首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为利用种间竞争进行有益微藻共培养和构建池塘优良藻相,文章探究了不同温度 (10、15、20、25、30、35 ℃) 和起始密度比 [小皮舟形藻 (Navicula pelliculosa)∶小球藻 (Chlorella vulgaris) 分别为1∶10、1∶1、1∶0.1 ] 对2种藻类生长竞争的影响。结果显示,单种培养中,10~15 ℃小皮舟形藻的细胞密度呈先升高后降低的趋势,20~30 ℃呈逐渐升高的趋势,最大值为0.50×106个∙mL−1,35 ℃时停止生长,适宜生长温度为25~30 ℃;10~15 ℃小球藻生长缓慢甚至停止,20~35 ℃细胞生长迅速,最大值为14.15×106 个∙mL−1,适宜生长温度为35 ℃。混合培养中小皮舟形藻生长速率均高于单种培养,且随小球藻接种比例增加逐渐升高,在适宜温度下,混合培养的细胞峰值显著高于单种培养;混合培养中小球藻的接种密度越小生长速率则越大,1∶0.1组显著高于单种培养组,1∶10组则显著低于单种培养组。小球藻对小皮舟形藻的竞争抑制作用较小,混合培养中,小球藻对小皮舟形藻的竞争抑制参数(α)随温度升高和小球藻密度增加而增大,小皮舟形藻对小球藻的竞争抑制参数 (β) 随温度和小皮舟形藻比重增加而增大。2种微藻能够稳定共存。  相似文献   

2.
为探讨pH和氮磷比对青岛大扁藻(Tetraselmis helgolandica)和微小原甲藻(Prorocentrum minimum)生长竞争的影响,本研究首先根据对虾养殖水体pH值的范围设置了7.5,8.0,8.5和9.0共4个pH梯度,获得了青岛大扁藻抑制微小原甲藻的最佳pH;在该pH条件下,设置了氮磷比分别为3:2(高富磷组),6:1(富磷组),24:1(对照组)和96:1(富氮组)等4个梯度,其中,单种培养体系中只接种青岛大扁藻或者微小原甲藻,混合培养体系中同时按照1:1的比例接种青岛大扁藻和微小原甲藻。结果表明,混合培养体系中,青岛大扁藻在pH 8.5和pH 9.0时,出现拐点时间最晚,均为7 d;而微小原甲藻在pH 8.5和pH 9.0时,出现拐点时间最早,均为3 d。pH 8.5时青岛大扁藻对微小原甲藻的竞争抑制参数最大,青岛大扁藻抑制微小原甲藻的最佳pH为8.5。单种培养体系中,微小原甲藻拐点出现的时间在高富磷组、对照组和富氮组中均晚于青岛大扁藻;混合培养体系中,对照组中微小原甲藻和青岛大扁藻拐点出现时间分别为4 d和3 d,而其他处理组2种微藻拐点出现的时间分别相同。氮磷比影响混合培养中2种微藻的竞争抑制参数,其中,96:1(富氮组)中拐点之后青岛大扁藻对微小原甲藻的竞争抑制参数(α)的平均值为9.2063,微小原甲藻对青岛大扁藻的竞争抑制参数(β)为3.4886。以上研究表明,对虾养殖水体中,青岛大扁藻抑制微小原甲藻的最佳条件是:pH为8.5,氮磷比为96:1。  相似文献   

3.
在自然变温和水浴恒温的条件下。用3种接种密度培养亚心形扁藻Platymonas subcordi- formis,以研究其增殖形式。结果表明,较高接种密度时,扁藻密度始终较高且较早进入平稳期;接种密度相同,恒温下较早进入平稳期。但就所能达到的最大密度而言,变温培养时更高;低密度接种的比生长速率最大,而中等接种密度下的比生长速率最稳定;培养时的比生长速率较高,且比较稳定;增殖模型所反映的和观测结果一致。随着接种密度增加,依赖于初始种群密度的参数a减少,环境容量增加而瞬时增殖速度下降。模型也反映出在相同接种密度条件下,变温培养的环境容量大于恒温培养;恒温时的微藻瞬时增长速度要大于变温时。就(N_t)/(N_0)而言,在变温下培养扁藻,各处理间的差异不具有统计学意义,而在恒温培养时各处理间的差异显著;低密度接种时,变温和恒温条件下的(N_t)/(N_0)具有显著差异,而在中密度接种和高密度接种时,两种温度条件下的(N_t)/(N_0)差异不显著。  相似文献   

4.
利用叶绿素荧光分析技术,以25℃为对照,研究不同温度(15、20、30和35℃)对普通小球藻(Chlorella vulagris)叶绿素荧光、叶绿素含量和细胞密度的影响,以期找到小球藻的最适生长温度,为小球藻的集约化培养提供参考资料。试验结果:不同温度对小球藻叶绿素荧光活性、叶绿素含量和细胞密度有显著影响;15℃时最大光能转化速率(F_v/F_m)、潜在活力(F_v/F_0)、实际光能转化效率(Φ_(PSⅡ))和量子效率(F_v'/F_m')、相对电子转化速率(ETR)、叶绿素含量均呈下降趋势,小球藻细胞密度的上升趋势最小,其值为4.82×10~6个/mL,仅比初始量增加了0.8×10~6个/mL;30℃时叶绿素各荧光指标和细胞密度均高于其它试验组,其细胞密度值为9.96×10~6个/mL;25℃时叶绿素含量最高,其值为2 890.27μg/L。结果表明,小球藻的最适生长温度为30℃,在15℃时其生长会受到明显抑制。  相似文献   

5.
温度对小新月菱形藻叶绿素荧光特性及生长的影响   总被引:1,自引:0,他引:1  
梁英  刁永芳  陈书秀  荣玲 《水产科学》2011,30(8):435-440
以小新月菱形藻为试验材料,研究了其在一次性培养过程中,不同温度(5~30℃)对其叶绿素荧光参数[光系统Ⅱ的最大光能转化效率(Fv/Fm)、光系统Ⅱ的潜在活性(Fv/Fo)、光系统Ⅱ的实际光能转化效率(ΦPSⅡ)、相对光合电子传递效率(rETR)、光化学淬灭(qP)和非光化学淬灭(NPQ)]、叶绿素相对含量以及细胞密度的影响。单因子方差分析结果表明,在整个培养周期中,温度对小新月菱形藻各叶绿素荧光参数、细胞密度和叶绿素相对含量均有显著影响(P<0.05)。多重比较结果表明,接种后1~2 d,20℃处理组的主要荧光参数(Fv/Fm、Fv/Fo、rETR、ΦPSⅡ)显著高于其他处理组。30℃的处理组的上述荧光参数从第1 d开始均显著低于其他处理组。20℃处理组的细胞密度和叶绿素相对含量均显著高于其他处理组。在本试验条件下,适宜小新月菱形藻生长的温度为10~25℃,最适温度为20℃。相关性分析结果表明,在整个培养周期中,小新月菱形藻的叶绿素相对含量和细胞密度之间存在显著的正相关。  相似文献   

6.
用BG-11、HB-4和f/2培养基,温度25±1℃和28±1℃,分别对蒜头藻进行培养。结果表明:蒜头藻在27±1℃下、BG-11培养基中生长最好,25 d后最高密度可达1.31×108ind/mL,相对生长常数为0.089。蒜头藻直接在f/2培养基中生长情况不理想,而通过海水驯化的蒜头藻在f/2培养基中生长良好,27±1℃下经15 d培养密度可达3.05×107ind/mL。  相似文献   

7.
微绿球藻、隐藻、颤藻的种间竞争关系   总被引:2,自引:0,他引:2  
采用陈海水配制的无机培养液,添加营养盐的无机培养液和对虾养殖池水3种培养液,分别对微绿球藻(Nannochloropsis oculata)、隐藻(Dyptomonas eyosa)和颤藻(Oscillatoria sp.)进行单培养和混合培养,探讨3种微藻的增殖规律和相互关系.观测各处理组微藻的生长状况,并以Lotka-Volterra的双种竞争模型为基础,计算3种微藻在生长拐点后各取样点的竞争抑制参数.结果显示,在各处理组中,实验前期微绿球藻和隐藻对颤藻的生长都具有一定的促进作用,颤藻在混合培养组中的生物量大于单培养组,而微绿球藻和隐藻的最大生物量均出现在其单培养组.在各组生长拐点后,微绿球藻对颤藻的影响较小,隐藻对颤藻的抑制作用明显,各取样点隐藻对颤藻的竞争参数远大于微绿球藻对颤藻的竞争参数(P<0.05);颤藻对微绿球藻有较小的抑制作用,而对隐藻的抑制作用明显,各取样点颤藻对隐藻的竞争参数均为各组的最大值.实验结果表明,3种微藻按竞争力从大到小依次为颤藻,隐藻,微绿球藻.颤藻对隐藻和微绿球藻有较强的抑制作用,而微绿球藻和隐藻之间的竞争抑制作用较弱,能够达到"共存"状态.  相似文献   

8.
硝酸钠和氯化铵对小球藻生长的影响   总被引:1,自引:0,他引:1  
吴旭  严美姣 《河北渔业》2008,(11):15-17
以水生四号培养基为基础,添加不同质量浓度的硝酸钠和氯化铵。研究氮源对小球藻生长的影响。研究结果表明,培养液中硝酸钠和氯化铵的存在对小球藻生长均起到促进作用,在一定范围内随着浓度的增加,促进作用越来越弱。通过比较发现在相同的培养液浓度和相同的时间段内.氯化铵对小球藻生长的促进作用比硝酸钠强。  相似文献   

9.
温度是影响藻类生长发育的关键因素之一。本研究探讨了 6~22 ℃下, 多肋藻(Costaria costata)小孢子体的生长情况及抗氧化生理特性, 以探明其适温机制, 为多肋藻海区栽培提供支撑。结果发现, 培养初期(5 d 内), 多肋藻小孢子体在 18 ℃下具有最大的相对生长速率(RGR), 22 ℃下藻体梢部严重穿孔溃烂; 随着培养时间延长(10 d), 10 ℃下藻体 RGR 最高。实验周期内, 不同温度组间 Fv/Fm 无显著差异, 6~14 ℃下藻体均具有较高的总光合速率(Pt) 和最大表观光合速率(Pnmax), Pnmax 随着培养时间的延长在 10 ℃下最高。培养 3 d 时, 6 ℃下呼吸速率(Rd)最高; 22 ℃ 下, 藻体 Rd 随着培养时间延长显著上升, 表明增强呼吸作用是多肋藻小孢子体对低温和高温胁迫的共同响应。 22 ℃高温胁迫下, 胡萝卜素(Car)和岩藻黄素(Fucox)、可溶性蛋白的含量升高; 6 ℃时, SOD 酶活高于其他温度组。 在 6~18 ℃范围内, 灰分、碳水化合物和粗纤维的积累与温度具有一定的正相关性。综上, 多肋藻小孢子体可在 6~18 ℃生长, 其中以 10 ℃左右为佳。  相似文献   

10.
温度影响三角褐指藻生长和脂肪酸组成的初步探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
实验对指数生长期、指数生长末期、静止期和衰亡期的三角褐指藻脂肪酸进行研究,发现在指数生长末期二十碳五烯酸(Eicosapentaenoic acid,EPA)含量最高。实时定量PCR分析三角褐指藻Δ5脂肪酸去饱和酶基因在不同生长时期的表达变化水平差异显著,其中指数生长期表达量最高。为了探讨温度对微藻生长和脂肪酸组成的影响,作者在不同温度下对三角褐指藻进行了培养,并测定其生长和脂肪酸组成。结果表明,三角褐指藻的生长随着温度的升高到达指数生长末期所需时间缩短;不同温度下三角褐指藻的主要脂肪酸为C14∶0、C16∶0、C16∶lΔ9、Cl8∶lΔ9、C18∶2Δ9,12、C20∶5n3(EPA),总脂肪酸随着温度的升高依次呈现先升高后降低的趋势,在15℃时EPA占总脂肪酸的百分含量达到最高值25.71%。  相似文献   

11.
在水温(22±1)℃和连续光照强度为50μmol·m~(-1)·s~(-2)下,取主要由乳酸菌、硝化菌、芽孢杆菌、光合菌,及酵母菌等组成的培藻肥水型EM菌0.5m L、2.5m L或5.0m L,分别加入到200m L密度相同的小新月菱形藻Nitzschia closterium f.、球等鞭金藻3011 Isochrysis galbana parke和小球藻Chlorella sp.中培养15d,以f培养基为对照,研究不同浓度培藻肥水型EM菌对这3种藻类生长的影响。结果表明:EM菌对金藻、硅藻、绿藻的生长都有一定的促进作用,其中对金藻及硅藻生长的促进作用更加显著,生长率提高20%~50%,最终细胞密度有所提高,添加5m L促生长作用更持久。  相似文献   

12.
研究了小球藻液中的污染物尾丝虫的生存极限温度及不同温度对尾丝虫生长繁殖的影响。结果显示:该尾丝虫在本试验条件下的生存极限高温是38℃。在较低温度条件下,尾丝虫生长繁殖较慢,10℃时密度稍有增长,温度进一步上升密度却呈下降趋势;在较高温度下,随温度升高尾丝虫生长繁殖速度加快。试验还研究了尾丝虫对小球藻密度的影响。  相似文献   

13.
以水生四号培养基为基础,添加不同质量浓度的硝酸钠和氯化铵,研究氮源对小球藻生长的影响.研究结果表明,培养液中硝酸钠和氯化铵的存在对小球藻生长均起到促进作用,在一定范围内随着浓度的增加,促进作用越来越弱.通过比较发现在相同的培养液浓度和相同的时间段内,氯化铵对小球藻生长的促进作用比硝酸钠强.  相似文献   

14.
不同氮磷硅含量和接种密度对三角褐指藻生长的影响   总被引:12,自引:0,他引:12  
通过均匀设计试验研究N、P、Si含量与接种密度对三角褐指藻生长的动态关系。结果显示 ,8d藻生长率和 8d密度差不受N含量 (质量浓度 1.0~ 89.4mg/L)影响 ,但随P含量 (质量浓度 0 .1~ 2 8.6mg/L)和Si含量 (质量浓度 0 .5~ 2 0 .1mg/L)增加而增加。当P质量浓度 2 8.6mg/L、Si质量浓度 2 0 .1mg/L ,接种密度分别为 8.4× 10 4 ml- 1和 143.1× 10 4 ml- 1时 ,藻生长率和密度差可达 0 .778d- 1和 869.7× 10 4ml- 1。 11d藻生长率主要受接种密度的影响 ,N质量浓度起次要作用 ,P和Si质量浓度对藻生长率无影响。当N质量浓度 89.4mg/L ,接种密度 8.4× 10 4 ml- 1时 ,藻生长率可达 0 .4 92d- 1。  相似文献   

15.
温度和光照对塔胞藻生长的影响   总被引:4,自引:0,他引:4  
采用梯度法比较了温度、光照度、光照周期对一次性培养的塔胞藻生长的影响。结果表明:塔胞藻对温度的适应范围较广,10~30℃时塔胞藻均可生长,24~28℃为塔胞藻生长的最适温度;光照度4000~10 000 lx时,塔胞藻生物量随光照度的增加而增大,并在10 000 lx时达到最大;塔胞藻在光照周期为16L∶8D时生长最快。  相似文献   

16.
本文在不同氮磷比(N∶P=4∶1、8∶1、16∶1、32∶1、80∶1)培养条件下,对福建沿海赤潮海域分离的米氏凯伦藻(Karenia mikimotoi)进行培养,研究其生长特性。实验结果表明:不同的氮磷比对米氏凯伦藻的生长有明显的影响。过高或过低的氮磷比均不适合米氏凯伦藻的生长,该藻在N∶P=32∶1条件下比生长率最快,为0.33 d-1。米氏凯伦藻对氮的需求高于磷,在适当的磷限制环境中能够维持更长的生长周期。引发赤潮的主要原因并不是由于米氏凯伦藻赤潮暴发海域的低氮磷比,而是赤潮暴发过程中,米氏凯伦藻对营养盐的大量消耗,尤其是对氮的消耗。  相似文献   

17.
温度对四种淡水颤藻目丝状藻体生长的影响   总被引:2,自引:0,他引:2  
在实验室条件下研究温度对4种颤藻目丝状藻体:皮质颤藻,尖细颤藻,蛇形颤藻及坑形细鞘丝藻生长的影响.藻体在持续光照下培养于BG11培养基中,通过测定叶绿素a含量来显示藻体的生长状况.实验结果,皮质颤藻与坑形细鞘丝藻生长的最适温度是30℃,尖细颤藻、蛇形颤藻的生长最适温度是35℃.  相似文献   

18.
为研究微小亚历山大藻生长和产麻痹性贝类毒素(PSP)的规律,采用不同初始密度对微小亚历山大藻进行培养,综合采用显微镜计数、小鼠生物检测(MBA)、高效液相色谱—柱后衍生(HPLC-FLD)等方法分析微小亚历山大藻在不同接种密度条件下的生长和产毒特性.结果表明,随着初始密度增加微小亚历山大藻通过静止期的时间缩短,到达最大生长密度的时间提前,但是生长的最大细胞密度和平均比生长率却呈下降趋势,增值模型反应的情况与观测结果相一致,随着初始密度的增加,依赖于初始种群密度的参数(a)减少,环境容量(K)减少,种群瞬时增殖速度(r)下降.4种不同初始密度(0.05×104、0.10×104、0.15×104、0.30×104cells/mL)条件下,微小亚历山大藻细胞的毒性呈现先增大后减小趋势,在初始密度为0.1×104 cells/mL条件下,同一生长期内细胞毒性比其他3个密度条件下高.HPLC检测微小亚历山大藻含有的毒素为GTX1-4,含量分别为2.14、2.08、4.97、5.04 fmol/cell.综合考虑微小亚历山大藻在生长过程中的细胞最大密度、达到最大密度所用时间以及细胞毒性大小等因数,采用(0.10~0.15)×104 cells/mL接种密度培养微小亚历山大藻,能够达到较好的产毒效果.  相似文献   

19.
为了优化舟形藻最佳生长条件,以水生硅藻培养基为基础培养基,对培养基中N、P、Si、C、Mg 5种营养盐进行了优化,采用单因子试验和L16(45)正交设计法进行优化.试验结果表明,舟形藻的最适氮源为尿素,5种营养盐的最佳质量浓度为:尿素50 mg/L,K2HPO4·3H2O 40 mg/L,Na2SiO3· 9H2O 200 mg/L,NaHCO3 10 mg/L,MgSO4·7H2O 70 mg/L,因此在后续试验中均以此培养基配方进行藻体培养.  相似文献   

20.
研究了不同温度(5℃、10℃、15℃、20℃、25℃)和光照[50、100、200 、300μmol/(m^2·s)]对铜藻(Sargassum horneri)生长、光合色素和生化组分的影响。结果显示,温度和光照对这3个方面均有显著影响(P<0.05)。铜藻在5℃~20℃、50~300μmol/(m^2·s)时均可生长,且最适生长条件为20℃、200~300μmol/(m^2·s),特定生长率较高。温度高于25℃,藻体基本停止生长并出现腐烂现象。25℃、50μmol/(m^2·s)时,铜藻色素积累较多。可溶性蛋白和可溶性糖的含量分别在10℃、20℃时最高,不同光照间无显著性差异(P>0.05)。灰分和粗蛋白含量在5℃~10℃、50μmol/(m^2·s)时最高。粗脂肪含量在10℃和25℃时最低,不同光照间无显著性差异(P>0.05)。褐藻胶含量在10℃、100μmol/(m^2·s)时最高,岩藻黄素含量在10℃、50μmol/(m^2·s)时达到最大。褐藻多酚含量在低温为 5℃或高温25℃、200~300μmol/(m^2·s)高光下达到最大。研究表明,室内培养铜藻在20℃左右、200~300μmol/(m^2·s)时,生长速率最快,而铜藻在10℃、100μmol/(m^2·s)环境条件下,藻体色泽及健壮程度更好,铜藻个体大,生长速度快,可进行大规模的养殖生产。本研究结果对铜藻养殖及其活性物质提取具有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号