首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Wheat bran is an undervalued by-product of white flour and has great nutritional potential due to its high content in fibres and bioactive compounds. Micronized bran could be used as a food ingredient to improve the nutritional potential of cereal products, or be used as a starting material for other processes (bioactive compound extraction or bran fractionation). The aim of this work was to find a way to efficiently decrease the particle size of bran. The influence of the grinding temperature (ambient or cryogenic grinding) on the granulometric distribution of particles, their composition, and their microstructure was studied, at lab-scale and pilot-scale. It showed that the intrinsic characteristics of bran (glass transition within intermediate layers at −46 °C) had more influence on its grinding behaviour than the type of grinding device used: the particles size distributions obtained after grinding at lab-scale and pilot-scale were very similar. At both scales, the granulometric curves were narrow for cryogenic grinding, while for ambient grinding they were spread over the whole particle size range. Ultrafine particles were obtained in both ambient and cryogenic conditions. Negative temperatures, by increasing the material’s brittleness, favoured a fast fragmentation of bran: one step of cryogenic grinding allowed a median particle size of nearly 50 μm to be reached, whereas three successive steps of ambient grinding were needed for the same result. On the other hand, ambient temperature favoured the dissociation of the different constituent layers of wheat bran, and produced less composite particles than cryogenic grinding.  相似文献   

2.
To produce safe and healthy whole wheat food products, various grain or bran dry fractionation processes have been developed recently. In order to control the quality of the products and to adapt these processes, it is important to be able to monitor the grain tissue proportions in the different milling fractions produced. Accordingly, a quantitative method based on biochemical markers has been developed for the assessment of grain tissue proportions in grain fractions. Grain tissues that were quantified were the outer pericarp, an intermediate layer (including the outer pericarp, the testa and the hyaline layer), the aleurone cell walls, the aleurone cell contents, the endosperm and the germ, for two grain cultivars (Tiger and Crousty). Grain tissues were dissected by hand and analysed. Biochemical markers chosen were ferulic acid trimer, alkylresorcinols, para-coumaric acid, phytic acid, starch and wheat germ agglutinin, for outer pericarp, intermediate layer, aleurone cell walls, aleurone cell contents, endosperm and germ respectively. The results of tissue quantification by hand dissection and by calculation were compared and the sensitivity of the method was regarded as good (mean relative errors of 4% and 8% for Crousty and Tiger outer layers respectively). The impact of the analytical variability (maximum 13% relative error on coarse bran) was also regarded as acceptable. Wheat germ agglutinin seems to be a promising marker of wheat germ: even if the quantification method was not able to quantify the germ proportions in milling fractions, it was able to classify these fractions according to their germ content. The efficiency of this method was tested, by assessing the grain tissue proportions of fractions exhibiting very different compositions such as flour, bran and aleurone-rich fractions obtained from three different grain or bran dry fractionation processes (conventional milling, debranning process, production of aleurone-rich fractions from coarse bran). By calculation of the composition of the different products generated, it was possible to study the distribution of the different tissues among fractions resulting from the different fractionation processes. This quantitative method is thus a useful tool for the monitoring and improvement of processes, and allows the effects of these processes to be understood and their adaption to reach the objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号