首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[14C]Imidacloprid was applied to pelleted seeds of sugar beet which were then grown in pots of field soil. Leaves, roots and soil were analysed at intervals up to 97 days after planting and the distributions of parent compound and of several metabolites were quantified. At the first sampling, 21 days after application, parent imidacloprid was the main compound found in the leaves and its concentration averaged 15·2 μg g-1 fresh weight. By the 25-leaf stage, 97 days after sowing, the concentration of parent compound in the leaves had fallen to an average of 0·5 μg g-1; the metabolites and parent compound in the leaves then represented respectively 44·5% and 4·5% of the total applied radioactivity. In the root at 97 days, parent imidacloprid and its metabolites together accounted for only 0·1% of the applied activity, whilst in the soil there was 23% of parent compound and 4% as metabolites. The persistence of both parent imidacloprid and the olefinic metabolite, which has recently been shown to have higher aphicidal activity than the parent imidacloprid, explains the prolonged control of aphids observed with imidacloprid in both glasshouse and field trials. © 1998 SCI.  相似文献   

2.
The metabolism of the chloronicotinyl insecticide imidacloprid is strongly influenced by the method of application. Whilst in foliar application most of the residues on the leaf surface display unchanged parent compound, most of the imidacloprid administered to plants by soil application or seed treatment is metabolized more or less completely, depending on plant species and time. The present study revealed that certain metabolites of imidacloprid which have been described in crop plants are highly active against aphid pests in different types of bioassays. Some of these metabolites showed a high oral activity against the green peach aphid (Myzus persicae), and the cotton aphid (Aphis gossypii). The aphicidal potency of the metabolites investigated was weaker in aphid dip tests than in oral ingestion bioassays using artificial double membranes. The most active plant metabolite was the imidazoline derivative of imidacloprid. The LC50 values of this metabolite for M. persicae and A. gossypii in oral ingestion bioassays were in the lower ppb-range, i.e. 0·0044 and 0·0068 mg litre-1, respectively. Most of the other reported metabolites showed much weaker activity. Compared to imidacloprid, the imidazoline derivative showed superior affinity to housefly (Musca domestica) head nicotinic acetylcholine receptors, while all other metabolites were less specific than imidacloprid. It seems possible that, after seed treatment or soil application, a few of the biologically active metabolites arising are acting in concert with remaining levels of the parent compound imidacloprid, thus providing good control and long-lasting residual activity against plant-sucking pests in certain crops. © 1998 SCI.  相似文献   

3.
A laboratory feeding test was conducted on queenless micro‐colonies of three bumblebee workers (Bombus terrestris L) to study the effects of low doses of imidacloprid on pollen and syrup consumption, worker survival, brood size and larval development. Two doses were used: D1 = 10 µg AI kg−1 in syrup and 6 µg AI kg−1 in pollen; D2 was 2.5 times higher in syrup and 2.7 higher in pollen. During 85 days 27, 30 and 29 micro‐colonies were reared for control, D1 and D2 treatments respectively. Food consumption was not affected by either dose. During the 5‐day pre‐oviposition period the mean insecticide intake was 4.8 ng per day per worker in treatment D2. Both doses slightly but significantly affected worker survival rate by 10% during the first month, without any dose‐effect relationship. Brood production was significantly reduced in D1 treatment and larval ejection by workers was significantly lower in D1 and D2 than in control. No significant effect of D1 and D2 treatments on the duration of larval development was revealed. No residue could be detected in workers still alive after 85 days. It was concluded that the survival rate and reproductive capacity of B terrestris was not likely to be affected by prolonged ingestion of nectar produced by sunflower after seed‐dressing treatment with imidacloprid (Gaucho), since honey or pollen collected by honeybees foraging treated sunflower never revealed concentrations of imidacloprid higher than 10 µg kg−1. © 2000 Society of Chemical Industry  相似文献   

4.
Biological characterization of sulfoxaflor, a novel insecticide   总被引:1,自引:0,他引:1  
BACKGROUND: The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross‐resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS: In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap‐feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide‐susceptible and insecticide‐resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha?1 against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha?1) and dicrotophos (560 g ha?1). Sulfoxaflor (50 g ha?1) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha?1) and imidacloprid (50 g ha?1) and better than that of thiamethoxam (50 g ha?1). CONCLUSION: The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross‐resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap‐feeding insect pests. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Dimehypo (disodium 2-methylaminotrimethylene di thiosulfonate), is an insecticide used on rice and other crops in China. However, contamination of mulberry leaves with this has been implicated in a reduction of silk production. The acute and chronic toxicity of dimehypo to Bombyx mori L over the partial life cycle of the organism was determined based on survival, growth and cocooning of two strains of silkworm larvae. A change in the ultrastructure of the posterior silk gland cell was also observed in this study. The results showed that the growth and development of tested larvae was impeded and their life cycle was prolonged in both strains. It was also found that dimehypo was extremely harmful to the cocooning of B mori. Ultrastructural evidence suggests that adverse effects of dimehypo arise as a result of changes in the biosynthesis of fibroin and in the physiological activity of the posterior silk gland cell. The maximum acceptable daily dose of dimehypo based on growth and cocooning of B mori is less than 1.7 × 10−6 µg day−1 in spring-reared larvae and less than 1.7 × 10−8 µg day−1 in autumn-reared larvae. © 1999 Society of Chemical Industry  相似文献   

6.
BACKGROUND: In 2003 the development of insecticide resistance against neonicotinoids in the brown planthopper (BPH), Nilaparvata lugens (Stål) (Homoptera: Delphacidae), was first observed in Thailand and has since been found in other Asian countries such as Vietnam, China and Japan. However, the LD50 values of BPH and the whitebacked planthopper (WBPH), Sogatella furcifera (Horváth), against both neonicotinoid and phenylpyrazole insecticides have been poorly reported in many Asian countries. RESULTS: The topical LD50 values for imidacloprid in the BPH populations collected from East Asia (Japan, China, Taiwan) and Vietnam in 2006 were 4.3–24.2 µg g?1 and were significantly higher than those collected from the Philippines (0.18–0.35 µg g?1). The BPH populations indicated a positive cross‐resistance between imidacloprid and thiamethoxam. Almost all the WBPH populations from Japan, Taiwan, China, Vietnam and the Philippines had extremely large LD50 values (19.7–239 µg g?1 or more) for fipronil, except for several populations from the Philippines and China. CONCLUSION: Species‐specific changes in insecticide susceptibility were found in Asian rice planthoppers (i.e. BPH for imidacloprid and WBPH for fipronil). Insecticide resistance in BPH against imidacloprid occurred in East Asia and Indochina, but not in the Philippines. In contrast, insecticide resistance in WBPH against fipronil occurred widely in East and South‐east Asia. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
BACKGROUND: The efficacy of systemic applications of imidacloprid for the management of avocado thrips and avocado lace bug was determined in field trials. Following insecticide treatment by chemigation, leaves of appropriate age for each insect were sampled over a 6 month period and used for bioassays. Imidacloprid residues were measured by ELISA in leaves used for bioassays to determine concentrations of insecticide that were toxic to both pests. RESULTS: The uptake of imidacloprid into treated trees was extremely slow, peaking in the current year's leaf flush at only 8 ng cm?2 leaf tissue after 15 weeks. Avocado thrips mortality in bioassays with young flush leaves, the preferred feeding substrate for this insect, was minimal, indicating that imidacloprid concentrations were below threshold levels needed for effective control. Residues present in older leaves, which are preferred by the avocado lace bug, were higher than in young flush leaves, and provided good control of this pest. Probit analysis of bioassay data showed that the avocado lace bug (LC50 = 6.1 ng imidacloprid cm?2 leaf tissue) was more susceptible to imidacloprid than the avocado thrips (LC50 = 73 ng imidacloprid cm?2 leaf tissue). CONCLUSIONS: In spite of the slow uptake of imidacloprid into avocado trees, the levels of imidacloprid would be sufficient to control avocado lace bug infestations. In contrast, the slow uptake would be problematic for avocado thrips control because inadequate levels of insecticide accumulate in new flush foliage and would allow avocado thrips populations to build to levels that would subsequently damage developing avocado fruit. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
In a greenhouse metabolism study, sunflowers were seed‐treated with radiolabelled imidacloprid in a 700 g kg?1 WS formulation (Gaucho® WS 70) at 0.7 mg AI per seed, and the nature of the resulting residues in nectar and pollen was determined. Only the parent compound and no metabolites were detected in nectar and pollen of these seed‐treated sunflower plants (limit of detection <0.001 mg kg?1). In standard LD50 laboratory tests, imidacloprid showed high oral toxicity to honeybees (Apis mellifera), with LD50 values between 3.7 and 40.9 ng per bee, corresponding to a lethal food concentration between 0.14 and 1.57 mg kg?1. The residue level of imidacloprid in nectar and pollen of seed‐treated sunflower plants in the field was negligible. Under field‐growing conditions no residues were detected (limit of detection: 0.0015 mg kg?1) in either nectar or pollen. There were also no detectable residues in nectar and pollen of sunflowers planted as a succeeding crop in soils which previously had been cropped with imidacloprid seed‐treated plants. Chronic feeding experiments with sunflower honey fortified with 0.002, 0.005, 0.010 and 0.020 mg kg?1 imidacloprid were conducted to assess potential long‐term adverse effects on honeybee colonies. Testing end‐points in this 39‐day feeding study were mortality, feeding activity, wax/comb production, breeding performance and colony vitality. Even at the highest test concentration, imidacloprid showed no adverse effects on the development of the exposed bee colonies. This no‐adverse‐effect concentration of 0.020 mg kg?1 compares with a field residue level of less than 0.0015 mg kg?1 ( = limit of detection in the field residue studies) which clearly shows that a sunflower seed dressing with imidacloprid poses no risk to honeybees. This conclusion is confirmed by observations made in more than 10 field studies and several tunnel tests. © 2001 Society of Chemical Industry  相似文献   

9.
Biorational and regular insecticide applications were evaluated for management of the diamondback moth (DBM) Plutella xylostella in cabbage (Brassica oleracea var capitata) in Karnataka State, India, in 1996 and 1997. The IPM programme, based on the pheromone trap catch threshold of eight moths per trap per night, included utilization of the parasitoid Cotesia plutellae. (250 000 adults ha−1), the predator Chrysoperla carnea (2500 eggs ha−1), the neem‐based chemical nimbecidine (625 ml ha−1), the bacterium Bacillus thuringiensis (500 ml ha−1), and the synthetic insecticide phosalone (2.8 litre ha−1). The IPM programme induced a reduction of trap catches, egg and larval populations and, therefore, a low level of damage to the crop. The economic analysis showed that the cost of the IPM treatments was also considerably lower than that of ordinary insecticide practice (average of $62 relative to $123 ha−1, respectively). Gross profit was also clearly higher in IPM plots than in farmer's fields, ranging from $777 to $810 ha−1 in the IPM plots compared with $456 to $462 ha−1 in the insecticide‐treated fields. As a consequence of lower input costs and higher gross profit, net profit in IPM treatments was even more favourable, and the economic savings associated with the utilization of the IPM programme amounted to $380 ha−1 in 1996 and $410 ha−1 in 1997. © 2000 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Pest resurgence following a pesticide application may occur owing to a stimulatory (hormetic) response to sublethal insecticide concentrations. The objective of the present study was to examine the potential for a greenhouse‐derived red clone of Myzus persicae to exhibit resurgence owing to a hormetic response following a systemic imidacloprid treatment in a bell pepper greenhouse. RESULTS: No differences in mortality and fecundity were observed among apterous adults exposed to sublethal imidacloprid concentrations on excised pepper leaves fed aqueous solutions of imidacloprid. Survival of first‐generation progeny was negatively affected by imidacloprid exposure, yet surviving progeny exhibited no differences in development rates or fecundity from progeny of adults unexposed to imidacloprid. Aphid mortality declined most rapidly in clip cages on pepper leaves at the top of the pepper canopy as compared with leaves present at the middle or bottom of the pepper canopy. CONCLUSION: Imidacloprid decays rapidly in mature pepper plants, resulting in sublethal concentrations in the upper canopy in as little as 4 weeks. Sublethal insecticide concentrations have been implicated in the resurgence of pest populations; however, exposure to sublethal doses of imidacloprid are unlikely to result in pesticide‐induced resurgence of the M. persicae aphid clone examined in this study. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
The insecticidal activities of four surfactants (Cide‐kick, Silwet L‐77, M‐Pede and APSA‐80), a dishwashing detergent (New Day), a mineral oil (Sunspray oil), a cotton seed oil and a vegetable oil, alone or in combination, were tested against nymphs of Bemisia argentifolii Bellows & Perring on collards and tomato. Silwet L‐77 was more effective (>95% mortality) than Cide‐Kick or APSA‐80 at rates from 0.25–1.00 g AI litre−1 but caused severe phytotoxicity to tender tomato leaves at all but the lowest rate. New Day dish detergent at 2.0 ml litre−1 caused mortality (95%) comparable to M‐Pede insecticide soap at 10‐fold greater concentration. A New Day ingredient, cocamide DEA, was considerably more active than the other ingredients or the commercial mixture. Additional surfactants added to Sunspray oil increased efficacy in some treatments, but not others. Toxic responses of 2nd‐ and 3rd‐ instar whiteflies to vegetable oil and cotton seed oil at 5.0 and 10.0 ml litre−1 plus 0.4 g AI litre−1 APSA‐80 ranged from 22.1 to 79.9% and 66.3–88.7% mortality, respectively. Whitefly mortality was greater on tomato than on collard in six of seven instances when differences between host plants were significant. Our results indicate that the these surfactants and oils have good potential for controlling B argentifolii. © 2000 Society of Chemical Industry  相似文献   

12.
The tobacco whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) which occurs in various parts of the world, has developed a high degree of resistance against several chemical classes of insecticide, including organophosphates, carbamates, pyrethroids, insect growth regulators and chlorinated hydrocarbons. The present studies were done in order to monitor the susceptibility of whitefly populations in southern Spain to insecticides commonly used there. Systemic bioassays using Spanish field populations of B tabaci collected in 1994, 1996 and 1998 indicated an increase, albeit a slow one, in resistance to imidacloprid over this period. Comparative studies of other neonicotinoids using the same bioassay revealed a high degree of cross‐resistance to acetamiprid and thiamethoxam. Leaf‐dip bioassays with adult females from these populations revealed a high level of resistance to cyfluthrin, endosulfan, monocrotophos, methamidophos, and pymetrozine, each at 200 mg litre−1. Buprofezin and pyriproxyfen were tested against second‐instar nymphs and eggs, respectively. Buprofezin also showed a lower efficacy against ESP‐98, a strain of B tabaci received from Almeria in 1998, but pyriproxyfen resistance was not obvious when tested against eggs of strain ESP‐98. Field trials in 1998 revealed good efficacy of imidacloprid in one farm in the Almeria region and two greenhouses in Murcia and Sevilla, but a loss of activity by imidacloprid in another farm in the Almeria region. Cross‐resistance between imidacloprid and thiamethoxam was also confirmed under field conditions. © 2000 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits the causal bacteria of the devastating citrus disease huanglongbing (HLB). Because of the variation in spatial and temporal uptake and systemic distribution of imidacloprid applied to citrus trees and its degradation over time in citrus trees, ACP adults and nymphs are exposed to concentrations that may not cause immediate mortality but rather sublethal effects. The objective of this laboratory study was to determine the effects of sublethal concentrations of imidacloprid on ACP life stages. RESULTS: Feeding by ACP adults and nymphs on plants treated daily with a sublethal concentration (0.1 µg mL?1) of imidacloprid significantly decreased adult longevity (8 days), fecundity (33%) and fertility (6%), as well as nymph survival (12%) and developmental rate compared with untreated controls. The magnitude of these negative effects was directly related to exposure duration and concentration. Furthermore, ACP adults that fed on citrus leaves treated systemically with lethal and sublethal concentrations of imidacloprid excreted significantly less honeydew (7–94%) compared with controls in a concentration‐dependent manner suggesting antifeedant activity of imidacloprid. CONCLUSIONS: Sublethal concentrations of imidacloprid negatively affect development, reproduction, survival and longevity of ACP, which likely contributes to population reductions over time. Also, reduced feeding by ACP adults on plants treated with sublethal concentrations of imidacloprid may potentially decrease the capacity of ACP to successfully acquire and transmit the HLB causal pathogen. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
The residues and metabolites of radiolabelled imidacloprid [1-(6-chloropyridin-3-ylmethyl)-N-nitroimidazolidin-2-ylideneamine], formulated as a wettable powder containing 250 g kg-1 active ingredient diluted with water and administered to tobacco plants, were studied in sidestream and mainstream smoke, in the ash and butts after smoking cigarettes. An almost complete recovery of radioactivity (93·5%) was achieved. The highest amounts of radioactivity were found in the butts and sidestream smoke. The two dominant compounds identified after smoking were unchanged parent compound and carbon dioxide. A total of 76% of the recovered radioactivity was identified. © 1998 SCI.  相似文献   

15.
With a combination of biological, analytical, electrophysiological, and video-optical methods, it was possible to show that low concentrations of the new chloronicotinyl insecticide, imidacloprid, strongly affect the behaviour of Myzus persicae (Sulz.), leading eventually to the death of the aphids. Tests to elucidate the biological properties were performed under laboratory conditions with cabbage leaf petioles placed in insecticidal solutions over different periods of time. LC15(24h) values were considered as low concentrations and calculated for imidacloprid and pirimicarb, respectively. Imidacloprid at low concentrations depressed the honeydew excretion of apterous adults of M. persicae by almost 95% within 24 h without affecting the vitality of the majority of aphids, whereas, at equitoxic concentrations, pirimicarb showed much weaker effects on honeydew excretion, which strongly coincided with mortality. In choice experiments with alate morphs of M. persicae over 48 h, their larvae almost always occurred on the untreated control leaf, and were not found on the leaf which was treated systemically with low concentrations of imidacloprid. Apterous aphids placed on cabbage leaves systemically treated with low concentrations of imidacloprid showed nearly the same decrease in weight as untreated starving aphids, suggesting that their death was caused by starvation. Aphids that were moved from imidacloprid-treated to untreated leaves after 24 h began feeding on the latter and showed a steady increase in weight and honeydew production. This suggests that the behavioural response is reversible. Aphids on pirimicarb-treated (equitoxic dose) leaves showed no decrease in weight. Electrical penetration graphs revealed that M. persicae on artificial membranes containing imidacloprid probed more often before feeding than aphids on control sachets. Time-lapse videofilming of apterous adults placed on cabbage leaves revealed a migration from the leaf treated with low concentrations of imidacloprid to an untreated leaf. From the results of these experiments and the observed symptomatology it is possible to postulate two different and dose-dependent modes of action of imidacloprid on M. persicae: (1) the well-known mode of action with visually obvious irreversible symptoms (paralysis, tremor, uncoordinated leg-movement) at field rates, and (2) the reversible starvation response as an antifeedant effect, which is not coupled with typical symptoms of neuronal disorder, at lower concentrations.  相似文献   

16.
The toxicity of the naturally derived insecticide spinosad was tested against the gypsy moth, Lymantria dispar. Bioassays using red oak leaf disks, treated with spinosad in a Potter spray tower, yielded an LC50 value of 0.0015 µg AI cm−2 (3‐day exposure; 13‐day evaluation; 2nd instar larvae). Applied to foliage to run‐off in the laboratory (potted red oak seedlings) and the field (4 m‐tall birch trees), spinosad effectively controlled 2nd instar larvae at concentrations ranging from 3 to 50 mg litre−1. Toxicity in the laboratory, and efficacy and persistence in the field, were comparable to those achieved with the insecticide permethrin. Laboratory studies supported field observations that control was achieved in part by knockdown due to paralysis. In addition, laboratory results demonstrated that crawling contact activity may play an important role in field efficacy; 50% of treated larvae were paralyzed 16 h after a 2‐min crawling exposure to glass coated with a 4 mg litre−1 spinosad solution. © 2000 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Pesticides used on cauliflower and cabbage, which are important vegetable crops for India, must be investigated for the persistence and magnitude of their residues in the crops and soil to ensure human and environmental safety. The behaviour of spinosad, an effective insecticide with a favourable environmental profile, was investigated in field trials under subhumid and subtropical conditions. RESULTS: The persistence of spinosad in soil, cabbage and cauliflower was evaluated at two application rates (17.5 and 35.0 g ha(-1)) by high-performance liquid chromatography (HPLC). At 17.5 g ha(-1), spinosad persisted up to 7 days in soil, cabbage and cauliflower. However, at 35.0 g ha(-1), spinosad residues persisted up to 7 days in soil and 10 days in cabbage and cauliflower. CONCLUSION: The dissipation of the insecticide from soil, cabbage and cauliflower appeared to occur in a single phase and conformed to first-order kinetics. The half-lives of spinosad residues in cabbage, cauliflower and soil were calculated as 1.5, 2.8 and 2.8 days respectively for the 17.5 g ha(-1) treatment, and as 2.6, 2.0 and 2.0 days for the 35 g ha(-1) treatment.  相似文献   

18.
Acute oral and contact toxicity tests of imidacloprid, an insecticide acting agonistically on nicotinic acetylcholine receptors (nAChR), to adult honeybees, Apis mellifera L var carnica, were carried out by seven different European research facilities. Results indicated that the 48-h oral LD50 of imidacloprid is between 41 and > 81 ng per bee, and the contact LD50 between 49 and 102 ng per bee. The ingested amount of imidacloprid-containing sucrose solution decreased with increasing imidacloprid concentrations and may be attributed to dose-related sub-lethal intoxication symptoms or to antifeedant responses. Some previously reported imidacloprid metabolites occurring at low levels in planta after seed dressing, i.e. olefine-, 5-OH- and 4,5-OH-imidacloprid, showed lower oral LD50 values (> 36, > 49 and 159 ng per bee, respectively) compared with the concurrently tested parent molecule (41 ng per bee). The urea metabolite and 6-chloronicotinic acid (6-CNA) exhibited LD50 values of > 99,500 and > 121,500 ng per bee, respectively. The pharmacological profile of the [3H]imidacloprid binding site in honeybee head membrane preparations is consistent with that anticipated for a nAChR. IC50 values for the displacement of [3H]imidacloprid by several metabolites such as olefine, 5-OH-, 4,5-OH-imidacloprid, urea and 6-CNA were 0.45, 24, 6600, > 100,000, and > 100,000 nM, respectively. Displacement of [3H]imidacloprid by imidacloprid revealed an IC50 value of 2.9 nM, thus correlating well with the observed acute oral toxicity of the compounds in honeybees. Neurons isolated from the antennal lobe of A mellifera and subjected to whole-cell voltage clamp electrophysiology responded to the application of 100 microM acetylcholine with a fast inward current of between 30 and 1600 pA at -70 mV clamp potential. Imidacloprid and two of the metabolites (olefine- and 5-OH-imidacloprid) acted agonistically on these neurons, whereas the others did not induce currents at test concentrations up to 3 mM. The electrophysiological data revealed Hill coefficients of approximately 1, indicating a single binding site responsible for an activation of the receptor and no direct cooperativity or allosteric interaction with a second binding site.  相似文献   

19.
吡虫啉、苯醚甲环唑和百菌清在甘蓝中的消解及残留分布   总被引:1,自引:0,他引:1  
为明确吡虫啉、苯醚甲环唑和百菌清在露地甘蓝中的消解动态及残留分布规律,在田间施用农药后,采用液相色谱-质谱联用仪和气相色谱仪,对不同时间甘蓝样品及甘蓝不同部位的农药残留量进行了分析。结果表明:3种农药在甘蓝中的消解动态均符合一级反应动力学模型,其中,吡虫啉消解最快,苯醚甲环唑次之,百菌清最慢,半衰期分别为1.35、2.28和2.47 d。最终残留试验结果显示:施药后7和14 d,吡虫啉、百菌清在甘蓝中的残留量均符合食品中农药残留限量要求,而苯醚甲环唑在施药后14 d的残留量仍高于最大残留限量值 (MRL)。3种农药在甘蓝不同部位中的残留量差异显著 (P<0.05),其中甘蓝内球叶中未检出或残留量较低,外球叶中初始残留量较低,1至5 d可降至MRL值以下,外叶中的残留量显著高于其他部位。该结果表明,采后处理甘蓝时若去除其外叶,可有效降低甘蓝中的农药残留量,提高质量安全水平。  相似文献   

20.
The uptake and metabolism of DDT, fenitrothion and chlorpyrifos were studied in cultures of the ciliate protozoan Tetrahymena pyriformis. When cultures were treated with DDT in concentrations varying from 0.01 to 0.5 μg ml−1, concentrations found in T. pyriformis were 3.8 to 335 μg g−1 dry weight. The accumulation of fenitrothion ranged from 28.7 μg g−1 in cultures treated with 1 μg ml−1 to 2260 μg g−1 in cultures treated with 10 μg ml−1. Under similar experimental conditions chlorpyrifos was accumulated from 24.7 to 15400 μg g−1. The patterns of uptake were dependent on the growth cycle, the ability of the organism to metabolise insecticide and the type of the insecticide used. Maximum accumulation of DDT, fenitrothion and chlorpyrifos occurred in 2, 4 and 6 h respectively. Tetrahymena metabolised DDT to DDD and DDE but failed to metabolise fenitrothion and chlorpyrifos. The effects on growth and morphology of T. pyriformis were studied over a period of 5 days. Higher concentrations (10, 50 and 100 μg ml−1) of DDT inhibited only the growth of the organisms and did not change cell morphology. Fenitrothion was extremely toxic to the organisms and at 5 and 10 μg ml−1 cells became more or less spherical and died after 48 h. However, concentrations of 0.5, 1 and 2.5 μg ml−1 fenitrothion caused growth inhibition, but only at 2.5 μg ml−1 was this permanent. Chlorpyrifos inhibited the growth of the organisms at 1, 5 and 10 μg ml−1 but the morphology was affected only at 5 and 10 μg ml−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号