共查询到18条相似文献,搜索用时 78 毫秒
1.
基于高光谱植被指数的冬小麦产量监测 总被引:1,自引:2,他引:1
为了研究利用不同生育时期的植被指数监测冬小麦产量,以2 a不同肥料处理的冬小麦为研究对象,分析不同生育时期植被指数与冬小麦产量的关系,构建冬小麦产量的光谱植被指数监测模型。结果表明,植被指数能有效监测冬小麦产量,其中,孕穗期和抽穗期植被指数的监测效果较好,孕穗期的校正均方根误差(RMSEC)和决定系数(R_C~2)分别为1 131.42和0.78,抽穗期的RMSEC和R_C~2分别为1 015.59和0.77,拔节期的监测效果次之,灌浆期和成熟期的监测效果较差;但从作物生产角度考虑,拔节期监测冬小麦产量具有更重要的现实意义。研究表明,利用拔节期植被指数能够实现冬小麦产量的早期估测。 相似文献
2.
3.
基于高光谱的冬小麦叶面积指数估算方法 总被引:3,自引:0,他引:3
【目的】冬小麦叶面积指数是评价其长势和预测产量的重要农学参数,高光谱技术监测叶面积指数的方法能够实现快速无损的监测管理。本文旨在将田间监测和高光谱遥感相结合,探索研究中国南方江汉平原地区冬小麦的最佳波段、光谱参数及监测模型。【方法】研究选取江汉平原的湖北省潜江市后湖管理区,利用ASD地物光谱仪和SunScan冠层分析系统在田间对冬小麦的冠层光谱及叶面积指数的变化进行监测,并探讨高光谱植被指数与冬小麦叶面积指数之间的定量关系。通过相关性分析、回归分析等方法构建6种植被指数与冬小麦叶面积指数的反演模型。【结果】冬小麦冠层光谱反射率中近红外波段870 nm,红光波谷670 nm,绿光波峰550 nm,蓝光450 nm波段对叶面积指数变化最为敏感,通过构建植被指数与叶面积指数模型,相关性均较好,决定系数(R2)为0.675-0.757,其中NDVI反演模型的R2最高为0.757。【结论】经模型精度检验,NDVI植被指数反演模型的精度较其它模型好,较适合对研究样区的冬小麦进行叶面积指数反演。 相似文献
4.
冬小麦冠层水平叶绿素含量的高光谱估测 总被引:1,自引:0,他引:1
【目的】利用高光谱数据对抽穗期冬小麦冠层叶绿素含量进行估测,旨在为叶绿素含量快速准确估测提供参考。【方法】利用ASD便携式野外光谱仪和SPAD-502叶绿素仪实测了冬小麦抽穗期冠层光谱反射率及叶绿素含量,并对原始光谱反射率及其一阶导数光谱与叶绿素相对含量进行了相关分析,建立了基于敏感波段、红边位置、原始光谱峰度和偏度、一阶导数光谱峰度和偏度的叶绿素估算模型,并进行检验,从中筛选出精度最高的模型。【结果】冬小麦冠层光谱曲线特征与叶绿素含量之间有着密切联系。基于原始光谱一阶导数偏度和峰度的冬小麦(抽穗期)叶绿素含量估算模型拟合精度优于其他4种估算模型,决定系数R2分别为0.847和0.572,均方根误差RMSE分别为0.397和0.697,相对误差RE分别为61.0%和119.0%,拟合精度优于其他4种估算模型。【结论】原始光谱一阶导数的偏度和峰度作为自变量能很好地估测抽穗期小麦冠层叶绿素含量。 相似文献
5.
6.
通过人工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱及其病情指数(DI).把冠层光谱一阶微分数据与相应的DI进行相关分析,采用单变量线性和非线性回归技术,建立小麦DI的估测模型,并利用不同品种小麦样本对模型精度进行可靠性检验.结果表明:DI与一阶微分在432~582 nm、637~701 nm以及715~765 nm区域内有极显著相关性,以红边峰值区(725~735 nm)一阶微分总和与绿边峰值区(521~530 nm)一阶微分总和的比值为变量的线性模型估测DI精度最高,且其对小麦品种相对不敏感.上述研究结果对利用高光谱遥感监测农作物病害及其严重程度都具有实际应用价值. 相似文献
7.
8.
干旱区基于高光谱的棉花遥感估产研究 总被引:7,自引:0,他引:7
【目的】揭示棉花产量与冠层光谱植被指数相关关系,建立棉花高光谱估算模型,促进高光谱技术在棉花长势监测和估产中应用。【方法】结合棉花生长发育规律,对棉花各时期冠层进行高光谱反射率测定,根据光谱曲线特征构建高光谱植被指数,基于棉花盛蕾期至吐絮后期7次地面光谱和产量测定,对光谱反射率与产量进行统计分析。【结果】各生育期可见光波段、近红外波段及短波红外波段光谱反射率与产量间分别达显著负相关、显著正相关与显著负相关水平。根据棉花冠层光谱波形特征,利用植被红边波段560 nm反射峰、670 nm吸收谷、近红外波段890 nm反射峰、980 nm和1 210 nm两个弱水汽吸收谷、短波红外1 650 nm和2 200 nm反射峰,设计归一化差值光谱指数,并与棉花产量进行相关分析,利用上述波段组合定义的归一化差值光谱指数与产量在各生育期均达显著或极显著相关,而VARI_700抗大气植被指数在各生育期均达极显著相关。【结论】以VARI_700抗大气植被指数建立各生育期的产量预报模型,为实现棉花营养生长期长势监测与产量预报提供依据。 相似文献
9.
基于高光谱遥感的冬小麦叶水势估算模型 总被引:2,自引:0,他引:2
【目的】采用高光谱技术,建立快速、无损与准确获取冬小麦叶水势的估算模型,为小麦灌溉的精确管理提供科学依据。【方法】利用不同水分处理的大田试验,于小麦主要生育期同步测定冠层光谱反射率、叶水势、土壤水分等信息,并探讨高光谱植被指数与冬小麦叶水势之间的定量关系。通过相关性分析、回归分析等方法,基于不同水分处理,构建4种植被指数与冬小麦叶水势的估算模型。【结果】不同水分处理和不同生育期的冬小麦,其冠层光谱反射率具有显著的变化特征。在可见光波段,冬小麦冠层反射率随着水分含量的增加而逐渐降低,而在近红外波段,其冠层反射率则随着土壤水分含量的增加而升高。随着小麦生育期的推进,在近红外波段,抽穗期的冠层反射率比拔节期的高,在灌浆期之后,红波段(670 nm)、蓝波段(450 nm)的反射率上升加快;4种植被指数与叶水势显著相关(P0.05),相关系数|r|均在0.711以上,四者均可用于冬小麦叶片水势的定量监测。在充分供水条件下(70%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.75和0.771)均低于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.808和0.896),而在重度水分亏缺条件下(50%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.857和0.853)均高于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.711和0.792);所建模型对45个未知样的预测结果与实测值相似度较高,其回归模型R~2、验证模型MRE、RMSE的范围分别为0.616—0.922、-17.50%—-12.52%、0.102—0.133。在70%FC水分处理下,基于EVI2(enhanced vegetation index)所得叶水势估算模型的R~2最高,为0.922,而在60%FC和50%FC水分处理下,由于考虑了土壤背景的影响,基于OSAVI所建模型的R~2最高,分别为0.922和0.856。【结论】4种植被指数均可用于冬小麦叶水势的定量监测。但是,在构建不同水分处理的叶水势估算模型时,应考虑土壤背景对冠层光谱的影响。研究结果可以为小麦精准灌溉管理提供技术依据,为星载数据的参数反演提供模型支持。 相似文献
10.
基于PLS 和组合预测方法的冬小麦收获
指数高光谱估测 总被引:1,自引:0,他引:1
【目的】通过遥感反演测量收获指数(HI),可节省时间和人力,但需要提高精度。通过权重最优组合算法改善收获指数估算精度,为基于多时相多光谱信息的HI遥感估算提供新方法参考。【方法】利用测定的冬小麦多个关键生育期的冠层光谱数据,对筛选的44种常用植被指数与实测收获指数进行相关性分析,挑选出每个育期中5种最优的典型植被指数;应用偏最小二乘(PLS)的方法建模,分别得到基于单个生育期光谱信息的HI遥感估测模型;借鉴组合预测原理,应用组合预测方法对全部单生育期的各HI光谱模型赋予最优权重,最终构建基于多生育期数据的HI光谱组合预测模型。【结果】(1)利用PLS后,单一生育期的建模结果较单一植被指数有所改进,但仍有待提高;(2)应用组合预测原理的HI组合预测模型,显著改善了HI的估测精度,R2达到0.55,较单生育期的建模预测,提升了13%。【结论】基于多生育期信息的组合预测方法,对各单一生育期HI预测模型赋予最优权重进行优化组合,实质间接利用了各生育期对作物HI形成的贡献,显著提高冬小麦收获指数的估测精度,是一种新颖的作物HI遥感估测方法。 相似文献
11.
冬小麦叶片光合特征高光谱遥感估算模型的比较研究 总被引:1,自引:0,他引:1
【目的】光合作用是农作物产量和品质形成的基础,农作物光合参数的准确定量遥感反演不仅能够了解农作物的生长发育和有机物累积状况,还能为基于遥感的生态系统过程模型提供参考。为快速准确的估算光合特征参量,本研究综合原始光谱、3种传统光谱变换技术和4种模拟方法构建冬小麦3种光合参数的高光谱反演模型,探讨高光谱反演冬小麦光合参数的可行性,对比不同类别光谱和模拟方法的适用性。【方法】本研究基于氮肥施用条件冬小麦气体交换和高光谱田间试验,获取不同叶位叶片的最大净光合速率(Amax)、PSⅡ有效光化学量子产量(Fv′/Fm′)、光化学猝灭系数(qP)和高光谱反射率,并对原始高光谱进行倒数、对数和一阶微分变换。根据3种光合参数和4种光谱的相关性分析结果,筛选显著性水平优于0.01的波段作为输入变量,采用偏最小二乘(PLS)、支持向量机(SVM)、多元线性回归(MLR)和人工神经网络(ANN)等方法建立冬小麦叶片光合参量反演模型,以建模和验证的决定系数(R 2)和均方根误差(RMSE)为依据,对不同模型的模拟精度进行比较分析。 【结果】(1)3种光合参数和4种光谱的相关性分析结果表明,原始、倒数和对数光谱对3种光合参数(Amax、Fv′/Fm′和qP)的敏感谱区均集中在400—750 nm波谱区间,一阶导数光谱对3个光合参数的敏感谱区为470—560、630—700和700—770 nm波谱区间。(2)Amax、Fv′/Fm′和qP的最优反演模型组合分别为基于倒数光谱的MLR模型、基于一阶导数光谱的MLR模型和基于原始光谱的MLR模型。模型的建模R 2分别为0.75、0.65和0.65,验证R 2分别为0.73、0.59和0.44,表明基于高光谱模拟Amax和Fv′/Fm′切实可行,模拟qP的有效性需要进一步验证。(3)不同变换的光谱表现能力不同,以PLS模拟Amax为例,光谱的表现能力顺序为原始光谱>倒数光谱>对数光谱>一阶导数光谱。(4)不同模型的估算能力也存在明显差异,以基于原始光谱的Amax模拟为例,不同模型的估算能力顺序为MLR>PLS>ANN>SVM。 【结论】通过对比分析4种光谱和4种模拟方法对3种冬小麦光合参数的高光谱反演结果发现,Amax和Fv′/Fm′可以很好通过高光谱进行模拟,而高光谱对qP解释能力偏低,有待进一步研究。高光谱信息对冬小麦光合参量具有较强的敏感性,同时受光谱类型和模拟方法的影响,可以用来监测冬小麦光合能力的动态变化,为把握农作物生长状况提供依据。 相似文献
12.
2012年对晋南3个县174个农户水地冬小麦灌溉施肥效果进行了调查研究。结果表明,该地区农户水地冬小麦产量较高,平均为5 836.7 kg/hm2,增产潜力较大;平均灌溉次数由1.9次增加到2.3次时,水地冬小麦产量会增加;当地施肥状况极不平衡,氮肥用量偏高,而磷肥不足;在当年降雨较为充足的情况下,当氮肥用量为180 kg/hm2、磷肥用量为100 kg/hm2左右时,水地冬小麦产量达到最高。适量增加灌水次数、控制氮肥用量、增加磷素养分投入对水地冬小麦增产有重要意义。 相似文献
13.
为进一步提高光谱数据反演小麦籽粒蛋白质含量的精度以及反演模型的可解释性,研究以籽粒蛋白质含量(GPC)-氮素-叶绿素之间的关系为载体,通过叶绿素筛选相关植被指数,采用偏最小二乘回归(PLS)方法建立GPC反演模型。结果表明,开花期是监测籽粒蛋白质含量的最优时期。开花期氮素与对应密度叶绿素的相关性较高。通过筛选出与叶绿素密切相关的植被指数,利用PLS建立籽粒蛋白质含量反演模型,模型决定系数R2为0.77,RMSE为0.95%,用其他年份数据进行模型验证,结果显示RMSE达到1.22%。本研究表明:基于氮素、叶绿素关系建立PLS反演模型能够实现不同年份GPC光谱遥感反演,且模型在年际间表现出较高的精度和稳定性。 相似文献
14.
GIS支持下的临汾市冬小麦动态估产模型研究 总被引:1,自引:0,他引:1
利用1982—2008年临汾市各县(市)的气象观测资料及冬小麦单产资料,在ArcGIS地理信息系统软件下,将各因子进行插值后,再提取耕地区域的要素信息,在SPSS 11.5统计软件中以旬为单位建立了临汾市冬小麦动态估产模型,并利用2008年的实测资料对模型进行了验证。结果表明,研究所建立的动态估产模型精度较高,其估产相对误差绝对值在0.33%~5.87%之间,具有较高的稳定性。同时,从模型估产的相对误差动态变化来看,随着时间的推移,即越临近小麦成熟期,估产误差越小,说明气象因素的累计作用对冬小麦估产具有重要的意义。 相似文献
15.
基于多生育期MODIS-NDVI的区域冬小麦遥感估产研究 总被引:1,自引:0,他引:1
以河南省开封市为研究区,采用2005—2013年种植区域冬小麦生育期内16 d合成的250 m空间分辨率的归一化植被指数(NDVI)之和,与冬小麦产量数据进行相关分析,筛选得到最佳遥感估产时相,建立单变量回归模型;同时,基于冬小麦生长的各个关键时期NDVI构建多元回归模型,再通过主成分分析方法对多元回归模型参数进行改进,得到新的估产模型;最后使用开封市2014年的产量数据对估产模型进行验证,旨在构建具有较高精度的估产模型,从而更好地指导小麦生产。结果显示,3种估产模型的估产误差均控制在10.55%内,根据3个模型得到研究区内冬小麦最佳产量预测时段为3月下旬,即拔节期;3个模型中,主成分回归估产模型的产量拟合精度最高,达93.12%,具有一定的实用价值。 相似文献
16.
一种基于趋势单产和遥感修正模型的混合估产模型 总被引:3,自引:0,他引:3
【目的】在分析国内外农作物估产方法的相关研究进展基础上,将传统统计估产方法和遥感估产方法相结合,提出一种新的混合估产模型。【方法】该模型由趋势单产、遥感修正单产和随机误差项三部分组成,其中趋势单产利用历史长时间序列的单产统计数据,通过多项式回归的方法结合ARIMA模型修正得到,遥感修正单产利用3个作物关键生育期NDVI和实测单产多元回归得到。为验证所提出估产方法的可行性和精度,利用2015年冬小麦关键生育期的三景环境卫星遥感影像和冬小麦实测地块单产数据以及近30年(1985—2014年)北京市各区县的冬小麦单产数据,对2015年的北京市的冬小麦单产进行估算,与真实值(2015年单产统计数据)对比。【结果】混合估产模型对北京市的冬小麦单产预测精度达到98.7%,各区县估产精度均超过90%,除房山(90.3%)外,各县单产预测相对精度均超过95%;传统趋势单产模型对北京市的冬小麦单产预测精度达到94.75%,但在区县尺度上,传统估产模型预测精度较低,对房山区的估产精度不足80%;引入ARIMA模型可以提高传统趋势单产模型的精度。修正后的趋势单产模型冬小麦单产预测精度平均提高了1.59%。本文建立的遥感修正模型,利用三景遥感影像修正结果最优,此方法使冬小麦估产精度整体提升3.55%,尤其是房山、平谷等区县,精度明显提升。【结论】该模型在市级尺度和县级尺度上预测冬小麦单产均取得较高精度,充分考虑冬小麦时间尺度和空间尺度上的变化,对农作物估产有一定的指导意义。 相似文献
17.
MODIS遥感数据具有探测周期短、覆盖面积广、数据开放等优点,适合大尺度、动态的农业遥感监测应用。结合了MODIS遥感数据资源的特点和农作物物候特征,提出了基于MODIS的农作物面积遥感监测方法,并根据黄淮地区冬小麦种植面积提取的应用需求,选用地理空间数据云平台提供的3种MODIS数据产品进行了农作物面积提取。结果表明,使用5 d合成数据产品的提取精度较高。 相似文献
18.
利用TM影像更新研究区的土地利用数据,提取冬小麦可能出现的区域作为掩膜限定识别范围,从而可以减少其他植被类型信息的干扰;通过选取冬小麦样点,在时间序列NDVI数据中提取纯冬小麦的时序曲线,根据曲线特征构建时相识别模型;在限定的范围内根据识别模型提取冬小麦,进而将两个尺度数据进行综合处理和面积统计,冬小麦面积为268.65×10~3 hm~2;利用统计年鉴数据和随机抽样两种方法进行精度分析,结果显示面积精度为91.56%,位置精度为87.46%。与实地调查和人工解译相比,大大提供了工作效率,减少了工作量,适用于大面积区域尺度的冬小麦监测。 相似文献