首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Purpose

Nitrogen (N) is one of the most important elements that can limit plant growth in forest ecosystems. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are considered as the key drivers of global N biogeochemical cycling. Soil ammonia-oxidizing microbial communities associated with subtropical vegetation remain poorly characterized. The aim of this study was to determine how AOA and AOB abundance and community structure shift in response to four typical forest vegetations in subtropical region.

Materials and methods

Broad-leaved forest (BF), Chinese fir forest (CF), Pinus massoniana forest (PF), and moso bamboo forest (MB) were widely distributed in the subtropical area of southern China and represented typical vegetation types. Four types of forest stands of more than 30 years grew adjacent to each other on the same soil type, slope, and elevation, were chosen for this experiment. The abundance and community structure of AOA and AOB were characterized by using real-time PCR and denaturing gradient gel electrophoresis (DGGE). The impact of soil properties on communities of AOA and AOB was tested by canonical correspondence analysis (CCA).

Results and discussion

The results indicated that AOB dominated in numbers over AOA in both BF and MB soils, while the AOA/AOB ratio shifted with different forest stands. The highest archaeal and bacterial amoA gene copy numbers were detected in CF and BF soils, respectively. The AOA abundance showed a negative correlation with soil pH and organic C but a positive correlation with NO3 ??N concentration. The structures of AOA communities changed with vegetation types, but vegetation types alone would not suffice for shaping AOB community structure among four forest soils. CCA results revealed that NO3 ??N concentration and soil pH were the most important environmental gradients on the distribution of AOA community except vegetation type, while NO3 ??N concentration, soil pH, and organic C significantly affected the distribution of the AOB communities.

Conclusions

These results revealed the differences in the abundance and structure of AOA and AOB community associated with different tree species, and AOA was more sensitive to vegetation and soil chemical properties than AOB. N bioavailability could be directly linked to AOA and AOB community, and these results are useful for management activities, including forest tree species selection in areas managed to minimize N export to aquatic systems.  相似文献   

2.
Physicochemical parameters and benthic macroinvertebrate community structure were studied in a small valley stream in southwestern Pennsylvania. Sampling stations were located upstream and downstream of coal mine drainage input. Due to an alkaline discharge and significant downstream alkalinity the pH below the mine effluent remained between 5.8 and 7.0 throughout the course of this 18 mo study. The major factor affecting the benthic community seemed to be ferric hydroxide deposition. Certain taxa (Plecoptera and Ephemeroptera) were abundant at station sites above the mine discharge, while only those taxa tolerant of polluted conditions, such as Chironomidae and Tubifex, were prevalent at the downstream station sites. An analysis of benthic populations through changes in total numbers, species diversity, and species indicator organisms graphically demonstrated environmental stress within this aquatic ecosystem.  相似文献   

3.
The influence of structure on degradation of five halogenated phenols (XPs) by UV/H2O2 process was investigated. The combined influence of type or number of substituents and UV/H2O2 process parameters (pH and [H2O2]) on the degradation kinetics of 2-fluorophenol (2-FP), 2-chlorophenol (2-CP), 2-bromophenol (2-BP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) was studied using modified miscellaneous 33 full factorial design and response surface modeling (RSM). Studied XPs obey first-order degradation kinetics within the investigated range of process parameters. Determined degradation rate constants (k obs) were correlated with process and structural parameters by the quadratic polynomial models. Analysis of variance (ANOVA) demonstrated RSM models’ accuracy and showed that, in addition to pH and [H2O2], model terms related with the pollutant structure are highly influential. k obs of mono-XPs follow the decreasing order 2-FP, 2-CP, and 2-BP, while CPs follow the decreasing order 2-CP, 2,4-DCP, and 2,4,6-TCP. Biodegradability (biochemical oxygen demand (BOD)5/chemical oxygen demand (COD)) and toxicity (TU) were evaluated prior to the treatment and at the reference time intervals. The observed differences are correlated with the structural characteristics of studied XPs.  相似文献   

4.
The impact of acid precipitation reflects a usually deleterious balance between good and bad effects which may lead to serious and sometimes extreme degradation of aquatic as well as terrestrial ecosystems, particularly around metal smelters. Addition of H ions as H2SO4, HNO3, and HCl can alter and impoverish the species composition of biotic communities, and lead to severe leaching of beneficial metal cations such as Ca from ecosystems. Heavy metals and other trace elements which accompany acid precipitation may reach toxic levels, particularly where acid fallout leaches additional amounts from the soil into streams and lakes. Complex and often toxic hydrocarbons also comprise a little known organic component of acid precipitation. Alternatively, acid precipitation usually is enriched in plant nutrients such as nitrate- and ammonia-nitrogen, K, Ca, and S; and at certain concentrations some of the associated trace elements may also be beneficial. Moreover the initial effect of soil leaching by acid fallout may be to enrich aquatic ecosystems in metal cations such as Ca. Basic materials in air pollution, biogenic NH3 from the soil, dust fall from arid regions, and soils rich in adsorbed metal cations or in carbonates may neutralize some of the harmful effects of acid precipitation upon ecosystems. However, associated heavy metals, other trace elements, and toxic hydrocarbons may still constitute serious problems in many environments.  相似文献   

5.
Nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) were compared for their ability to solubilize Pb from a highly-contaminated (PbT 21%) soil collected from a battery recycling facility. For chelant concentrations below 0.04 M (representing a 1:1 chelant-to-PbT molar ratio), EDTA released 10 to 30% more Pb than NTA. NTA-to-Pb T ratios greater than 1:1 reduced Pb recovery because of readsorption of Pb(NTA)2 4? onto positively-charged oxide soil components at pH < 8.5. For the EDTA system, however, complexation completely bound all coordination sites of Pb and EDTA, leaving no functional groups available for surface adsorption. Thus, Pb recovery progressively increased with higher EDTA concentrations, although the additional Pb release with each EDTA increment became smaller. For pH < 5 and EDTA/Pb of 2:1, Pb recovery exceeded 90%. The addition of 0.5 M NaC1O4 enhanced Pb recovery by EDTA for pH 5 to 12, but substantially suppressed recovery by NTA for pH < 11. Because Pb release by NTA was diminished by high ionic strength and chelant-to-metal ratios, NTA may be limited as a soil washing reagent. Stronger complexation and consistent Pb desorption behavior by EDTA favors its use.  相似文献   

6.
The Cedar Creek Basin (39th N parallel 92nd W meridian) was studied for the period June 1952 through August 1954 to observe the effects of both continuous and periodic acid effluent flows on aquatic communities. The acid strip-mine effluent contained ferric and ferrous Fe, Cu, Pb, Zn, Al, Mg, titratable acid, and elevated H ion concentration, and was toxic to many of the aquatic organisms. In the areas of Cedar Creek, subjected to continuous acid flow, planktonic and benthic species had become adapted to the severe conditions and varied in abundance and diversity. No fishes were observed in the continuous acid effluents area. Downstream, where periodic mineral acid conditions changed drastically during an excessive effluent flow, planktonic and benthic communities had high diversity but low density. The populations of fishes were variable in this stream reach. The chemical basis of water quality variability was shown to be time-related, and statistically related to the aquatic communities. Physical, chemical and biological conditions of acid lakes formed by surface mining were reviewed. In addition to apparent physical and chemical differences in lakes, due in part to variable solar absorbance due to suspended oxides of Fe, chemical variability related to organic composition was reviewed. It is quite probable that degradation of such lakes can be reversed.  相似文献   

7.
Comparisons of stream water chemistry over a 2 yr period in East Fork, which drains an entirely forested watershed, and Big Run, which drains a forested watershed 8 % of which is occupied by Big Run Bog, indicated that Big Run Bog had no effect on stream water H+ or Cl? concentrations, but with increasing stream discharge the wetland was a source of Ca++ Mg++, K+, Na+, NO3 ?, and SO4 ?, and a sink for Fe+ +. Further comparisons with Tub Run, which drains a forested watershed, 13 and 12% of which is occupied by Tub Run Bog and an abandoned, unreclaimed coal surface mine, respectively, suggested that Tub Run Bog removes H+, Ca ++, Mg++, Fe++, and 504 ? from inputs of acid mine drainage. Wetland areas on the landscape contribute to the regulation of stream water chemistry in ways that are different from upland areas, and wetlands may have considerable applied potential for minimizing the impact of the mine drainage on stream water quality.  相似文献   

8.
After exposure of samples of three forest soils (pH 3.4 to 3.9) from the Adirondacks region of New York to 60, 230, or 400 cm of simulated rain of pH 3.5 or 5.6 in 4, 14, or 24 weeks, respectively, the soil samples were separated into the 0 to 2 and 2 to 5 cm organic layers and further incubated. The rates of N mineralization in Woods soil exposed to the simulated precipitation were less for rain at pH 3.5 than at pH 5.6, but the inhibition decreased with increasing exposure of the 0 to 2 cm layer. In Panther soil, the rates of mineralization were usually not affected by the acidity of the simulated rain. In the upper layer of Sagamore soil, mineralization was not influenced by pH of the simulated rain, but the transformation was faster in the bottom layer of soil after prolonged exposure to simulated rain at pH 3.5 than at pH 5.6. The rate of nitrate formation in Panther and Woods soil amended with ammonium was inhibited by the more acid rain. Studies with 15NH4 indicated that ammonium was oxidized to nitrate even though ammonium levels did not decline or declined only slightly after prolonged exposure of Panther or Woods soil to rain at pH 3.5. The growth of orchardgrass in Panther and Woods soil was inhibited by the more acid simulated rain.  相似文献   

9.
Experiments were carried out in plasticized wooden channels fed by a small creek in the Reserve des Laurentides, 80 km north of Quebec city. Channels were naturally colonized by invertebrates for 65 d before treatment. Treated channels were acidified in August with dilute H2SO4 only, or with acid plus a solution of Al sulfate (final concentration of 0.19 mg L?1). The control channel received creek water only (pH 6.3 to 6.9). The addition of Al had no effect on invertebrate density and biomass. After 73 d of acidification, invertebrate densities were only one third the number found in the control channel. Invertebrate hiomass was not different within channels, although biomass was generally higher in the two acidified channels. Difference in densities between acidified and non-acidified channels was attributed to lack of colonization and not to an increase in drift. Microtendipes, a large and resistant larva of Chironomidae constituted a large fraction of the hiomass, largely outweighing numerous very small larvae. Effects on the density were attributed to the direct effect of low pH and not to indirect action through food limitations.  相似文献   

10.
In the Vosges Mountains (NE of France), integrated plot-catchment studies have been carried out since 1985 in the Strengbach basin to study the influence of acid atmospheric inputs on surface water quality and element budgets. In this paper, available mid-term time series (1985–1991) have been considered to detect obvious trends, if any, in surface water chemistry and element budgets. Air quality data showed a slight decline for SO2, whereas NO2 slightly increased over the period, but these trends are not very significant. This is in agreement with increased N concentration (mainly as NH 4 + ) and with the stability of SO 4 2? in open field precipitation. Because of a significant decrease in rainfall amount over the period, only inputs of NH 4 + increased significantly whereas H+ and SO 4 2+ inputs declined. In spring and streamwaters, pH and dissolved Si concentration increased mainly as a result of a reduced flow. Na+, K+, Cl? and HCO-3~? concentrations remained stable whereas Ca2+, Mg2+ and SO 4 2+ concentrations declined significantly. Only NO 3 ? concentration increased significantly in springwaters. The catchment budgets revealed significant losses of base cations, Si and SO 4 2? . These losses decreased over the period. Nitrogen was retained in the ecosystem. However, a longer record is needed to determine whether or not changes in surface water chemistry have resulted from short-term flow reductions or long-term changes in input-output ion budgets. This is specially true with N because the decline in SO 4 2? output was accompanied by N accumulation.  相似文献   

11.
Between December 1986 and June 1987, the mean pH of rainfall downwind of the Kilauea main vent was found to be 4.5 (range 4.0 to 5.6), 1.2 units higher than the year before (1985-86), although 84% of the 12 sequential samples fell below pH 5.0. The SO4 content, however, was 34% higher, averaging 18.5 mg L?1. Upwind, in open forest the mean pH 4.7 was little changed from that measured before. Mean SO4, however, has fallen to a low of 2.5 mg L?1, but, more significantly, in 9 out of 12 sequential samples S04 was not detectable at all (i.e. < 0.5 mg L?1). The calculated pH, assuming 100% H2SO4 would be 5.3 yet 58% of these samples fell below pH 5.0, the lowest being 4.0. Disparities between pH measured and calculated on the basis of SO4 content indicated that other acid species were present in the precipitation. Oxidation of rain samples with H2O2 greatly increased SO4 content and lowered pH downwind, but failed in most samples to alter either parameter in the upwind collections. These observations, together with the elimination of HCl and N03 by others, suggested that SO2 contributes significantly to acidity downwind, but that in most upwind samples a source of H+ other than mineral acids, presumably organic compounds, must be of major importance.  相似文献   

12.
The growth rates of two diatoms, acidophilic Asterionella ralfsii and circumneutral A. formosa, were differentially affected by varying pH, Al, and EDTA in chemically defined media. Free Al ion concentration increased as pH and EDTA concentration decreased. Free trace metal ion concentration decreased as EDTA levels increased but increased by orders of magnitude upon addition of Al. pH had an overriding species specific effect on growth rate; at low pH A. ralfsii had higher growth rates than A. formosa and vice versa at high pH. For both species higher EDTA levels depressed growth rates. Moderate additions of Al generally resulted in growth stimulation. The growth rate stimulations, especially at 200 and 400 μg L?1 Al additions, correlate to increases in free trace metal ion concentrations. The EDTA-AI interaction effects on growth rate were both pH and concentration dependent: at pH 7 both species were stimulated by addition of Al at all EDTA levels (except A. ralfsii at 5.0 mM EDTA and A. formosa at 0.5 mNM EDTA); at pH 6 Al addition either stimulated or had no effect on the growth rates of both species (except at low EDTA and high Al levels); at pH 5 A. formosa did not grow and additions of 200 μg L?1 Al stimulated growth of A. ralfsii. It is likely that the effect of pH, Al, and EDTA on speciation of essential or toxic trace metals affects growth rates of these diatoms in a species specific manner.  相似文献   

13.
The herbicide glyphosate, supplied as Roundup (Monsanto Canada Inc.), was tested for effects on nitrification in four soils from Atlantic Canada. These included a sandy loam (pH 6.8), two silt loam (pH 6.4 and 5.8) agricultural soils and a clay loam forest soil (pH 3.5). Glyphosate was tested at normal field exposure rates (FR) and levels up to 200 times higher. FR values ranged from 19.83 to 29.26 ppm (jig glyphosate g?1 soil). Glyphosate had no deleterious effects on nitrification in any soil when tested at FR concentrations. In the sandy loam soil nitrification was significantly stimulated at a glyphosate level 50 times higher than FR. With this soil and one of the silt loam soils (pH 6.4) glyphosate levels of 100 times FR and higher were required for a significant inhibition of nitrification. With the other silt loam soil (pH 5.8) glyphosate significantly inhibited nitrification at concentrations 10 times FR and higher. Nitrification in the acidic forest soil was very low and accurate toxicity data could not be obtained. The EC50 of glyphosate towards nitrification in soil ranged from 1435 to 2920 ppm, which corresponds to exposure levels from 67 to 150 times higher than recommended field application rates. The use of glyphosate in agriculture and forestry should have no toxic effects on nitrification in soil.  相似文献   

14.
A theoretical model describing the general interaction between atmospheric trace gases, such as S02, NH3, C02 and 02, chemical reactant gaseous product H2SO4 and hydrometeors containing NaCl is proposed to study a possible mechanism for HCl production in non-precipitating cloud and the determination of the pH value of cloud droplets. Four different cloud droplet distributions have been used to estimate the upper limit of the amount of gaseous HCl released into the atmosphere resulting from the evaporation of cloud droplets. It is shown that the acid production and the amount of HCl released depend on the following factors: (a) the temperature of the cloud; (b) the oxidation rates; (c) the ambient concentration of SO2, NH3, and H2SO4; (d) the life cycle of the cloud; and (e) the liquid content of the cloud. This proposed chemical model also predicts a pH value spectrum depending on the cloud droplet distribution. Field measurements for the dependence of pH value on particle size and spatial distribution of gaseous HCl are recommended.  相似文献   

15.
The chemical composition and quantity of plant inputs to soil are primary factors controlling the size and structure of the soil microbial community. Little is known about how changes in the composition of the soil microbial community affect decomposition rates and other ecosystem functions. This study examined the degradation of universally 13C-labeled glucose, glutamate, oxalate, and phenol in soil from an old-growth Douglas-fir (Pseudotsuga menziesii)—western hemlock (Tsuga heterophylla) forest in the Oregon Cascades that has experienced 7 y of chronic C input manipulation. The soils used in this experiment were part of a larger Detritus Input and Removal Treatment experiment and have received normal C inputs (control), doubled wood inputs, or root and litter input exclusion (no inputs). Soil from the doubled wood treatment had a higher fungal:bacterial ratio, and soil from the no inputs treatment had a lower fungal:bacterial ratio, than the control soil. Differences in the utilization of the compounds added to the field-manipulated soils were assessed by following the 13C tracer into microbial biomass and respiration. In addition, 13C-phospholipid fatty acids (PLFA) analysis was used to examine differential microbial utilization of the added substrates. Glucose and glutamate were metabolized similarly in soils of all three litter treatments. In contrast, the microbial community in the double wood soil respired more added phenol and oxalate, whereas microbes in the no inputs soil respired less added phenol and oxalate, than the control soil. Phenol was incorporated primarily into fungal PLFA, especially in soil of the double wood treatment. The addition of all four substrates led to enhanced degradation of soil organic matter (priming) in soils of all three litter treatments, and was greater following the addition of phenol and oxalate as compared to glucose and glutamate. Priming was greater in the no inputs soil as compared to the control or doubled wood soils. These results demonstrate that altering plant inputs to soil can lead to changes in microbial utilization of C compounds. It appears that many of these changes are the result of alteration in the size and composition of the microbial community.  相似文献   

16.
The biology and chemistry of three northeastern Pennsylvania lakes was studied from summer 1981 through summer 1983 to evaluate lakes with different sensitivities to acidification. At the acidified lake (total alkalinity ≤ 0.0 μeq L?1) there were fewer phytoplankton and zooplankton species than at the moderately sensitive lakes. The most numerous plankton species in all three lakes are reportedly acid tolerant. Among the benthic macro- invertebrates (BMI) there were more acid tolerant Chironomidae at the acidified lake, but more acid intolerant Ephemeroptera and Mollusca and a higher wet weight at the least sensitive lake. There were no differences among the lakes' BMI mean total numbers or mean number of taxa. The fish community at the acidified lake was dominated by stunted Lepomis gibbosus, but L. machrochirous were most abundant in the other lakes. Principal component analysis suggested a shift in all three lakes over the sampling period toward combined lower pH, alkalinity, specific conductance, Ca and Mg and higher Al and Mn. Such chemical changes have been associated with acidification. The rate and extent of acidification appeared to be controlled by geological and hydrological characteristics of the drainage basins.  相似文献   

17.
Ozonation is an efficient process for the primary degradation of most substrates but not for their mineralisation. In this work, the ozonation enhanced with the addition of H2O2 was studied for two substrates with very different oxidation resistances: the dye rhodamine 6G (R6G) and the surfactant linear alkylbenzene sulfonate (LAS). With O3 only, the primary degradation of R6G was completed in less than 10 min but its TOC removal only reached 45% in 1 h. By adding H2O2, TOC removal was increased to 70% with a molar ratio (mol H2O2/mol substrate) of 10. The analysis of pH decrease served to define the specific basicity loss (SBL). The optimum conditions for the R6G mineralisation were found to be associated with a SBL value between 1 and 10 ((min/g)/L)?1, through an adequate addition of H2O2. Moreover, in the case of LAS, the addition of H2O2 for a greater efficiency should occur after the foaming period, above all formed at acid pH. LAS degradation was also considerably improved, and the optimum for primary degradation achieved in 10 min with a TOC removal of over 65% with a molar ratio (mol H2O2/mol substrate) of 20.
? Graphical Abstract
  相似文献   

18.
The critical load concept is now accepted throughout Europe as a means of estimating the sensitivity of key components of aquatic and terrestrial ecosystems to atmospheric inputs of sulphur (S) and nitrogen (N). Current UK freshwater maps, based on steady-state water chemistry, are derived using a critical acid neutralising capacity (ANCLIM) value of zero eql–1, which is based on the probability of occurrence of salmonid fish in lakes. In practice most acidification damage to salmonid fish occurs in nursery streams at the emergence and first feeding stages. In general a clear relationship exists between salmon (Salmo salar L.) and trout (S. trutta L.) densities in Scottish streams and ANC values. However, differences between sites depend on which ANC value is used (eg maximum, minimum or mean). By contrast, when the exceedance of critical loads is compared with salmonid densities the relationship is less clear because many exceeded sites have good salmonid densities. Many of these latter sites are found in north-west Scotland where sea-salt inputs are high and ANC is usually greater than zero eql–1, although diatom-based studies indicated slight acidification of these waters, with a point of change in diatom flora close to ANC=20 eql–1. These false exceedances are probably due to preferential adsorption of acidic SO4 deposition which results in an overestimate of exceedance values. All sites with a mean ANC 0 are fishless but some sites with negative minimum ANC values had normal salmonid densities. Consequently a mean ANCLIM value of zero in the critical load equations for UK freshwaters appears to be too low to protect salmonid stocks. Values between 20–50 eql–1 represent a more realistic range if prevention of long term damage to salmonid stocks is to be achieved.  相似文献   

19.
Litter decomposition was studied at two forested watersheds in east Tennessee which differed primarily in their past history of atmospheric S input. Cross Creek Watershed, located near a large coal-fired power plant, has received greater S inputs than the more remote Camp Branch Watershed. Decomposition was estimated through the measurement of forest floor respiration, litter microflora populations, litter and soil microarthropod populations, and litter nutrient status. Average forest floor respiration rates were very similar, 6.78 g CO2 m?2 day?1 or 2472 g m?2 yr?1 at Camp Branch and 6.86 g CO2 m?2 day?1 or 2505 g M?2 yr?1 at Cross Creek. Fractional loss rates provided estimates of annual decay rates (k) of 0.35 and 0.39 for Camp Branch and Cross Creek, respectively. Litter decomposition was estimated to contribute 23% of the total CO2 output at Camp Branch and 26% at Cross Creek, while root respiration accounts for about 43 to 46%. Bacterial and fungal populations were about equal in size at both watersheds, with bacteria averaging 100 × 106 g?1 of litter and fungi 23 × 106 g?1 of litter. Total numbers of arthropods averaged 34% greater at Camp Branch. Acarina populations averaged 59% higher at Camp Branch, while Collembola numbers were about equal at the two watersheds. Nutrient mobility in the litter and soil was similar at both watersheds. The order of decreasing mobility was K, Mg, Ca, S, N, and P. Litterfall nutrient concentrations were slightly higher for all elements at Cross Creek, resulting in greater litter concentrations of Ca and Mg. Litter concentrations of S and N, however, were significantly greater at Camp Branch, indicating watershed differences in the loss rates and cycling processes of these elements. There were no differences between the loss rates or litter concentrations of P, K, and Na at either site. Overall, decomposition was similar at the two watersheds. Historic S inputs do not appear to have had a major effect on decomposition rate or decomposer organisms with the possible exception of lowered arthropod populations at Cross Creek.  相似文献   

20.
Oxalate metabolization by soil microorganisms was assessed using a calcium oxalate clearing medium and14CO2 release from [14C]-oxalate. Three saprophytic fungi, two bacteria, and one actinomycete tested produced14CO2 when grown in culture with [14C]-oxalate, yet failed to test positive for oxalate degradation using a calcium-clearing medium. A field plot was then established to determine the effects of oxalate inputs on oxalate metabolism. The amount of [14C]-oxalate metabolized by soil microorganisms and the number of bacteria metabolizing oxalate increased within 24 h after the addition of oxalic acid at a concentration of 11.1 mol g-1 soil. Oxalate metabolism and bacterial numbers returned to the baseline within 84 days. Soil phosphate concentrations increased significantly above baseline 7 days after the addition of oxalate and did not return to prespike levels. Fungi, bacteria, and actinomycetes were able to metabolize oxalate. Therefore, while oxalate can influence P cycles by increasing the amount of available phosphates, that increase is mediated by microbes that metabolize the oxalates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号