首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The effects of sample pretreatment (field-moist, air-dried or tension rewetted) on aggregate stability measured by wet sieving or turbidimetry were compared for a group of soil samples ranging in organic C content from 20 to 40 g C kg–1. Concentrations of total N, total and hot-water-extractable carbohydrate and microbial biomass C were linearly related to those of organic C. Aggregate stability measured by wet sieving using air-dried or field-moist samples and that measured by turbidimetry, regardless of sample pretreatment, increased curvilinearly with increasing soil organic C content. However, when tension-rewetted samples were used for wet sieving, aggregate stability was essentially unaffected by soil organic C content. Measurements of aggregate stability (apart from wet sieving using rewetted soils) were closely correlated with one another and with organic C, total and extractable carbohydrate and microbial biomass C content of the soils. The short-term effects of aggregate stability were also studied. Soils from under long-term arable management and those under long-term arable followed by 1 or 3 years under pasture had similar organic C contents, but aggregate stability measured by turbidimetry and by wet sieving using air-dried or field-moist samples increased with increasing years under pasture. Light fraction C, microbial biomass and hot-water-extractable carbohydrate concentrations also increased. It was concluded that both total and labile soil organic C content are important in relation to water-stable aggregation and that the use of tension-rewetted samples to measure stability by wet sieving is unsatisfactory since little separation of values is achieved. Received: 6 January 1999  相似文献   

2.
The effects of soil organic matter content, soil water content and duration of wet-sieving on aggregate stability of soils with contrasting cropping histories were investigated. Long-term pasture samples had a greater aggregate stability than long-term arable samples. However, air-drying aggregates before wet-sieving increased the aggregate stability of long-term pasture samples, but decreased that of long-term arable samples. With increasing duration of wet-sieving, the proportion of water-stable aggregates declined until a near-constant value was reached for each sample. Thus, within a sample there are aggregates possessing a wide range of stabilities; with increasing time under arable cropping there is an increase in the proportion of unstable aggregates present, and the measured aggregate stability, therefore, declines. Unstable aggregates (defined as those dispersed after wet-sieving for 1 min) generally had lower organic matter content than stable ones (those still intact after sieving for 15 min). The aggregate stability of a regrassed site (13 years of arable plus 2 years of pasture) was markedly higher than that of a corresponding site from 15 years of arable cropping. Nonetheless, levels of organic matter (organic C, total N and hydrolysable carbohydrate) were almost identical at the two sites. However, aggregates from the regrassed site did have a higher biomass C and water-extractable carbohydrate content than those from the 15-year arable site. For a group of soils with varying cropping histories, aggregate stability was significantly more closely correlated with hot water-extractable carbohydrate content than with organic C or hydrolysable carbohydrate content. It is suggested that the hot water-extractable carbohydrate fraction may represent a pool of carbohydrate involved in the formation of stable aggregates.  相似文献   

3.
The influence of root growth and activities on soil aggregate stability was investigated using five crop species and two soils. Single plants were grown in pots for 6 weeks or less to minimise any possibility of changes in aggregate stability caused by decomposition of dead roots. Planted soils were compared with fallow controls. Aggregate stability was estimated by a turbidimetric technique (used for fresh and air-dried samples) and by wet sieving (used for air-dried samples only). Root growth of perennial ryegrass and of lucerne for 42 days was generally associated with increases in aggregate stability whether the soil was tested in a fresh or an air-dried condition. These beneficial effects were associated with periodate-sensitive (probably polysaccharide) materials produced in the rhizosphere. Growth of maize, tomato and wheat roots for 25 days decreased the stability of fresh soil aggregates, although the effects of tomato and of wheat were not consistent. However, the deleterious effects of these three species on aggregate stability were not apparent after air-drying. The restabilization of maize soils (relative to fallow controls) on air-drying appeared to be caused by increased stabilization by periodate-sensitive materials. The results suggest that the growth and activities of living roots may be a major factor controlling the overall direction and magnitude of changes in aggregate stability under arable or ley crops.  相似文献   

4.
Air-drying and wetting of air-dried soil samples with water (i.e., rewetting) are widely used sample treatments in soil analyses. It is recognized that both air-drying and rewetting of soil samples affect the characteristics of organic matter (OM), but systematic evaluations are scarce. In this review, we synthesize what is known in the scientific literature concerning the types and magnitudes of effects resulting from air-drying and rewetting with respect to i) characteristics of aggregate-associated and water-extractable OM, ii) soil microbiota, and iii) decomposition of OM. Air-drying of soil samples results in the formation of new and/or stronger OM-mineral interactions as well as increased hydrophobicity and mineral surface acidity. The formation of new and enhancement of existing OM-mineral interactions may lead to an increase in perceived aggregate stability, potentially affecting estimates of amount and persistence of OM associated with soil aggregates. Compared to field moist samples, air-dried samples had 8–41% higher relative dry mass proportions in the 2–0.25 mm aggregate size fraction. Pronounced changes in the amount and composition of the water-extractable OM and soil microbiota are also detected during the course of air-drying and rewetting with the potential to affect the conclusions derived from OM decomposition experiments. Air-dried soil samples were found to have 2–10 times higher amounts of water extractable organic carbon and a decrease between 3% and 69% in the microbial biomass carbon (using the substrate-induced respiration technique) compared to field moist samples. The magnitude of air-drying and rewetting derived effects on sample characteristics appears to be site and soil type specific.  相似文献   

5.
Abstract. The aggregate stabilities of a soil restored after opencast mining and an undisturbed soil were measured over a complete cropping year from the time of ploughing a grass ley in autumn. This was to examine the effects of various post-restoration cropping regimes on soil aggregate stability and soil porosity. A wet sieving technique and a mild dispersion method were used to determine indices of soil macro- and micro-aggregate stability, respectively. Air filled porosity at field capacity and crumb porosity were also determined. Removal, storage and restoration decreased macro- and micro-aggregate stability. After restoration, the different grass managements i.e. cutting for silage and grazing, had similar effects on soil aggregate stability and maintained greater aggregate stability than the arable regimes. The pattern of fluctuation in soil macro-aggregate stability over the year was similar under all crops at both sites, but at the restored site there was a decline in stability, and differences in the air filled porosity at field capacity developed between cropping regimes. Micro-aggregate stability was less at the restored than at the undisturbed site and showed no seasonal variation or difference between cropping regimes. However, a difference in crumb porosity between cropping regimes did develop.  相似文献   

6.
Soil-surface seals and crusts resulting from aggregate breakdown reduce the soil infiltration rate and may induce erosion by increasing runoff. The cultivated loess areas of northwestern Europe are particularly prone to these processes.Surface samples of ten tilled silty loamy loess soils, ranging in clay content from 120 to 350 g kg−1 and in organic carbon from 10 to 20 g kg−1, were packed into 0.5 m2 plots with 5% slopes and subjected to simulated rainfall applied at 30 mm h−1. The 120 minutes rainfall events were applied to initially field-moist soil, air-dried soil and rewetted soil to investigate the effect of soil moisture content prior to rainfall. Runoff and eroded sediments were collected at 5 minutes intervals. Aggregate stability of the soils was assessed by measuring particle-size distribution after different treatments.All soils formed seals. Runoff rates were between 70 and 90% by the end of the rainfall event for field-moist plots. There were large differences between soil runoff rates for the air-dried and rewetted plots. Interrill erosion was associated with runoff, and sediment concentration in runoff readily reached a steady-state value. Measurements of aggregate stability for various treatments were in good agreement with sealing, runoff and erosion responses to rainfall. Runoff and erosion were lower for air-dried plots than for field-moist plots, and were either intermediate or lowest for rewetted plots, depending on soil characteristics. Soils with a high clay content had the lowest erosion rate when they were rewetted, whereas the soil with a high organic-carbon content had the lowest erosion rate in air-dry conditions. The results indicate the complexity of the effect of initial moisture content, and the interactions between soil properties and climate.  相似文献   

7.
Soil enzyme activities are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined in fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or air-drying and rewetting on β-glucosidase, acid phosphatase and urease activities in soils from different locations, degradation status and sampling seasons, and (ii) assess if air-drying or air-drying and rewetting is an accurate sample storage and pre-treatment procedure for enzyme activities in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that urease, phosphatase and β-glucosidase activities were hardly affected by air-drying of degraded and non-degraded soils from the two locations studied in all seasons. Short incubations (4, 8 and 12 d at 23 °C) of rewetted air-dried soil at 55% of water-holding capacity showed different patterns depending on the enzyme studied. Urease and β-glucosidase activities were relatively stable during incubation, with several significant (P<0.05) shifts up and down in some soils and samplings. However, acid phosphatase showed an increase in activity with incubation, of between 5% and 50% relative to air-dried samples. These increases followed no pattern and were unrelated to soil characteristics or sampling date. Hence, urease, phosphatase and β-glucosidase activities determined in air-dried soil samples seem to be representative of those obtained under field-moist conditions. In contrast, short incubations of rewetted soil samples can produce fluctuations in these enzyme activities, mainly of acid phosphatase, and estimations in these conditions are not so representative of field-moist soil values.  相似文献   

8.
Abstract. Soils, of clay texture, were taken from two crop rotations in a long term trial, (i) maize - spring oats - maize, (ii) maize - spring oats - autumn oats - red clover, and from an adjacent uncropped fenceline. Wet sieving was preceded by wetting under vacuum, wetting under tension or by direct immersion. The undisturbed soil was the most stable; the inclusion of clover in the rotation improved aggregate stability. Direct immersion was most disruptive in disintegrating aggregates followed by vacuum and pre-wetting under tension.  相似文献   

9.
《CATENA》2005,59(1):69-78
The wetting capacity of Hapludands and Palehumults under grassland and forest in southern Chile was assessed by measuring contact angles of solid, water and air interfaces. Microaggregates obtained from natural aggregates of two sizes (4–6.3 and 10–12 mm) were spread onto microscope slides and drops of saturated aqueous KCl solution were placed on the surface of the aggregates. The wetting angles of the drops were measured with a microscope with a horizontal viewing direction and an ocular containing a goniometer. The wetting capacity was determined on layers peeled progressively from the walls of aggregates toward their centres, and the organic matter content of the different aggregate layers was determined. The water stability of the aggregates was measured by dry and wet sieving. Hapludands always showed greater hydrophobicity than Palehumults. The wetting resistance of the soil matrix samples was less than that of the single layers of aggregates. The wetting resistance of aggregates generally increased from the exterior to their centre. The increase was strongest in the topsoil under grassland. Smaller aggregates under both grassland and forest showed a greater hydrophobicity than larger ones. Organic matter content increased towards the aggregate interiors, especially in the fine aggregates. Aggregates with greater water repellence were more stable to dry and wet sieving, especially under forest. Therefore, intensive management decreases wetting resistance and makes the soil less stable.  相似文献   

10.
Samples from six ash soils were chosen with a range of Fe and C contents. Stabilities over the aggregate size-range from < 1 †m to > 2 mm were measured by selectively removing aggregating agents from fresh soil samples. Wet-sieving was also carried out on both field-moist and air-dried 3.4–2.0 mm macroaggregates.
Macroaggregate stabilities were closely related to C contents and were also enhanced by high contents of allophane and/or Feox. High water contents decreased the stability of field-moist macroaggregates.
Clay-sized material was most readily dispersed with Na resin after pretreatment with hydrogen peroxide; removing the latter alone was usually ineffective in dispersing clays.  相似文献   

11.
Conversion of meadow and forest ecosystems to agricultural land generally leads to changes in soil structure. This comparative study presents the composition and stability of structural aggregates in humus horizons (0–30 cm) of noncarbonate silty‐clay Fluvisols in the Kolubara River Valley, W Serbia. Aggregates collected from under a native forest were compared to aggregates from meadows and arable fields which underwent crop rotation for > 100 y. The results show that size distribution and stability of structural aggregates in the humus horizons of arable soil are significantly impaired due to long‐term anthropogenization. In the humus horizons, the content of the agronomically most valuable aggregates (0.25–10 mm) decreased by a factor of ≈ 2, from 68%–74% to 37%–39%, while the percentage of cloddy aggregates (>10 mm) increased by a factor of ≈ 2, from 23%–31% to 48%–62%, compared to forest aggregates. The long‐term‐arable soil had significantly (p < 0.05) lower aggregate stability, determined by wet sieving, than meadow and forest soils. The lowest aggregate stability was found in aggregates > 3 mm. Their content is ≈ 2.5–3 times lower in arable soil (13%–16%) than in forest soil (32%–42%) at a depth of 0–20 cm. The largest mean weight diameters of dry aggregates (dMWD) with a range between 12.6 and 14.7 mm were found in arable soil, vs. 9.5–9.9 mm in meadow and 6.5–8.3 mm in forest. The arable soil had significantly lower mean weight diameters of wet‐stable aggregates (wMWD) and a lower structure coefficient (Ks) than forest and meadow soils. The dispersion ratio (DR) of arable soil was significantly higher than that of forest and meadow soils. Forest and meadow showed a significantly higher soil organic‐matter content (SOM) by 74% and 39%, respectively, compared with arable soil, while meadow uses decreased the SOM content by 57% compared with forest at a depth of 0–10 cm. In conclusion, the results showed that long‐term conventional tillage of soils from natural forest and meadow in the lowland ecosystems of W Serbia degraded soil aggregate–size distribution and stability and reduced SOM content, probably resulting in lower productivity and reduced crop yields.  相似文献   

12.
赵炳梓  陈吉  张佳宝  钦绳武 《土壤》2011,43(3):418-425
以经历18年不同施肥管理的土壤为研究对象,阐明它们经过4个不同时间保存或处理后的土壤脲酶、转化酶、脱氢酶、及FDA酶活性的动态变化。处理包括:风干保存30天或鲜土状态、风干保存210天、风干土湿润至田间持水量(25℃)条件下分别培育15天和51天;同时评估这些酶活性的变化程度与土壤本身有机碳含量之间的关系。结果表明,风干土保存时间和风干土湿润后短期培育均对脲酶活性影响很小,但风干土湿润培养51天后其活性则显著降低;随风干土保存时间延长,转化酶活性显著降低;与鲜土相比,风干土湿润培养15天后,脱氢酶活性显著提高,但继续湿润培养至51天后,其活性又降至与鲜土相当,因此风干土湿润培育一定时间后测定的脱氢酶活性可用来代表其田间自然湿度时的状态;FDA酶活性的变异程度最大,与其从鲜土状态至风干状态的活性急剧下降有关。土壤本身有机碳含量与脲酶和脱氢酶的活性变化程度成显著负相关关系,说明土壤有机碳含量是决定它们随环境条件改变而变化的主要因素之一。另外,土壤NH4+-N、NO3--N和可溶性有机碳含量对上述4种处理的响应程度也存在差异。其中风干状态土壤经湿润培育处理后,NH4+-N含量呈先降后升趋势,正好与脲酶活性变化趋势相反;而NO3--N含量整体上呈上升趋势,可溶性有机碳含量则正好相反。  相似文献   

13.
Purpose

Frequent cultivation and overhead irrigation have led to severe surface crusting, erosion and poor irrigation performance on sandy clay loam soils in the Coal River Valley, Tasmania, Australia. This study was established to identify the key soil properties related to aggregate breakdown determined by different methods, and explore options for reducing soil crusting.

Materials and methods

Soil aggregates were collected from 0 to 5 cm depth from 20 sites managed for packet salad and lettuce production. The stability of air-dried 2.00–4.75 mm aggregates was determined by rainfall simulation, wet sieving and clay dispersion. Soil aggregates were analysed for particle size, mineralogy, soluble and exchangeable cations, pH, EC, labile carbon and total carbon. The association between aggregate stability and the measured soil properties was explored using Spearman correlation, linear regression and regression tree analysis.

Result and discussion

Aggregate stability determined by rainfall simulation was closely associated with soil properties that promote aggregation, including effective cation exchangeable capacity (ECEC) and the proportion of polyvalent cations (Ca2+, Al3+). In contrast, aggregate stability determined by wet sieving was associated with soil properties that promote disaggregation, including quartz and sand content, and to lesser extent, the proportion of monovalent cations (especially K+). Clay dispersion was closely associated with pH, quartz content, soil texture and the sodium adsorption ratio. Soil carbon appeared to have only moderate influence on aggregate stability, but not clay dispersion, while labile carbon was not significantly related to any measure of aggregate stability or clay dispersion. Similarly, the proportion of Na+ ions was not related to either measure of aggregate stability and was only moderately related to clay dispersion.

Conclusions

Options for improving aggregate stability appear limited as aggregate stability was strongly related to the content of inherent soil properties such as sand/quartz and smectite contents. However, high correlation between exchangeable Ca2+ and aggregate stability determined by rainfall simulation indicates that soil crusting may be reduced through application of products that rich in Ca2+ such as gypsum.

  相似文献   

14.
土地利用方式对红壤团聚体稳定性的影响   总被引:22,自引:6,他引:22  
以湖南、湖北和江西3省第四纪红土母质发育的土壤为材料,应用干、湿筛法比较不同利用方式下土壤的团聚体粒级分布、平均重量直径(MWD)以及团聚体破坏率(PAD)的差异,分析在不同利用方式下土壤团聚体的分布特征以及稳定性与土壤有机碳的联系。结果表明:不同利用方式下干筛团聚体均以>5mm粒级为主,其次为<0.25mm粒级,而湿筛团聚体则以<0.25mm粒级为主。各不同利用方式土壤团聚体干、湿筛MWD值变化趋势大体一致,并且与有机质含量均呈显著正相关关系。各不同利用方式下PAD有显著差异,表现为旱地>果园>水田>茶园>林地,并且PAD与土壤有机质含量和湿筛获得的MWD值呈极显著负相关。不同有机质含量可显著影响不同利用方式下水稳性团聚体粒级分布。>5mm,1~0.5mm,0.5~0.25mm,>0.25mm粒级水稳性团聚体的含量比例均与有机质含量之间有极显著的相关关系,而5~2mm和2~1mm粒级水稳性团聚体则与有机质含量相关性并不显著。不同土地利用方式对土壤有机质含量有极大的影响,有机质含量高低表现为水田>林地>茶园>旱地>果园。  相似文献   

15.
不同肥力水平土壤团聚体的稳定性及对氮肥盐溶液的响应   总被引:5,自引:2,他引:5  
在室内利用筛分技术研究了关中地区相同质地类型3个不同肥力水平土团聚体的组成及其稳定性,并在4个不同浓度氯化铵溶液中进行湿筛,探讨了不同肥力土壤团聚体对盐溶液的反应特征及抗化学物质分散的能力,以便揭示长期施用无机氮肥对土壤团聚体的作用与影响。结果表明,干、 湿筛结果显示3个肥力水平土壤直径>0.25 mm团聚体的含量均随肥力水平的升高显著增加,供试土团聚体的水稳性较差,湿筛后直径<0.25 mm的微团聚体含量在85%以上,而富有农学价值的直径在15 mm的水稳性团聚体在高肥力土壤中含量仅为2.80%,中肥力土壤为1.47%,低肥力土壤为0.84%。3种肥力土壤团聚体组成受氯化铵溶液浓度的影响,在4种浓度的氯化铵溶液中湿筛后,直径25 mm的团聚体的含量随溶液浓度增大而减少,而0.252 mm团聚体含量明显增加。试验得到的主要结论为, 不同肥力水平土壤团聚体质量差异明显; 团聚体的化学稳定性受盐溶液浓度和肥力水平的共同作用,随氮肥溶液浓度增大,团聚体组成集中在0.252 mm的较小范围,盐分使得多级的团聚体组成向单一化方向变化; 高肥力土壤受氮肥溶液的影响相对较弱,中、 低肥力土壤对氮肥溶液的响应则较为强烈。  相似文献   

16.
研究森林土壤团聚体酶活性对氮沉降的响应差异以及团聚体酶活性的影响因素,以滇中亚高山云南松林和华山松林为研究对象,于2020年6月至2021年5月通过野外模拟氮沉降试验,设置对照[CK,0 g/(m2·a)N]、低氮[LN,10 g/(m2·a)N]、中氮[MN,20 g/(m2·a)N]、高氮[HN,25 g/(m2·a)N],分别采集旱季(2021年2月)和雨季(2020年8月)的土壤样品,分析土壤团聚体中脲酶(Ure)、蔗糖酶(Inv)和酸性磷酸酶(AP)的变化特征,以及与环境因子的交互作用,阐明不同筛分方式下土壤团聚体酶活性对氮沉降的响应特征。结果表明:(1)氮沉降对2种林分下土壤团聚体的分布未造成显著影响,而不同筛分方式则影响显著;不同氮沉降水平下,土壤团聚体中3种酶活性均表现出LN促进,MN与HN抑制;(2)与干筛法相比,湿筛法下土壤团聚体中酶活性均有显著下降,Inv和Ure的团聚体酶活性的降幅均在20%以上,AP的降幅可达57.55%;(3)土壤干筛、湿筛团聚体酶活性的几何平均数(GMe...  相似文献   

17.
Different land‐use affects the organization of mineral soil particles and soil organic components into aggregates and the consequent arrangement of the aggregates will influence essential ecosystem functions. We investigated a continuous rubber plantation (forested), land fallowed for 10 y (fallow), 10‐y continuous arable cropping land and cropped land with top soil removed (TSR) for concentrations of C, N, and P in bulk soil and dry aggregates. Results showed that a high level of soil disturbance decreased the proportion of surface (0–15 cm) soil aggregate stability (low mean weight diameter) in TSR by 149% and arable cropping by 125% compared with the forested. Aggregate associated SOC was higher in aggregate‐size fractions of forested land‐use when compared with that in 10‐y fallow, continuous arable cropping, and TSR. For aggregate associated N, fallow and forested land‐use types concentrated higher proportion across aggregate sizes than the arable cropping and TSR. Macro aggregate fractions generally contained higher concentrations of C, N, and P compared with the micro‐aggregates. Water transmission indicators like total porosity and saturated hydraulic conductivity recorded higher values with forested and fallow land‐use than the others. We can thus conclude that long‐term soil disturbance due to cultivation and removal of top soil reduces the accumulation of soil C, N, and P in bulk soil and decreases water transmission properties. On the other hand, aggregate‐associated C, N and P accumulations are dependent on the level of soil surface disturbance and aggregate sizes.  相似文献   

18.
土壤团聚体的数量和质量直接影响着土壤性质和有机碳固存。研究长期不同施肥措施及复垦年限对采煤塌陷区土壤团聚体的重量分布比例及其稳定性的影响,为该区域的农业生产和土壤质量提升提供科学依据。采集复垦6年和11年定位试验不同施肥处理耕层土样,选取不施肥(CK)、平衡施氮磷钾肥(NPK)、单施有机肥(M)、有机无机肥配施(MNPK)4个处理,利用干筛法和湿筛法获得4种粒径的团聚体/粉黏粒组分(> 2 mm、0.25-2 mm、0.053-0.25 mm和< 0.053 mm),用> 0.25 mm团聚体含量(R0.25)、平均重量直径(MWD)、团聚体破坏率(PAD)和土壤不稳定团粒指数(ELT)表示团聚体的稳定性,并测定了土壤有机碳含量。结果表明:复垦年限对土壤团聚体的含量及稳定性影响产生了显著影响。干筛条件下,复垦6年和11年均显著降低了各处理0.053-0.25 mm团聚体和< 0.053 mm组分的含量,降幅分别为68.39%-87.37%、69.63%-78.32%(6年)和90.01%-93.68%、78.29%-83.93%(11年);湿筛条件下,复垦11年显著提高了各处理> 2 mm团聚体的含量,增幅达473.35%-645.16%,但是显著降低了0.053-0.25 mm团聚体的含量,降幅为43.67%-57.54%。土壤团聚体的稳定性也随着复垦年限的增加而逐渐增强,表现为DR0.25、WR0.25和MWD值呈增加趋势,而PAD和ELT值呈降低趋势。土壤有机碳含量与DR0.25、WR0.25、MWD水稳性呈极显著正相关关系,而它与PAD和ELT呈极显著负相关关系。本研究表明,该区域连续复垦11年提高了土壤大团聚体的含量而伴随着微团聚体含量的显著减少,导致土壤结构越来越稳定。它对提高采煤塌陷区复垦土壤肥力、改善土壤结构效果最佳。  相似文献   

19.
Soil biochemical properties are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined on fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or incubation of rewetted air-dried soil samples on microbial biomass carbon (MBC), basal soil respiration (BSR), qCO2 and water soluble carbon (WSC), in soils from different locations, with different degradation status and sampling seasons, and (ii) assess if air-drying or incubation of rewetted air-dried soil samples is an accurate sample storage and pre-treatment procedure for these soil properties in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that air-drying does not have the same effects on MBC, BSR, qCO2 and WSC depending on the geographical situation and sampling date. It seems that the warmest and driest place and season show less variation when using air-dried soil samples, with values representative of those obtained under field-moist conditions. Short incubations (4, 8 and 12 days at 23 °C) provoked a general decrease in all properties, probably due to labile organic compounds depletion. Hence, air-dried soils can be used as part of soil quality analysis to estimate these biochemical properties in summer time in the semiarid region of South-East Spain, because they have not suffered severe affections. Moreover, MBC could also be determined using air-dried soil in the driest zones during all year. In contrast, estimations with incubated soil samples are not, in any case, representative of field-moist soil values.  相似文献   

20.
土壤团聚体的数量和质量直接影响着土壤性质和有机碳固存。研究不同施肥措施及施肥年限对采煤塌陷区复垦土壤团聚体的重量分布比例及其稳定性的影响,可为该区农业生产和土壤质量提升提供科学依据。采集复垦6,11年定位试验不同施肥处理耕层(0—20 cm)土样,选取不施肥(CK)、平衡施氮磷钾化肥(NPK)、单施有机肥(M)、有机无机肥配施(MNPK)4个处理,利用干筛法和湿筛法获得4种粒径的团聚体/粉黏粒组分(>2,0.25~2,0.053~0.25,<0.053 mm),用>0.25 mm团聚体的含量(R0.25)、平均重量直径(MWD)、团聚体破坏率(PAD)和土壤不稳定团粒指数(ELT)表示团聚体的稳定性,同时测定土壤有机碳含量。结果表明:施肥年限较施肥措施对土壤团聚体的含量及稳定性产生了更显著的影响。干筛条件下,施肥6,11年均显著降低了各处理0.053~0.25 mm团聚体和<0.053 mm组分的含量,降幅分别为68.39%~87.37%,69.63%~78.32%(6年)和90.01%~93.68%,78.29%~83.93%(11年);湿筛条件下,施肥11年显著提高了各处理>2 mm团聚体的含量,增幅达473.35%~645.16%,但是显著降低了0.053~0.25 mm团聚体的含量,降幅为43.67%~57.54%。土壤团聚体的稳定性也随着施肥年限的增加而逐渐增强,表现为DR0.25、WR0.25和MWD值呈增加趋势,而PAD和ELT值呈降低趋势。土壤有机碳含量与DR0.25、WR0.25、MWD水稳性呈极显著正相关关系,而与PAD和ELT呈极显著负相关关系。本研究表明,该区域连续培肥11年提高了土壤大团聚体的含量而伴随着微团聚体含量的显著减少,导致土壤结构越来越稳定。这对于提高采煤塌陷区复垦土壤肥力、改善土壤结构产生了良好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号