共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
机器视觉技术在农产品分级分选中的应用 总被引:3,自引:1,他引:3
机器视觉技术在农业自动化领域中的应用得到了广泛研究.为此,针对机器视觉技术在农产品分级分选自动化方面的研究情况进行了综述;同时,介绍了目前比较成熟的分级分选设备,并提出了机器视觉技术在农产品分级分选应用中存在的问题及发展方向. 相似文献
3.
4.
介绍了水果自动分级系统总体设计,并从机器视觉模块和水果图像处理等两方面介绍了系统的视觉模块,最后基于图像处理和PLC控制技术实现了水果自动分级功能.试验结果表明:系统能够对水果进行等级分拣,系统最高精度为98%,具有较高的可靠性、可信性及一定的推广价值. 相似文献
5.
6.
7.
基于机器视觉的干制红枣大小分级方法研究 总被引:1,自引:0,他引:1
为了实现干制红枣的大小自动分级,介绍了应用机器视觉的干制红枣自动分级方法,利用CCD摄像机获取红枣的样本图像,应用MATLAB软件编程实现了样本图像的灰度化、二值化、图像分割、图像滤波、图像形态学处理、边缘检测和特征量提取等处理,参照干制红枣分级标准完成了红枣自动分级。通过实验数据回归分析得出红枣实测纵径、果质量与识别值当量值之间的数学检测模型,其决定系数分别达0.995 5和0.948 1。实验表明,采用句法模式识别对数据进行红枣大小分级,分级准确率达85%。 相似文献
8.
9.
10.
11.
12.
13.
针对槟榔人工分级劳动生产率低、准确率低的问题,开展基于遗传神经网络的机器视觉槟榔分级研究。以4种类别的槟榔图像为研究对象,首先设计一个6层结构的遗传神经网络对槟榔进行分级,虽然分级准确率较高但是网络结构复杂。然后对运用主成分分析法降低图像特征的维数并将遗传神经网络简化为3层结构的方法进行研究。最后用400幅和100幅槟榔图像对这个3层神经网络进行训练和验证,经过调整网络的学习率等参数,训练和验证的准确率达到95%以上。通过神经网络模型测试试验,槟榔正确分级的准确率为90%。数据降维后的三层遗传神经网络能够实现对槟榔的实时分级,为机器分级提供了技术支持。 相似文献
14.
15.
基于机器视觉的鸡胴体质量分级方法 总被引:4,自引:0,他引:4
提出一种基于机器视觉技术的鸡胴体质量分级方法。使用数码相机在肉鸡屠宰厂随机采集95幅鸡胴体图像,对采集图像预处理后,提取出鸡胴体投影面积、轮廓长度和胸宽等6个图像特征。然后以这6个特征参数为输入,利用95个样本为训练集,通过回归分析的方法,分别建立预测鸡胴体质量的一元线性回归模型和多元线性回归模型,找出预测质量的最佳模型,最后采集5组共100个样本为验证集,对最佳分级模型进行验证。结果显示,鸡胴体图像的6个特征参数中,基于投影面积的一元线性模型决定系数最大,为0.827;基于投影面积等4个特征量的多元线性模型决定系数最大,为0.880。根据样本数据的学生化残差剔除了8个异常点的数据,修正后的多元线性模型决定系数为0.933,并将其作为最佳模型。利用最佳模型对验证集样本进行质量分级,模型对鸡胴体质量等级判定的平均正确率可达89%。结果表明基于图像特征的鸡胴体自动分级方法是可行的。 相似文献
16.
基于机器视觉黄瓜果实自动分级方法 总被引:1,自引:0,他引:1
为实现黄瓜果实快速准确分级,以摄像头为视频采集模块、DSP核心处理器为主控制模块、机械手为执行模块,并借助质量控制、电机传送等辅助单元,构建了自动化分级平台。参照国家标准NY/T1587-2008,利用图像处理方法对黄瓜果实图像的瓜长、把长、横径差、弓形高度进行了提取和计算。选取长春密刺、龙杂黄七号、露秋一号3个品种240根黄瓜果实作为试验样本,抽取每个品种的20个样本作为图像提取数据分析,其余60个样本作为自动分级平台测试。测试结果显示:该平台的平均分级精度为96.7%,每分钟约检测35根果实,相较人工分级具有快速、无损、准确、客观的特点,为机器视觉技术应用于椭长形果实自动化分级提供了重要依据。 相似文献
17.
18.
采用人工检测的石榴外观品质等级分级方法存在准确率和效率低的问题,提出一种基于机器视觉的石榴品质分级方法。首先,采用机器视觉系统采集石榴样本图像,进行去噪处理与获取掩模图像;其次,提取去噪图像的红、绿、蓝分量,用蓝色分量减去红、绿色分量得到色差图像,并对色差图像进行阈值分割;然后,对分割图像采用数学形态学处理获得连通的疑似缺陷区域的边界,提取纹理特征并根据缺陷与非缺陷区域纹理特征的不同来标记缺陷区域;最后,将缺陷面积与总面积之比和缺陷数目作为划分等级的依据,对石榴品质等级进行划分。试验结果表明:本方法总体分级准确率达到92.9%,能够高效、准确地识别石榴表面缺陷并进行品质分级,为实现自动分级的产业化提供思路。 相似文献
19.
针对柑橘果形特征中圆度和果径检测精度低、姿态定位时间长的问题,设计了一种嵌入式快速检测与控制系统。系统以STM32单片机为系统控制核心,测量了单目相机图像的半径误差和形状误差,并采用高斯滤波、数字图像形态学、Hu矩和Canny算法,对动态的柑橘图像进行姿态识别与柑橘果形检测。检测结果表明:视觉检测系统半径误差控制在1.8%以内,形状误差为2.71%~3.69%;在5个/s柑橘的检测速度下,柑橘圆度和果径的在线分级正确率分别为81%和91.92%。本研究结合机器视觉无损检测技术,实现了动态下柑橘圆度和果径特征的综合检测与分级。 相似文献
20.
基于机器视觉的蒜头最大横切面直径分级方法 总被引:1,自引:0,他引:1
针对中国蒜头分选率和分选精度较低而影响其商品价值等现状,设计了一套基于机器视觉技术的大蒜蒜头分选系统,以蒜头最大横切面直径作为分级标准,利用VC6.0编程实现上述分级模型的算法。试验选择3 2 0个金乡蒜头样本对其进行测试,该装置对蒜头总体筛选精度达到9 0.9 3 7 5%。试验结果表明:利用机器视觉技术可以对大蒜蒜头进行分级。 相似文献