首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
近些年土壤固碳研究受到广泛关注。在诸多影响土壤固碳的因素中,团聚体结构对土壤有机碳的物理保护机制是研究的焦点。土壤中原始有机碳在土壤团聚体和团聚体结构形成中发挥着不可替代的作用,土地利用方式、耕作方式以及施肥措施发生变化后,团聚体及其结构在土壤有机碳固定中的作用变得更加凸显。团聚体结构包含众多的孔隙,这些孔隙的大小、数量、形状以及空间分布等都会影响土壤中水分运移、植物根系生长、土壤生物活动以及土壤有机碳分配,它们相互作用影响土壤中有机碳的固定。本文分析了水分、植物根系以及土壤生物与团聚体孔隙结构之间的关系,阐述了这些因素在土壤有机碳变化中所起的作用,并对目前研究的不足进行了概述。同时,阐述了不同CT(Computed Tomography,CT)技术在土壤团聚体结构探测中的应用及其对结构数据的提取方法,探讨了团聚体孔隙结构对有机碳固定的影响,展望了团聚体结构对有机碳固定影响需要加强的研究内容。参66。  相似文献   

2.
不同耕作方式对土壤有机碳、微生物量及酶活性的影响   总被引:12,自引:2,他引:10  
【目的】依托8年长期(2005~2012)固定道定位试验,研究不同耕作方式对土壤有机碳、土壤微生物量、土壤酶活性在0—90 cm土层的分布特征,为优化中国西北干旱区的耕作方式提供理论依据。【方法】试验包括固定道垄作(PRB)、固定道平作(PFT)与传统耕作(CT)三种耕作模式下的土壤有机碳土壤总有机碳(TOC)、颗粒有机碳(POC)、土壤微生物量碳(MBC)、土壤微生物量氮(MBN)、土壤微生物量磷(MBP)、蔗糖酶、过氧化氢酶、脲酶及小麦产量进行了测定和分析。【结果】在0—90 cm土层,不同耕作方式下的TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性均随着土层的增加呈下降趋势,过氧化氢酶活性呈先下降后增大的分布特征;在0—60 cm,固定道保护性耕作能够显著增加心土层作物生长带土壤有机碳储量,有机碳储量大小为PRBPFTCT;PRB、PFT较CT可以显著增加0—10 cm作物生长带TOC、POC、MBC、MBN、MBP含量、蔗糖酶、脲酶活性,其大小为PRBPFTCT;耕作方式对过氧化氢酶活性影响不显著;TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性、过氧化氢酶活性之间均达到了显著或极显著相关。【结论】PRB较PFT、CT能够提高耕作层(0—10 cm)土壤有机碳含量、土壤微生物量、土壤酶活性, 增加作物产量, 增大0—60 cm土层有机碳储量,耕作方式(PRB、PFT及CT)对10 cm以下土层土壤环境改善作用不明显。  相似文献   

3.
农田土壤固碳与增产协同效应研究进展   总被引:6,自引:1,他引:5  
农田土壤固碳是提升土壤肥力、保障和实现农田持续稳定生产能力的关键所在。明确农田土壤固碳与作物增产的协同效应可为不同区域土壤培肥、维持和提升作物产量提供依据。农田土壤固碳明显受到气候、土壤属性、管理措施 (尤其是施肥和耕作)、轮作制度等因素的影响,且与农田作物产量密切相关,二者具有明显的协同效应。农田土壤有机碳与作物增产协同效应存在一定的阈值,且该阈值具有一定的区域差异。东北地区土壤有机碳阈值约为C 44~46 t/hm2,西北和华北地区约为C 22~28 t/hm2,南方地区约为C 33~37 t/hm2。经验方程和模型模拟结果表明,在不同区域,农田土壤每固定C 1.0 t/(hm2·a)有机碳,粮食作物产量可平均提升约0.7 t/hm2,但该响应值在各地区明显受到相应的环境及农田管理措施等因素的影响。深入理解农田固碳过程及其与作物生产力协同作用的机理,是指导不同区域合理培肥、提高土壤肥力、提高养分资源利用效率的关键举措。未来的研究方向和重点是明确不同区域农田土壤可实现的固碳潜力,进一步揭示集约化种植下农田土壤有机碳的固存机制,关注深层土壤有机碳固定对作物增产潜力的影响及贡献,并深入分析表征环境、人为因素等对农田土壤固碳增产协同效应的影响机制及调控原理。  相似文献   

4.
长期施肥对土壤碳储量和作物固定碳的影响   总被引:28,自引:5,他引:28       下载免费PDF全文
孟磊  蔡祖聪  丁维新 《土壤学报》2005,42(5):769-776
利用长期定位试验研究有机肥、化肥以及有机肥和化肥混合施用对耕层土壤有机C储量变化和作物固定C的影响。处理包括化学肥料NPK不同组合。NPK、NP、NK、PK、全部施用有机肥(OM)、化学肥料氮和有机肥氮对半施用(1/20M)及不施肥(CK)七个处理。均衡施用N、P和K,显著提高土壤有机C储量,而养分缺乏的施肥,土壤有机碳大量损失。抵消N2O排放后,只有外源有机碳输入的OM和1/2OM具有净的碳固定。土壤有机碳储量变化(Y)与土壤有机碳输入量(X)符合线性方程Y=1.3231X-1942.7(r=0.9840, n=7)。作物固定碳量和可以返还到土壤的根茬和秸秆中有机碳量都以NPK、NP和1/2ON施肥处理最多。若固定于根茬和秸秆的碳返还到原施肥土壤,则这些处理的土壤有机碳储量最多。但从经济效益考虑,最佳的施肥方式为有机和化学肥料配合施用。  相似文献   

5.
王晓凌  李凤民 《水土保持学报》2006,20(4):132-135,142
从2000年10月到2004年4月,通过大田试验研究了半干旱黄土高原地区,苜蓿草地、苜蓿-作物轮作农田以及常规耕作农田中土壤有机碳、土壤全氮、土壤微生物生物量与土壤轻组物质的变化规律。结果表明,土壤轻组有机碳和氮含量苜蓿-作物轮作系统高于苜蓿草地。土壤微生物量碳和氮,以及它们占土壤有机碳和土壤全氮的比苜蓿-作物轮作系统高于常规耕作农田。土壤呼吸商苜蓿-作物轮作系统低于苜蓿草地和常规耕作农田。14年生苜蓿草地土壤微生物含量高,分解腐化植物碎片的能力高,但土壤有机物质利用不经济,3年中土壤全氮含量并无显著增加,这说明该系统较高的物质循环能力仅维持高的土壤肥力,而不能继续提高土壤肥力。苜蓿-作物用地系统不但能克服长时间种植苜蓿造成的物质循环的浪费,而且维持了良好的土壤肥力,促进了土壤氮素的有效利用。  相似文献   

6.
不同耕作措施对黑土碳排放和活性碳库的影响   总被引:2,自引:0,他引:2  
农田耕地土壤碳的动态变化是陆地生态系统碳循环的研究热点,明确人为干预下土壤碳固定及排放的主导途径和因素,可以为制定农田固碳减排管理措施提供理论基础。为探究不同耕作措施下农田土壤碳循环特征,在东北典型黑土区黑龙江省青冈县设置不同耕作措施和秸秆还田方式的玉米种植田间试验,包括深松25 cm(T1),深松25 cm+秸秆粉碎还田(T2),深松35 cm(T3),深松35 cm+秸秆粉碎还田(T4),深松35 cm+秸秆粉碎覆盖还田(T5);对5种处理下土壤呼吸速率及碳累积排放量、土壤活性有机碳库组分和作物产量进行了分析。结果表明,秸秆粉碎还田显著增加了土壤碳排放,并且秸秆粉碎翻埋还田在增加土壤有机碳库和提高作物产量方面的效果优于秸秆粉碎覆盖还田。  相似文献   

7.
长期施肥措施下灰漠土有机碳及团聚体稳定性特征   总被引:2,自引:1,他引:1       下载免费PDF全文
团聚体的物理保护是土壤有机碳稳定的重要机制之一,团聚体的形成也必须依赖土壤中的有机碳。通过31年的长期定位试验,研究不同养分管理措施对土壤有机碳及团聚体稳定性的影响,探明土壤各粒级团聚体结合碳的分配状况,探讨土壤团聚体对有机碳的物理保护机制,为西北干旱区农田土壤碳优化管理提供依据。采集6个不同施肥措施的长期试验处理的土样,采用湿筛法对土壤团聚体组分和团聚体结合有机碳进行分离并测定,对土壤总有机碳、团聚体分布状况、团聚体结合有机碳等进行分析,并对土壤团聚体稳定和大团聚的周转进行评价。结果显示,长期施用有机肥的土壤有机碳含量达39.7 g·kg-1,比不施肥和秸秆还田分别提高了1.8、1.4倍。有机肥和秸秆还田均可提高土壤有机碳,而单独施化肥或撂荒土壤有机碳仅能维持平衡。除此之外,施用有机肥或秸秆还田,土壤大团聚体分别提高了246%和147%,显著提高了土壤团聚化程度,大团聚体的周转速率分别是不施肥的33%和53%,速率显著减缓(P<0.05),而且还可进一步提高土壤大团聚体,团聚体结合的有机碳向较为稳定的细颗粒态有机碳转化,更有利于有机碳的固定。单独施化肥或撂荒土壤有机碳维持平衡,土壤大团聚体密度和团聚体稳定性均比不施肥有显著提高,大团聚体的周转速率显著减缓。土壤有机碳含量较低时,粉粘粒有机碳含量占主要优势,而当土壤富含有机碳时,细颗粒有机碳含量占主要优势。综上所述,施用有机肥不但可以弥补因耕作的破坏导致的大团聚体下降,还可促进土壤大团聚体的形成,增强土壤团聚体稳定性,新增的有机碳首先与大团聚体结合,然后主要以细颗粒态有机碳固定,效果好于秸秆还田。长期单独施用化肥难以提高土壤有机碳、微团聚体包裹的有机碳和大团聚体中的细颗粒有机碳相对稳定,通过撂荒可减少对土壤的物理破坏,促进大团聚体的积累。  相似文献   

8.
温室气体排放引起的全球气候变暖和平流层臭氧空洞已成为当前人们关注的环境问题之一。土壤碳库作为地表生态系统中最活跃的碳库之一,是甲烷、二氧化碳、一氧化二氮等温室气体的重要释放源,也是重要的吸收汇。因此,寻找农田土壤系统碳管理的有效方法已经成为缓解温室效应的重要科学问题。西方发达国家已将固碳农业作为环境管理的重要导向,应用颗粒分组13CNMR或CPMAS-NMR技术对土壤碳固定的机制研究指出微团聚体与矿物-粘粒复合体的相互作用是土壤有机碳稳定存在的主要方式,揭示了土壤有机碳的腐殖质转化及其与土壤矿物、金属氧化物结合的微观水平,且从土壤物理结构、化学组成和生物学特性等多学科交叉研究土壤有机碳的固定机理及其稳定机制。长期传统的土地利用方式和管理措施所导致的土壤有机碳含量、密度及垂直分布的变化是造成土壤碳库损失的主要原因,为了增加农业生态系统土壤有机碳的含量,土地利用方式和农业管理措施应该从增加有机碳输入量和减少有机碳矿化两方面着手,加强对农业土壤固碳潜力和土壤碳库稳定性影响因素的多角度研究。  相似文献   

9.
为深入了解耕作方式对土壤碳组分含量的影响,以南方双季稻田为研究对象,研究了翻耕秸秆不还田(CT)、翻耕(CTS)、旋耕(RTS)和免耕(NTS)4种耕作处理对土壤轻组有机碳(LF-OC)、重组有机碳(HF-OC)、土壤轻组组分(LF)和重组组分(HF)的影响。结果表明,不同耕作方式下,土壤轻组中有机碳含量介于191.21~251.54gC·kg-1,fraction之间,轻组有机碳(LF-OC)含量介于3.01~9.27gC·kg-1之间,为土壤总有机碳(TOC)的11.84%~23.31%;耕作扰动导致土壤LF-OC的损失,而秸秆投入能够增加LF-OC;NTS处理利于表层土壤有机碳的积累,但不利于亚表层土壤有机碳的积累;RTS和CTS处理有利于有机碳增加,但LF-OC分解较快;CT处理则导致土壤有机碳的流失。LF-OC与TOC变化相似,呈显著正相关关系(R2=0.84),且LF-OC对耕作措施的响应比TOC更为剧烈,可以作为指示土壤有机碳库变化的灵敏指标。  相似文献   

10.
耕作方式对滨海盐渍土有机碳含量及团聚体特性的影响   总被引:1,自引:1,他引:1  
为探明不同耕作措施对滨海盐渍土耕层土壤有机碳含量和团聚体特征的影响,本研究在江苏省东台市滨海滩涂农田区开展田间试验,选择玉米-大麦的旱-旱轮作方式,采用传统翻耕、深翻、少耕和免耕4种耕作方式,分别对耕层土壤的有机碳含量、土壤体积质量(容重)、水稳性团聚体含量和稳定性进行测定。结果表明:与传统翻耕相比,免耕措施利于促进土壤有机碳的积累,免耕能使土壤有机碳含量增加18%~32%;少、免耕措施能使0~10 cm土层0.25 mm团聚体增加10%~31%,并且能显著增加0~20 cm土层土壤平均重量直径和几何平均直径值;团聚体中有机碳含量表现为,除0.25~0.5 mm团聚体外,在5 mm至0.5~1 mm粒径之间,粒径愈小,有机碳含量愈高。  相似文献   

11.
Soil has been identified as a possible carbon(C) sink for sequestering atmospheric carbon dioxide(CO_2).However,soil organic carbon(SOC) dynamics in agro-ecosystems is affected by complex interactions of various factors including climate,soil and agricultural management practices,which hinders our understanding of the underlying mechanisms.The objectives of this study were to use the Agricultural Production Systems sIMulator(APSIM) model to simulate the long-term SOC dynamics under different management practices at four long-term experimental sites,Zhengzhou and Xuzhou with double cropping systems and Gongzhuling and Uriimqi with single cropping systems,located in northern China.Firstly,the model was calibrated using information from the sites and literature,and its performance to predict crop growth and SOC dynamics was examined.The calibrated model was then used to assess the impacts of different management practices,including fertilizer application,irrigation,and residue retention,on C dynamics in the top 30 cm of the soil by scenario modelling.Results indicate a significant SOC sequestration potential through improved management practices of nitrogen(N) fertilizer application,stubble retention,and irrigation.Optimal N fertilization(N_(opt)) and 100%stubble retention(R100) increased SOC by about 11.2%,208.29%,and 283.67%under irrigation at Gongzhuling,Zhengzhou,and Xuzhou,respectively.Soil organic carbon decreased rapidly at(U|¨)rumqi under irrigation,which was due to the enhanced decomposition by increased soil moisture.Under rainfed condition,SOC remained at a higher level.The combination of N_(opt) and R100 increased SOC by about 0.46%under rainfed condition at Uriimqi.Generally,agricultural soils with double cropping systems(Zhengzhou and Xuzhou) showed a greater potential to sequester C than those with single cropping systems(Gongzhuling and(U|¨)r(u|¨)mqi).  相似文献   

12.
Management practices can have significant implications for both soil quality and carbon (C) sequestration potential in agricultural soils. Data from two long‐term trials (one at field scale and the other at lysimeter scale), underway in north‐eastern Italy, were used to evaluate the dynamics of soil organic carbon (SOC) and estimate the impact of recommended management practices (RMPs) on soil carbon sequestration. Potential SOC sequestration was calculated as the differences between the change in SOC of treatments differing only for the specified RMP for a period of at least 25 years. The trials compared the following situations: (a) improved crop rotations versus monoculture; (b) grass versus improved crop rotations; (c) residue incorporation versus residue removal; (d) high versus low rates of inorganic fertilizers; (e) integrated nutrient management/organic manures versus inorganic fertilizers. At the lysimeter scale, some of these treatments were evaluated in different soils. A general decrease in SOC (1.1 t C ha?1 year?1) was observed after the introduction of intensive soil tillage, evidencing both the worsening of soil quality and the contribution towards global CO2 emissions. Initial SOC content was maintained only in permanent grassland, complex rotations and/or with the use of large quantities of livestock manure. SOC sequestration reached a maximum rate of 0.4 t C ha?1 year?1 comparing permanent grassland with an improved crop rotation. Crop residue incorporation and rates of inorganic fertilizer had less effect on SOC sequestration (0.10 and 0.038 t C ha?1 year?1, respectively). The lysimeter experiment highlighted also the interaction between RMPs and soil type. Peaty soil tended to be a source of C independent of the amount and quality of C input, whereas a proper choice of tillage practices and organic manures enhanced SOC sequestration in a sandy soil. The most promising RMPs in the Veneto region are, therefore, conversion to grassland and use of organic manures. Although some of these RMPs are already supported by the Veneto Region Rural Development Plan, their more intensive and widespread implementation requires additional incentives to become economically feasible.  相似文献   

13.
Plants capture atmospheric carbon dioxide (CO2) for carbon (C) assimilation through photosynthesis, with the photosynthates stored as plant biomass (above- and below-ground plant parts). The C stored as living biomass is a short-term C sequestration strategy, whereas soil organic carbon (SOC) is a long-term C sequestration strategy. In this regard, plant roots are the primary route of C entry into the SOC pool. Through establishing a recalcitrant SOC pool, long-term sequestration can potentially offset the C losses caused by soil degradation in industrial and pre-industrial eras. Over the next 50–100 years, implementing effective agricultural practices could sequester 80–130 GT (109) C as SOC. Carbon, as the primary elemental component of soil organic matter, plays a significant role in shaping the soil’s physical, chemical, and biological properties, ultimately influencing soil biomass productivity. By enhancing crop productivity and biomass production, farmers can increase C sequestration, creating a positive feedback loop that contributes to overall C sequestration. Carbon sequestration has numerous co-benefits, including climate change mitigation, ecosystem health, food security, and farm profitability. Adopting conservation agriculture and site-specific practices and developing crop and pasture genotypes with high yields and C sequestration potential should significantly improve crop productivity and C sequestration simultaneously. This opinion article delves into the nexus between photosynthesis and soil C sequestration, highlighting its significance in enhancing farm productivity while mitigating climate change.  相似文献   

14.
Intensive cropping with conventional tillage results in a decline of soil organic carbon (SOC) with consequent deterioration of soil physical properties. Some studies indicate that this decline in SOC can be arrested by way of organic manure application and improved nutrient management practices. This study was conducted to find out the long-term effects of inorganic fertilizer, manure and lime application on organic carbon content and physical properties of an acidic Alfisol (Typic Haplustalf) under an annual soybean-wheat crop rotation. Six treatments namely, control (CON), nitrogen fertilization (NIT), nitrogen and phosphorus (NP), nitrogen, phosphorus and potassium (NPK), NPK plus manure (NPKM) and NPK plus lime (NPKL) from a long-term fertilizer experiment continuing at Ranchi, India, were chosen for this study. Soil samples were collected from the selected treatments after 29 crop cycles and analyzed for physical and chemical properties. The results indicated that SOC content in all the treatments decreased from initial levels, but the decrease was considerably less in NPKM (8.7%) and NPKL (10.9%) treatments than that in NIT (28.3%) treatment. The SOC at 0-15 and 15-30 cm depth was lowest in NIT and CON. The NPKM, NPKL and NPK treatments up to 30 cm soil depth recorded significantly higher SOC than NIT and CON. Application of balanced fertilizer along with manure (NPKM) or lime (NPKL) improved soil aggregation, soil water retention, microporosity and available water capacity and reduced bulk density of the soil in 0-30 cm depth over CON. In contrast, soil aggregate stability, microporosity and available water capacity were significantly lower in the NIT plots than that in CON. The study thus suggests that soil management practices in acidic Alfisols should include integrated use of mineral fertilizer and organic manure or lime to maintain the organic carbon status and physical environment of soil.  相似文献   

15.
Pyrogenic carbon (C) is produced by incomplete combustion of fuels including organic matter (OM). Certain ranges in the combustion continuum are termed ‘black carbon' (BC). Because of its assumed persistence, surface soils in large parts of the world contain BC with up to 80% of surface soil organic C (SOC) stocks and up to 32% of subsoil SOC in agricultural soils consisting of BC. High SOC stocks and high levels of soil fertility in some ancient soils containing charcoal (e.g., terra preta de Índio) have recently been used as strategies for soil applications of biochar, an engineered BC material similar to charcoal but with the purposeful use as a soil conditioner (1) to mitigate increases in atmospheric carbon dioxide (CO2) by SOC sequestration and (2) to enhance soil fertility. However, effects of biochar on soils and crop productivity cannot be generalized as they are biochar‐, plant‐ and site‐specific. For example, the largest potential increases in crop yields were reported in areas with highly weathered soils, such as those characterizing much of the humid tropics. Soils of high inherent fertility, characterizing much of the world's important agricultural areas, appear to be less likely to benefit from biochar. It has been hypothesized that both liming and aggregating/moistening effects of biochar improved crop productivity. Meta‐analyses of biochar effects on SOC sequestration have not yet been reported. To effectively mitigate climate change by SOC sequestration, a net removal of C and storage in soil relative to atmospheric CO2 must occur and persist for several hundred years to a few millennia. At deeper soil depths, SOC is characterized by long turnover times, enhanced stabilization, and less vulnerability to loss by decomposition and erosion. In fact, some studies have reported preferential long‐term accumulation of BC at deeper depths. Thus, it is hypothesized that surface applied biochar‐C (1) must be translocated to subsoil layers and (2) result in deepening of SOC distribution for a notable contribution to climate change mitigation. Detailed studies are needed to understand how surface‐applied biochar can move to deeper soil depths, and how its application affects organic C input to deeper soil depths. Based on this knowledge, biochar systems for climate change mitigation through SOC sequestration can be designed. It is critically important to identify mechanisms underlying the sometimes observed negative effects of biochar application on biomass, yield and SOC as biochar may persist in soils for long periods of time as well as the impacts on downstream environments and the net climate impact when biochar particles become airborne.  相似文献   

16.
针对江苏沿海垦区地势平坦、降雨量大,农业生产易受涝渍灾害影响,而新开垦农田土壤贫瘠、有机质含量极低的问题,该研究基于江苏省东台市内省水科院农田暗管排水试验基地的气象、土壤、作物等数据,联合运用田间水文模型-DRAINMOD和土壤有机碳模型-DNDC(Denitrification-Decomposition Model),研究了轮作和秸秆还田方式对暗管排水农田土壤有机碳(Soil Organic Carbon,SOC)累积过程的影响。结果显示:对于地下水位埋深较浅的沿海垦区,在DRAINMOD准确预测暗管排水农田地下水位动态的基础上,运用DNDC模型可以更好的预测土壤有机碳的累积过程;以现有土壤有机碳含量(2.95 g/kg)为初始值,DNDC模型32 a长序列模拟发现,冬小麦-玉米轮作配施全量秸秆还田措施效果最佳,可提升耕层土壤有机碳含量至17.85 g/kg;冬小麦-玉米-冬小麦-绿肥(紫花苜蓿)轮作配施全量秸秆还田措施可提升耕层土壤有机碳含量至16.12 g/kg,具有很好的固碳效果。与研究区现有明沟排水系统相比,暗管排水可快速降低地下水位,减少涝渍胁迫,作物产量提升3.9%,耕层固碳速率提升39.39%。暗管排水条件下,湿润年频繁降雨造成了土壤干湿交替变化,由此激发了高强度土壤的呼吸作用,导致了一定程度的SOC损失;建议采用农田控制排水措施来抑制过度排水,减少高强度土壤呼吸对SOC累积过程的不利影响。研究成果可为沿海垦区农田地力提升和农业碳中和提供参考。  相似文献   

17.
Strategies for mitigating soil organic carbon (SOC) losses in intensively managed agricultural systems typically draw from traditional concepts of soil organic matter formation, and thus emphasize increasing C inputs, especially from slowly decomposing crop residues, and reducing soil disturbance. However these approaches are often ineffective and do not adequately reflect current views of SOC cycling, which stress the important contributions of microbial biomass (MB) inputs to SOC. We examined microbial physiology as an alternate mechanism of SOC accumulation under organic (ORG) compared to conventional (CT) agricultural management practices, where ORG is accumulating C despite fewer total C inputs and greater soil tillage. We hypothesized that microbial communities in ORG have higher growth rates (MGR) and C use efficiencies (CUE) and that this relates to greater MB production and ultimately higher retention of new C inputs. We show that ORG had 50% higher CUE (±8 se) and 56% higher MGR (±22 se) relative to CT (p < 0.05). From in situ 13C substrate additions, we show that higher CUE and MGR are associated with greater rates and amounts of 13C glucose and phenol assimilation into MBC and mineral-associated SOC pools in ORG up to 6 mo after field substrate additions (p < 0.05). ORG soils were also enriched in proteins and lipids and had lower abundances of aromatic compounds and plant lipids (p < 0.05). These results illustrate a new mechanism for SOC accumulation under reduced C inputs and intensive soil disturbance and demonstrate that agricultural systems that facilitate the transformation of plant C into MB may be an effective, often overlooked strategy for building SOC in agricultural soils.  相似文献   

18.
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

19.
东北黑土有机碳的分布及其损失量研究   总被引:11,自引:0,他引:11  
为了分析东北黑土土壤有机碳(SOC)的分布特征及其开垦以来黑土SOC的损失程度,我们于2004~2005年在黑龙江和吉林两省采集了32个自然黑土剖面样品,在每个自然黑土样品附近对应采集32个景观条件相似的耕作黑土样品。结果表明,自然黑土样品0~30cm土层SOC含量平均为32.20 g kg-1,最高可达63.46 g kg-1,黑龙江省自然黑土SOC含量(34.55 g kg-1)高于吉林省(23.80 g kg-1)。耕作土壤SOC平均含量为22.71 g kg-1,远低于自然土壤。受温度的影响,随着纬度的增加,自然黑土与耕作黑土SOC含量逐渐递增。由于土壤侵蚀以及耕垦和去除作物残留物等农业管理措施的综合作用,使得耕作黑土表层SOC含量小于自然黑土。与自然黑土相比,耕作黑土0~10cm土层SOC损失量在26.84%~46.57%之间,亚表层损失相对较少。黑土SOC含量下降也是土壤水土流失致使黑土层变薄的一个直接表现。耕作黑土表层流失厚度可以通过自然与耕作黑土剖面SOC含量的分异差值来估算。通过对土壤剖面上SOC的分布进行校正剔除土壤侵蚀的影响后得到的同等深度SOC含量的差值才可视为由耕作以及有机质输入量差异等因素造成的SOC损失量。未经校正而进行的自然黑土和耕作黑土同一深度SOC含量的比较可能过高估计了农业管理措施对土壤SOC损失量的影响。  相似文献   

20.

Purpose  

Although organic amendments have been recommended as one of the practices for crop production and soil carbon sequestration, little has been done to evaluate soil organic carbon (SOC) dynamics following long-term application of organic amendments. The objective of this research were to (1) assess the effect of long-term organic amendments on SOC dynamics in rice-based systems; (2) evaluate the relationship between soil carbon sequestration and carbon input based on various mineral and organic fertilization treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号