ptosis caused by detomidine were not abolished completely at the end of the 15 min observation period, even with the highest atipamezole doses. All horses remained slightly sedated but without ataxia. There were no significant differences in head height, heart rate and sedation score between the different doses of atipamezole for either dose of detomidine. According to the degree of sedation, doses of 100 μg to 160 μg/kg bwt atipamezole are adequate to antagonise detomidine-induced sedation in the horse.  相似文献   

18.
The effects of tolazoline (4.0 mg/kg iv) antagonism of detomidine (0.02 mg/kg iv) were evaluated in isoflurane-anaesthetised, ventilated ponies. Each of 6 ponies received both tolazoline and saline treatment during separate anaesthetic episodes only (no surgery was performed). Detomidine administration produced an increase in blood pressure, decrease in heart rate and decrease in PaO2 Tolazoline treatment transiently increased heart rate while blood pressure returned to baseline after both treatments. Arterial oxygenation decreased further after tolazoline treatment while oxgenation recovered towards baseline with saline treatment. No other cardiopulmonary effects were detected. Recovery from anaesthesia tended to be more rapid when detomidine was antagonized. The potential benefit of antagonizing detomidine-induced bradycardia with tolazoline, during isoflurane anaesthesia should be weighed against the potential to produce a decrease in arterial oxygenation. The mechanism for this effect is not clear.  相似文献   

19.
20.
Clinically, the use of detomidine and butorphanol is suitable for sedation and deepening of analgosedation. The aim of our study was to establish the influence of detomidine used alone and a butorphanol-detomidine combination on brain activity and to evaluate and compare brain responses (using electroencephalography, EEG) by recording SEF90 (spectral edge frequency 90%), individual brain wave fractions (beta, alpha, theta and delta) and electromyographic (EMG) changes in the left temporal muscle in standing horses. Ten clinically healthy cold-blooded horses were divided into two groups of five animals each. Group I received detomidine and Group II received detomidine followed by butorphanol 10 min later. SEF90, individual brain wave fractions and EMG were recorded with a pEEG (processed EEG) monitor using computerised processed electroencephalography and electromyography. The present study found that detomidine alone and the detomidine-butorphanol combination significantly reduced SEF90 and EMG, and they caused changes in individual brain wave fractions during sedation and particularly during analgosedation. The EMG results showed that the detomidine-butorphanol combination provided greater and longer muscle relaxation. Our EEG and EMG results confirmed that the detomidine-butorphanol combination is safer and more appropriate for painless and non-painless procedures on standing horses compared to detomidine alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号