首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 7 毫秒
1.
The induction and differentiation of feeding structures (syncytia) of the cyst nematode Heterodera schachtii in roots of Arabidopsis thaliana is accompanied by drastic cellular modifications. We investigated the formation of cell wall openings which occurred during syncytium differentiation. At the beginning of syncytium induction, a callose-like layer was deposited inside of the wall of the initial syncytial cell (ISC). First wall dissolutions developed by gradual widening of plasmodesmata between the ISC and neighbouring cells. As a general thickening of syncytial cell walls blocked existing plasmodesmata, other large openings were formed by enzymatic dissolution of intact walls by putative cellulase activity.  相似文献   

2.
潜在外来入侵甜菜孢囊线虫在中国的适生性风险分析   总被引:3,自引:0,他引:3  
本文应用MAXENT与GARP两种生态位模型对甜菜孢囊线虫在中国的适生性进行了风险分析和预测。结果表明甜菜孢囊线虫可在中国17个省市生存,适生范围为26°N~48°N,77.6°E~136°E。甜菜孢囊线虫入侵的高风险区:内蒙古南部、新疆西部、河北中南部、山西东北部、宁夏、甘肃北部;中风险区:北京、天津、陕西、山西大部、内蒙古西部和东南部、吉林西部、新疆北部;低风险区:河南、陕西南部、山东、内蒙古中东部、新疆中部、辽宁、吉林大部、黑龙江南部、江苏、安徽、湖北、湖南、江西、浙江北部;而青海、新疆南部、西藏、四川、重庆、云南、贵州、广西、广东、福建、海南、内蒙古少数地区和黑龙江部分地区属于基本不发生区。我国内蒙古、新疆、辽宁等省市甜菜种植区均适合甜菜孢囊线虫发生,对上述地区的进出口岸应加强甜菜孢囊线虫的检疫工作。  相似文献   

3.
国外甜菜孢囊线虫发生危害、生物学和控制技术研究进展   总被引:1,自引:0,他引:1  
甜菜孢囊线虫(Heterodera schachtii Schmidt)是全世界重要检疫性有害生物,对甜菜具有毁灭性危害,该线虫已在全世界50多个国家或地区有分布,22个国家将其列为检疫对象。甜菜孢囊线虫寄主多达23科95属218种植物,可导致甜菜产量损失达25%~70%,甚至绝产,在欧洲每年造成的经济损失已超过9 000万欧元,严重威胁当地甜菜生产和制糖业。甜菜孢囊线虫是我国重要进境检疫性有害生物,因其对甜菜具有毁灭性危害,我国各级农业行政主管部门对甜菜孢囊线虫都高度重视,严防该线虫的暴发和危害,本文介绍国外甜菜孢囊线虫研究进展。  相似文献   

4.
The development ofHeterodera schachtii Schm. (beet cyst nematode, BCN) juveniles in roots of resistant and susceptible genotypes belonging to cruciferous crop species and hybrids was studied from 4 to 28 days after inoculation. No difference in root penetration by larvae was observed between resistant and susceptible plants.The development of nematodes in roots from resistant plants ofRaphanus sativus L., resistant xBrassicoraphanus Sageret and a resistant hybrid xBrassicoraphanus x Brassica napus L. was similar. BCN resistance in these three sources of plant material appeared to be related to an increased male:female nematode ratio as compared to the ratio found in susceptibleR. sativus plants.Also in resistant plants ofSinapis alba L. and a resistant intergeneric hybridS. alba x B. napus the increase in male:female nematode ratio, as compared to the ratio found for susceptibleS. alba cultivars and a susceptible intergeneric hybridS. alba x B. napus, seemed to be related with the observed resistance. In roots of the resistantS. alba and of a resistant hybridS. alba x B. napus, however, BCN resistance might also be due to a slower development of larvae and increased necrosis of root cells at the site of larval penetration.  相似文献   

5.
The expression of 12 cDNAs from Plasmodiophora brassicae , among them two novel sequences, was determined during clubroot development on Arabidopsis thaliana . The aim was to find cDNAs expressed at distinct stages of pathogenesis. The relative amount of infection with active plasmodia could be estimated using Pb Actin cDNA as an internal standard. Two cDNAs, Pb Brip9 and Pb CC249, were strongly expressed at stages of disease development corresponding to the occurrence of sporulating plasmodia. Therefore, it should be possible in the future to find more cDNAs which could be used as markers for certain stages of clubroot development.  相似文献   

6.
The prevalence and diversity of plant parasitic nematodes in Northern Ireland cereal and grassland was determined from 191 agricultural fields. A total of 18 nematode genera were detected, including economically important pests, Meloidogyne spp., Heterodera spp. and Pratylenchus spp., each of which were above economic damage thresholds in a significant proportion of the sites (92.4%, 70% and 28.6%, respectively). The detection of the root knot nematode, Meloidogyne minor (6% prevalence), was significant given its recent emergence across the turf grass sector and the prospect of M. minor becoming a common agricultural pest. Analyses of nematode prevalence and abundance highlighted significant associations with grass and cereals, soil types, soil grade (proxy for soil quality) and rainfall levels. Specifically, nematode populations varied between the two major soils (brown earths and gleys), while significant trends for increased nematode diversity and greater prevalence of both Meloidogyne and Pratylenchus with increasing rainfall were also observed. Multivariate analyses were performed to determine interactive effects and the relative importance of the factors affecting nematode populations. Notably, rainfall, in combination with either crop type or soil grade, had a significant effect on nematode abundance and diversity. The findings suggest significant changes in nematode populations have occurred over the last several decades and the possibility that these are linked to changing climate and cropping practices are discussed, as well as future concerns for plant parasitic nematode management.  相似文献   

7.
This study investigated the ability of an endophytic fungus Acremonium alternatum to reduce clubroot formation in the model plant Arabidopsis thaliana, which is highly susceptible to Plasmodiophora brassicae . Quantitative PCR demonstrated that A. alternatum colonized the P. brassicae -infected roots and shoots of the host plant. When Arabidopsis plants were co-inoculated with P. brassicae and A. alternatum , gall formation was reduced as shown by the reduction of the disease index (DI) by up to 50% compared to plants only infected with P. brassicae, whereas the infection rate was lowered by about 20% only in several, but not all, experiments. Clubroot was similarly suppressed when plants were inoculated with autoclaved A. alternatum spores or spore extracts, showing that viable spores were not needed. However, A. alternatum spores did not inhibit P. brassicae resting spore germination. Compared to the normal root galls, the smaller root galls on A. alternatum -inoculated plants contained fewer resting spores of the clubroot pathogen. It was thus hypothesized that inoculation with A. alternatum delayed the development of P. brassicae . Using quantitative RT-PCR to monitor the expression of P. brassicae genes differentially expressed during the development of the disease, a delayed pathogen development was corroborated. Furthermore, greenhouse experiments identified a time window in which the endophyte had to be administered, where the latest effective time point was 5 days before inoculation with P. brassicae and the optimum treatment was to administer A. alternatum and P. brassicae at the same time. These results indicate that A. alternatum and perhaps similar endophytes could be useful for the management of clubroot disease.  相似文献   

8.
Cereal cyst nematode (CCN), Heterodera avenae, is one of the most important pathogens of wheat worldwide, and causes significant yield losses. Research on CCN–wheat interactions is hampered by the lack of an effective model pathosystem. This study investigated the potential of the model cereal Brachypodium distachyon (Bd21‐3) and diploid wheat 2A (G1812) and 2D (AL8/78) as model hosts for CCN. Nematode infection analysis showed that although some CCN penetrated Bd21‐3 roots, these nematodes failed to develop to the later developmental stages or form cysts, indicating B. distachyon is not a host for CCN. A strong burst of reactive oxygen species (ROS) within Bd21‐3 roots infected with CCN was induced 3 days after infection and the expression of seven ROS‐producing genes was significantly increased. In contrast, CCN completed its life cycle in both diploid wheat 2A and 2D, and formed normal syncytia in these hosts. Although CCN developmental processes within both diploid wheat 2A and 2D were very similar to those in the susceptible control, the number of cysts formed on diploid wheat 2D was less than those formed on diploid wheat 2A and the susceptible control, indicating that diploid wheat 2A was a more suitable host for CCN than 2D. This is the first report of a potential new pathosystem for CCN–host interactions using diploid wheat.  相似文献   

9.
Clubroot, a disease of Brassicaceae species, is caused by the soilborne pathogen Plasmodiophora brassicae. High soil water content was previously described to favour the motility of zoospores and their penetration into root cells. In this study, the effect of irrigation regimes on clubroot development during the post‐invasive secondary phase of infection was investigated. Three irrigation regimes (low, standard, high) were tested on two Arabidopsis accessions, Col‐0 (susceptible) and Bur‐0, a partially resistant line. In Col‐0, clubroot symptoms and resting spore content were higher under the ‘low irrigation’ regime than the other two regimes, thus enhancing the phenotypic contrast between the two Arabidopsis accessions. Clubroot severity under high and low irrigation regimes was evaluated in near‐isogenic lines derived from a Col‐0 ×  Bur‐0 cross, to assess the effect of soil moisture on the expression of each of four quantitative trait loci (QTL) controlling partial resistance. The presence of the Bur‐0 allele at the QTL PbAt5.2 resulted in reduced severity only under low irrigation, whereas the Bur‐0 allele at QTL PbAt5.1 was associated with partial resistance only under high irrigation. QTL PbAt4 reduced the number of resting spores in infected roots, but was not associated with reduced clubroot symptoms. The results indicated that soil moisture could have consequences for the secondary phase of clubroot development, depending on plant genotype. Future genetic studies may benefit from using combinations of watering conditions during the secondary stage of infection, thus opening up the possibility of identifying genetic factors expressed under specific environmental conditions.  相似文献   

10.
The culture filtrate (CF) from the plant growth-promoting fungus Phoma sp. GS8-1 was found to induce systemic resistance in Arabidopsis thaliana against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 (Pst), and the underlying mechanism was studied. Roots of A. thaliana were treated with CF from GS8-1, and plants expressed a clear resistance to subsequent Pst infection; disease severity was reduced, and proliferation of pathogen was suppressed. Various mutants of A. thaliana were used to test whether the CF induced resistance through one of the known signaling pathways: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The CF was fully protective against Pst in Arabidopsis mutants jar1 and ein2 similar to wild-type plants. However, its efficacy was reduced in plants containing transgene NahG. Examination of systemic gene expression revealed that CF modulates the expression of SA-inducible PR-1, PR-2 and PR-5 genes, the JA/ET-inducible ChitB gene, and the ET-inducible Hel gene. Moreover, the expression of these genes was further enhanced upon subsequent stimulation after attack by Pst. Our data suggest that in addition to a partial requirement for SA, the signals JA and ET may also play a role in defense signaling in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号