首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two studies were conducted to evaluate effects of wet distillers grains with solubles (WDG) and dietary concentration of alfalfa hay (AH) on performance of finishing beef cattle and in vitro fermentation. In both studies, 7 treatments were arranged in a 2 × 3 + 1 factorial; factors were dietary concentrations (DM basis) of WDG (15 or 30%) and AH (7.5, 10, or 12.5%) plus a non-WDG control diet that contained 10% AH. In Exp. 1, 224 beef steers were used in a randomized complete block (initial BW 342 kg ± 9.03) finishing trial. No WDG × AH interactions were observed (P > 0.12). There were no differences among treatments in final shrunk BW or ADG (P > 0.15), and DMI did not differ with WDG concentration for the overall feeding period (P = 0.38). Increasing dietary AH concentration tended (P < 0.079) to linearly increase DMI, and linearly decreased (P < 0.05) G:F and calculated dietary NE(m) and NE(g) concentrations. Carcasses from cattle fed 15% WDG had greater yield grades (P = 0.014), with tendencies for greater 12th-rib fat (P = 0.054) and marbling score (P = 0.053) than those from cattle fed 30% WDG. There were no differences among treatments (P > 0.15) in HCW, dressing percent, LM area, KPH, proportions of cattle grading USDA Choice, and incidence of liver abscesses. In Exp. 2, ruminal fluid was collected from 2 ruminally cannulated Jersey steers adapted to a 60% concentrate diet to evaluate in vitro gas production kinetics, H(2)S production, IVDMD, and VFA. Relative to the control substrate, including WDG in substrates increased (P < 0.01) H(2)S production and decreased total gas production (P = 0.01) and rate of gas production (P = 0.03). Increasing substrate WDG from 15 to 30% increased (P < 0.05) H(2)S production and decreased (P < 0.001) total gas production, with a tendency (P = 0.073) to decrease IVDMD and fractional rate of gas production (P = 0.063). Treatments did not significantly affect (P > 0.09) molar proportions or total concentration of VFA. Results indicate that including 15 or 30% WDG in steam-flaked corn-based diets did not result in major changes in feedlot performance or carcass characteristics, but increasing AH concentration from 7.5 to 12.5% in diets containing WDG decreased G:F. Including WDG in substrates decreased rate and extent of gas production and increased H(2)S production. Changes in various measures of in vitro fermentation associated with AH concentrations were not large.  相似文献   

2.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

3.
Three hundred seventy-one crossbred-yearling heifers (299 +/- 9 kg initial BW) were obtained from a common source and used in a randomized complete-block designed finishing study. A 2 x 3 factorial arrangement of treatments was used with one factor being diet: based on steam-flaked corn finishing diet (SFC) or SFC plus 25% (dry basis) corn wet distillers grains with solubles (WDGS). The second factor was feed additives: no added antibiotics (NONE), 300 mg of monensin daily (MONENSIN), or 300 mg of monensin + 90 mg of tylosin daily (MON+TYL). Main effect of diet resulted in no difference in DMI (P = 0.34). Heifers fed SFC gained 9% faster (P = 0.01) and were 7% more efficient (P = 0.01) than heifers fed WDGS. In addition, heifers fed SFC had 3% heavier (P = 0.01) HCW; 1% greater (P = 0.01) dress yield; and had 3% larger (P = 0.05) LM area. Marbling score and carcasses that graded USDA Choice or better were both greater (P /= 0.12) among feed additive treatments. Kidney, pelvic, and heart fat and s.c. fat thickness at the 12th rib were also not different (P >/= 0.55) for main effects of diet and feed additive. There was a tendency (P = 0.09) for a diet x feed additive interaction for the most severe (A+) liver abscesses. Heifers fed NONE yielded the greatest percentage (16%) of A+ livers in the SFC treatment, whereas heifers fed MON+TYL yielded the greatest percentage (10%) in the WDGS treatment. Including wet distillers grains with solubles in diets based on steam-flaked corn decreased finishing heifer performance, HCW, and marbling. Tylosin addition tended to decrease severity of liver abscesses in diets containing SFC, but not in diets containing WDGS. These data indicate that monensin and tylosin may not be as effective when used in steam-flaked corn diets with 25% WDGS.  相似文献   

4.
Supplementation of vitamin E has indications for improving cattle health, performance, and retail characteristics when included in grain-based diets. This experiment was conducted to determine performance and carcass characteristics of steers fed diets containing wet distillers grains with solubles (WDGS) and supplemented with vitamin E. Steers of mixed Bos indicus and Bos taurus breeding (n = 199; BW = 363 ± 32 kg) were blocked by BW and assigned to 1 of 4 supplemental vitamin E (VITE) treatments [0 (control), 125, 250, and 500 IU·steer(-1)·d(-1)], which were fed for the last 97 d of the feeding period. Two blocks were on feed 129 d, and 3 blocks were fed for 150 d. Steers were fed a dry-rolled corn-based finishing diet with 35% WDGS (DM basis). Individual BW were measured initially, the initial day of vitamin E supplementation, and the day of slaughter. Carcass weights were collected at slaughter, and carcass data were collected after a 36-h chill. Body weight and ADG were not affected by VITE (P ≥ 0.34). There was a tendency for a linear (P = 0.08) increase in carcass-adjusted BW with increasing VITE. Use of carcass-adjusted final BW resulted in a linear increase (P = 0.04) in ADG with increasing VITE. Pre-vitamin E and vitamin E feeding period DMI were not affected (P ≥ 0.24) by VITE, but there was a tendency (P = 0.08) for a linear increase in overall DMI with increasing VITE. No difference (P ≥ 0.29) occurred in G:F measures using BW gains, but G:F using carcass-adjusted BW gains resulted in a trend (P = 0.11) for G:F to increase linearly with increasing VITE. Hot carcass weights tended (P = 0.08) to increase linearly with increasing dietary vitamin E. Vitamin E supplementation resulted in no effects (P ≥ 0.13) on measured carcass characteristics. Calculated yield grades (YG) were also not affected (P ≥ 0.37). However, the distribution of calculated YG resulted in a quadratic effect (P = 0.02) for YG 3 with the control and 500 VITE being greater than the 2 intermediate amounts. However, the percentage of carcasses grading YG 3 or less were not affected by vitamin E supplementation (P = 0.64). No differences were observed in the distribution of quality grades based on marbling scores (P ≥ 0.57). Data from this study suggest that vitamin E supplemented above basal requirements during the last 97 d of the feeding period in finishing diets containing 35% WDGS results in slight to no effect on animal performance or carcass characteristics.  相似文献   

5.
Two finishing experiments were conducted to determine the effects of concentration (Exp. 1) and composition of wet corn gluten feed (Exp. 2) in steam-flaked corn-based diets on feedlot steer performance. In Exp. 1, 192 English x Continental crossbred steer calves (299 +/- 0.6 kg) were used in a completely randomized design with six dietary treatments (four pens per treatment). Treatments were six concentrations of wet corn gluten feed (Sweet Bran, Cargill Inc., Blair, NE; 0, 10, 20, 25, 30, and 35%) replacing steam-flaked corn (DM basis). All diets contained 10% corn silage, 5% supplement, and 3.5% tallow (DM basis). Gain efficiency and ADG were similar (P > 0.25) among treatments. Dry matter intake was lower (P < 0.10) with 0% wet corn gluten feed than with concentrations of 20, 25, and 35% WCGF. Dry matter intake did not differ among treatments containing wet corn gluten feed. In Exp. 2, 160 English x Continental crossbred steer calves (315 +/- 0.6 kg) were used in a completely randomized design with five dietary treatments (four pens/treatment). Treatments were assigned based on four ratios of steep to corn bran/germ meal mix in wet corn gluten feed plus a negative control (CON). Wet corn gluten feed was fed at 25% of the dietary DM and was made by mixing steep and corn bran/germ meal into the diet. The four concentrations of steep in wet corn gluten feed that comprised the ratios were 37.5, 41.7, 45.8, and 50% (DM basis), with the remaining proportion being the bran/germ meal mix. Bran/germ meal mix was comprised of 60% dry corn bran, 24% germ meal, and 16% fine-cracked corn (DM basis). All diets contained 10% corn silage, 5% supplement, and 3.5% tallow (DM basis). Daily gain did not differ (P = 0.18) among treatments. Gain efficiency did not differ between CON and 50% steep; however, G:F was decreased (P < 0.05) for concentrations of 37.5, 41.7, and 45.8% steep compared with CON. A linear improvement (P < 0.05) was observed for G:F as concentration of steep increased as a proportion of wet corn gluten feed. These data suggest that wet corn gluten feed can be used at concentrations up to 35% of the dietary DM without adversely affecting performance, and that steep has more energy than bran/germ meal in steam-flaked corn-based diets.  相似文献   

6.
Corn distiller's grains plus solubles (DGS) have become a common replacement for shelled corn in diets of finishing steers. Numerous studies have evaluated DGS inclusion, both wet (WDGS) and dry (DDGS), into feedlot diets with conflicting reports on feedlot performance and subsequent meat quality. Many authors have failed to describe the nutrient composition of the DGS utilized in their studies making it difficult to determine why different studies have different results. The objective of this study was to evaluate the feedlot performance and subsequent meat quality characteristics of steers fed high fat (10.36±0.72%), modified wet corn distiller's grains plus solubles (HWDGS) at 0, 25, 40, and 70% of the diet dry matter (DM). Angus cross steers (n=240; 335±55 kg) were blocked by source and stratified within block (3 blocks) by body weight (BW) to 32 treatment pens containing either 6 or 10 steers/pen. Pens within block were randomly assigned to one of four diets containing 15% corn silage: (1) 76.9% shelled corn, 6.4% soybean meal 1.5% limestone, 0.2% premix (0 HWDGS); (2) 25.0% HWDGS, 58.20% shelled corn 1.6% limestone, 0.2% premix (25 HWDGS); (3) 40.0% HWDGS, 42.74% shelled corn 2.06% limestone, 0.2% premix (40 HWDGS); (4) 70.0% HWDGS, 12.30% shelled corn 2.5% limestone, 0.2% premix (70 HWDGS). Target BW at harvest was 591 kg±23 kg with 121 steers harvested on day (d) 161 and 117 steers on d 224. Hot carcass weight and liver abscess scores were recorded on d of harvest. Longissimus muscle area, rib fat thickness, marbling score, and kidney, pelvic and heart fat were measured after a 24 h chill. No significant differences were observed between treatments regarding average daily gain (ADG) or BW. Steers fed 0 HWDGS had significantly lower average daily feed intake (ADFI) than steers fed HWDGS and the response was quadratic at lower ADFI. Steers fed 70 HWDGS had lower (P<0.05) dry matter intake (DMI) compared to steers fed lower HWDGS concentrations. Steer gain to feed ratio (G:F) was significantly higher for steers fed 70 HWDGS compared to 0, 25, or 40 HWDGS with a quadratic response at higher % HWDGS diets. Mean United States Department of Agriculture (USDA) quality grade was average choice. Mean USDA yield grade was 3.0. Steers fed 70 HWDGS had significantly smaller rib eye areas and a linear trend (P=0.08) to have lower USDA quality grades compared to steers fed lower HWDGS inclusion rates. Increasing dietary HWDGS increased polyunsaturated fatty acid (PUFA) and PUFA/saturated fatty acid concentrations in intramuscular fat with both a linear and quadratic effect. High fat modified WDGS can be fed up to 70% of diet DM without compromising feedlot performance, carcass characteristics, or meat quality.  相似文献   

7.
Dried distillers grains plus solubles (DDGS) contain fat and rumen undegradable intake protein, both of which have been shown to increase reproductive performance in heifers. The mechanisms leading to enhanced reproduction have not been fully defined. The objectives of this research were to evaluate effects of DDGS in late gestation heifer diets on animal and reproductive performance and on blood plasma concentrations of GH, IGF-I, and NEFA. Over 2 yr, 201 heifers were randomly allotted to 1 of 2 diets, which were similar in energy and adequate in rumen degradable intake protein and were fed from d 190 of gestation through calving. Diets were grass hay with DDGS or soybean hulls (SBH) and a supplement. Cow BW and BCS were measured from the beginning of treatment through weaning. Blood samples were collected prepartum on d 71 and 69 of the feeding period and weekly after calving for 4 and 6 wk (d 84 to 105 and d 76 to 111 relative to the feeding period) during yr 1 and 2, respectively. No treatment x year interactions were detected for any of the performance, hormonal, or reproductive dependent variables. Both treatments caused positive BW changes over the feeding period, but DDGS heifers had a greater (P < 0.01) positive BW change compared with SBH heifers. Initial and final BCS and BCS change were similar (P >/= 0.26) between DDGS and SBH treatments. Treatment did not influence (P >/= 0.12) BW or BCS change during the postpartum period. Calving ease, calf vigor, and calf birth weight, weaning weight, and ADG (birth to weaning) were similar (P >/= 0.41) between treatments. The proportion of cows that had initiated estrous cycles (P = 0.46) and the pregnancy distribution (P >/= 0.21) were similar between treatments. However, a greater (P = 0.058) percentage of DDGS cows became pregnant compared with SBH cows (94 and 84%). In both years, there were no effects of treatment (P >/= 0.17) or treatment x time (P >/= 0.52), but time influenced (P 0.10) for the duration of the sampling period. Concentrations of NEFA increased from calving through d 8 and gradually declined through d 20. Prepartum diets containing DDGS, a source of fat and UIP, benefited pregnancy rates in well-maintained, primiparous beef heifers.  相似文献   

8.
Two experiments using 96 steers each were conducted to evaluate the effect of corn wet distillers grains plus solubles (WDGS) concentration on steer performance, N loss, and P mass balance. Feeding WDGS as an energy source instead of protein may increase N release into the environment but also the amount of N removed in the manure. Calves (BW = 294 ± 33 kg) were fed 167 d from November to May (WIN), and yearlings (BW = 373 ± 24 kg) were fed 133 d from June to October (SUM). Treatments consisted of 0, 15, and 30% dietary inclusion of WDGS (DM basis) replacing corn (CON, 15WDGS, 30WDGS, respectively). Basal diets consisted of high-moisture and dry-rolled corn fed at a 1:1 ratio, 7.5% alfalfa hay, 5% molasses, and 5% supplement (DM basis). The CON and 15WDGS diets were formulated to meet MP requirements, and 30WDGS exceeded MP requirements. Dry matter intake, ADG, and HCW increased linearly (P < 0.05) with WDGS concentration in the WIN, whereas DMI and ADG increased linearly (P < 0.10) in the SUM. Efficiency of BW gain was not different (P > 0.10) among treatments in either experiment. Nitrogen and P intake increased linearly (P < 0.01) with WDGS concentration in both experiments. Calculated retention of N and P increased linearly (P ≤ 0.05) with WDGS concentration in the WIN but not in the SUM (P > 0.10). Calculated excretion of N and P increased linearly (P < 0.01) with WDGS concentration in both experiments. Amount of N removed in the manure was not different (P = 0.26) among treatments in the WIN but increased linearly (P = 0.05) with WDGS concentration in the SUM. Amount of P and OM removed increased linearly (P ≤ 0.05) with WDGS concentration in both experiments. Amount of N lost (kg/steer) increased linearly (P < 0.05) with WDGS concentration in both experiments. Expressed as a percentage of N excretion, N volatilization rate (amount of N lost divided by N excretion) was not different (P > 0.30) among treatments and averaged 68.3 and 77.0 in the WIN and SUM, respectively. More N volatilized when WDGS were fed, but not all of the additional N excreted was volatilized. Regressing the amount of OM on the pen surface against manure N, 98% of the variability for manure N in the WIN and 92% in the SUM was accounted for. Feeding WDGS increased the total amount of N lost to volatilization; however, not all of the additional N excreted was lost because of an increase in the proportion of manure OM.  相似文献   

9.
A feeding trial evaluated the hypothesis that wet corn gluten feed would improve growth performance of cattle fed steam-flaked corn-based finishing diets and supply required degradable intake protein (DIP). The trial used 360 steer calves (initial BW = 288 +/- 11 kg) housed in 36 pens for 166 d in an incomplete 4 x 3 factorial arrangement of treatments. Pens of steers were assigned to treatments according to a completely randomized design (four replicates per treatment combination). Treatments were wet corn gluten feed (0, 20, 30, or 40% of dietary DM) and CP (13.0, 13.7, or 14.4% of dietary DM) via supplemental urea as DIP. The 0% wet corn gluten feed treatment included only the 13.7% CP diet, and the 40% wet corn gluten feed treatment included only the 13.7 and 14.4% CP diets. Final dietary DIP concentration was 9.0% for 0% wet corn gluten feed; 8.7, 9.5, and 10.2% for 20% wet corn gluten feed; 9.0, 9.7, and 10.3% DIP for 30% wet corn gluten feed; and 10.0 and 10.6% for 40% wet corn gluten feed. Hot carcass weight, ADG, DMI, and G:F responded quadratically (P < or = 0.05) to wet corn gluten feed. The 20, 30, and 40% wet corn gluten feed treatments increased ADG by 7, 6, and 3% and increased DMI by 4, 5, and 5%, respectively, relative to the 0% wet corn gluten feed treatment. Feed efficiency was 102, 101, and 98% of the 0% wet corn gluten feed treatment for 20, 30, and 40% wet corn gluten feed, respectively. Hot carcass weight, ADG, and G:F increased linearly (P < or = 0.05) in response to increased DIP. Nonlinear analysis for DIP over the combined 20 and 30% wet corn gluten feed treatments indicated a DIP requirement of 9.6% of DM for ADG and 9.2% of DM for G:F, corresponding to 14.6 and 14.3% CP for 20% wet corn gluten feed and 14.8 and 14.5% CP for 30% wet corn gluten feed, respectively. Fat thickness, marbling, LM area, and USDA yield grade were not affected (P = 0.12 to 0.99) by wet corn gluten feed or CP. These results show that the inclusion rate of wet corn gluten feed for maximizing ADG and G:F in steam-flaked corn-based finishing diets is approximately 20% of DM. The DIP requirement determined in this trial averaged 9.4% of DM.  相似文献   

10.
Two experiments were conducted to determine the effects of wet distillers grain plus solubles (WDG; <15% sorghum grain) concentration in steam-flaked corn (SFC) diets on feedlot performance, carcass characteristics, ruminal fermentation, and diet digestibility. In Exp. 1, six hundred crossbred steers (364 ± 35 kg of BW) were used in a randomized complete block design with 8 replications/treatment. Dietary treatments consisted of a dry-rolled corn (DRC) control diet without WDG, a SFC control without WDG, and SFC with 4 WDG concentrations (15, 30, 45, 60% DM basis) replacing SFC, cottonseed meal, urea, and yellow grease. Final BW, ADG, G:F, HCW, and 12th-rib fat depth were greater (P ≤ 0.05) for SFC compared with DRC. Dry matter intake tended (P = 0.06) to be greater for DRC compared with SFC. Final BW, ADG, G:F, HCW, 12th-rib fat depth, and marbling score decreased linearly (P < 0.01) with increasing WDG concentration. In Exp. 2, six ruminally and duodenally cannulated crossbred steers (481 ± 18 kg of BW) were used in a 6 × 6 Latin square design using the same diets as Exp. 1. Ruminal, postruminal, and total tract OM and NDF digestibility were not different (P > 0.14) for DRC compared with SFC. Ruminal and total tract starch digestibility were greater (P < 0.01) for SFC compared with DRC. Dry matter and OM intake were not different (P ≥ 0.43) among WDG treatments. Ruminal and total tract OM digestibility decreased linearly (P < 0.01) with increasing WDG concentration. Intake, ruminal digestibility, and total tract digestibility of NDF increased linearly (P < 0.01) with increasing WDG concentration. Starch intake decreased linearly (P < 0.01) with increasing WDG concentration. Ruminal starch digestibility increased (P = 0.01) with increasing concentration of WDG. Total tract starch digestibility decreased quadratically (P < 0.01) with increasing concentration of WDG. Feeding SFC improved steer performance compared with DRC. The concentration of WDG and corn processing method influences nutrient digestibility and ruminal fermentation. The addition of WDG in SFC-based diets appears to negatively affect animal performance by diluting the energy density of the diet.  相似文献   

11.
This study was conducted to determine the effects of dietary crude glycerol and dried distillers grains with solubles (DDGS) on growing-finishing pig performance, carcass characteristics, and carcass fat quality. We hypothesized that because dietary crude glycerol has been observed to increase carcass SFA, it might ameliorate the negative effects of DDGS on fat quality. The 97-d study was conducted at a commercial swine research facility in southwestern Minnesota with 1,160 barrows (initial BW = 31.0 ± 1.1 kg). Pigs were blocked by initial BW, and pens were randomly allotted to 1 of 6 dietary treatments with 7 replications per treatment. Treatments were arranged in a 2 × 3 factorial with main effects of crude glycerol (0, 2.5, or 5%) and DDGS (0 or 20%). All corn-soybean meal-based diets contained 3% added fat (choice white grease). There were no glycerol × DDGS interactions for any response criteria evaluated. Increasing dietary glycerol did not affect finishing pig growth performance. Adding 20% DDGS to the diet did not affect ADG; however, finishing pigs fed diets with added DDGS had greater (2.47 vs. 2.41 kg/d; P = 0.02) ADFI and poorer (0.39 vs. 0.40; P = 0.01) G:F than pigs not fed DDGS. Feeding increasing dietary glycerol or 20% DDGS did not affect carcass characteristics. For carcass fat quality, feeding 20% DDGS resulted in decreased (P < 0.01) palmitic and oleic acids, total SFA and total MUFA, and increased (P < 0.01) linoleic, total PUFA, total unsaturated fatty acids, and iodine value in jowl fat, belly fat, and backfat. Increasing dietary crude glycerol increased myristic acid (linear, P < 0.05) and MUFA (quadratic, P < 0.05) in jowl fat and increased (quadratic, P < 0.05) oleic acid and MUFA in backfat. In conclusion, feeding 20% DDGS to finishing pigs increased ADFI, reduced G:F, and increased carcass fat iodine value, whereas feeding crude glycerol did not influence growth performance, carcass characteristics, and had a minor influence on fatty acids of carcass fat. Both of these biofuel coproducts can be used in combination without affecting finishing pig performance or carcass traits; however, feeding crude glycerol did not fully mitigate the increased unsaturation of carcass fat observed when feeding DDGS.  相似文献   

12.
1材料和方法 1.1试验动物和日粮 在生长期将72头杂交肉牛分成4个组别,日粮中的DDGS含量分别为0、30%、0、30%,进入育成期后,相对应肉牛日粮的DDGS含量分别为0、0、30%、30%,因此将这4组肉牛以DDGS含量不同划分成(0:0,30:0,0:30,30:30)4个组别。  相似文献   

13.
Corn ethanol production removes starch and concentrates the remaining nutrients, including CP and minerals. When wet distillers grains with solubles (WDGS) are fed to cattle in place of corn, CP and minerals often exceed dietary needs. This may increase N emission, P run-off, and odor production. These variables are evaluated in this study. Crossbred steers (n = 160; 434 +/- 8 kg) were assigned in a completely randomized block design to 9 x 9 m pens with concrete floor (10 animals/pen; 4 pens/treatment). Steers were fed a finishing diet that contained 0, 20, 40, or 60% WDGS on a DM basis, and provided 13.3, 15.5, 20.6, or 24.9% CP, respectively. Two kilograms of manure slurry (14 to 23% DM) were collected from each pen monthly (Aug. 20, Sep. 24, and Oct. 22). Samples were analyzed immediately for odorants, DM, pH, NH(3), total alcohol, l-lactate, and concentrations of generic Escherichia coli. After incubation of the samples at 22 degrees C for 2, 4, 7, 10, 15, 21, and 28 d, samples were analyzed for methane production in addition to the above characteristics. Before incubation, NH(3), H(2)S, indole, phenol, isovalerate, isobutyrate, and acetate increased (P < 0.01) with increasing amounts of WDGS in the diet. Other odorants, including skatole, caproate, valerate, butyrate, and propionate, were greater (P < 0.01) in manure slurries from cattle fed 20 or 40% WDGS, compared to 0% WDGS. The l-lactate was greater (P < 0.01) in slurries from cattle fed 0% WDGS (447 mu mol/g of DM) compared with the other treatment slurries (14 to 15 mu mol/g of DM). After incubation, l-lactate contributed to lowered slurry pH (6.3, 7.1, 7.6, and 8.2, respectively, for 0, 20, 40, and 60% WDGS), which inhibited microbial fermentation, E. coli persistence, and methane production. Because of the favorable, more neutral pH in the 40 and 60% WDGS slurries, many of the odorant compounds were rapidly converted to methane during a 28-d static incubation. Escherichia coli O157:H7 inoculated into subsamples of the manure slurries exhibited behavior similar to that of naturally present generic E. coli, surviving in greater numbers longer (P < 0.05) in 20 and 40% WDGS slurries than in 0% WDGS. These data indicate feeding WDGS can increase odorants in manure slurries and extend the persistence of E. coli.  相似文献   

14.
The objectives of this study were to determine the effects of 0, 20, 40, or 60% dietary dried distillers grains with solubles (DDGS) on 1) growing lamb performance, carcass characteristics, and tissue minerals, and 2) nutrient digestibility and retention in growing lambs. In Exp. 1, ninety-six lambs were blocked by sex (ewes, n = 48; wethers, n = 48) and BW, housed in 24 pens (4 lambs per pen), and used in a 92-d feedlot trial (initial BW = 26.4 ± 9.3 kg). Lambs were fed 1 of 4 dietary treatments 1) 0% DDGS, 2) 20% DDGS, 3) 40% DDGS, or 4) 60% DDGS. The DDGS replaced primarily corn, and diets were fed as a complete pellet. There was a quadratic effect of DDGS inclusion on ADG; lambs fed the 20% DDGS diet had the greatest (P = 0.04) gains at 0.358 kg/d. This effect on ADG led to a quadratic (P = 0.03) effect of DDGS on final BW. Increasing dietary DDGS did not affect (P > 0.13) DMI and resulted in a linear (P = 0.02) decrease in G:F. In the liver, S increased linearly (P = 0.05), whereas Cu decreased linearly (P < 0.01) with increasing dietary DDGS; other liver minerals were not affected (P > 0.05). Carcass backfat, yield grade, and marbling score were not affected (P > 0.05) by dietary DDGS. In Exp. 2, twenty-four lambs (initial BW = 43.0 ± 4.4 kg) were used in a metabolism study. Lambs were adapted to the same diets described above for 17 d before a 5-d sampling period during which total feces and urine were collected. Apparent digestibility of dietary DM decreased linearly (P < 0.01) with increasing dietary inclusion of DDGS. Digestibility of fat followed a similar pattern, whereas N, S, and P absorption increased linearly (P < 0.03) with increasing dietary DDGS. The digestibility of NDF was not affected (P > 0.05) by dietary treatment. Apparent retentions (as a percentage of intake) of N, K, Mg, Cu, Fe, and Zn were not affected (P > 0.05) by dietary DDGS inclusion, whereas the retention of S and P decreased (P < 0.04). Daily urine output increased linearly (P < 0.01) and urine pH decreased linearly (P < 0.01) with increasing DDGS (urine pH was 7.46, 5.86, 5.52, and 5.32 for treatments 1 to 4, respectively). These data suggest urine is a major route for excretion of acid when high-S diets containing DDGS are fed. Increases in dietary DDGS resulted in decreased digestion of DM and fat, which may be partially responsible for decreased lamb feedlot performance for 40 and 60% dietary DDGS when compared with 20% DDGS.  相似文献   

15.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

16.
An experiment was conducted to investigate pig performance, carcass quality, and palatability of pork from pigs fed distillers dried grains with solubles (DDGS), high-protein distillers dried grains (HPDDG), and corn germ. Eighty-four pigs (initial BW, 22 +/- 1.7 kg) were allotted to 7 dietary treatments with 6 replicates per treatment and 2 pigs per pen. Diets were fed for 114 d in a 3-phase program. The control treatment was based on corn and soybean meal. Two treatments were formulated using 10 or 20% DDGS in each phase. Two additional treatments contained HP-DDG in amounts sufficient to substitute for either 50 or 100% of the soybean meal used in the control treatment. An additional 2 treatments contained 5 or 10% corn germ, which was calculated to provide the same amount of fat as 10 or 20% DDGS. Results showed that for the entire experiment, pig performance was not affected by DDGS or HP-DDG, but final BW increased (linear, P < 0.05) as corn germ was included in the diets. Carcass composition and muscle quality were not affected by DDGS, but LM area and LM depth decreased (linear, P < 0.05) as HP-DDG was added to the diets. Lean meat percentage increased and drip loss decreased as corn germ was included in the diets (quadratic, P < 0.05). There was no effect of DDGS on fat quality except that belly firmness decreased (linear, P < 0.05) as dietary DDGS concentration increased. Including HP-DDG or corn germ in the diets did not affect fat quality, except that the iodine value increased (linear, P < 0.05) in pigs fed HP-DDG diets and decreased (linear, P < 0.05) in pigs fed corn germ diets. Cooking loss, shear force, and bacon distortion score were not affected by the inclusion of DDGS, HP-DDG, or corn germ in the diets, and the overall palatability of the bacon and pork chops was not affected by dietary treatment. In conclusion, feeding 20% DDGS or high levels of HP-DDG to growing-finishing pigs did not negatively affect overall pig performance, carcass composition, muscle quality, or palatability but may decrease fat quality. Feeding up to 10% corn germ did not negatively affect pig performance, carcass composition, carcass quality, or pork palatability but increased final BW of the pigs and reduced the iodine value of belly fat.  相似文献   

17.
The objective of the present study was to investigate the effects of corn dried distiller's grains with solubles (DDGS) and enzyme premix (mannanase + phytase) supplementation on the growth performance, carcass and meat quality parameters in finishing pigs. Sixty hybrid pigs (L × LW × D) with initial weight of 63.92 ± 1.50 kg were used in a 3 × 2 factorial design with main effects of DDGS levels (0, 10 and 20%) and enzyme premix levels (0% vs. 0.14%). Average daily gain (ADG, P < 0.01) and average daily feed intake (ADFI, P < 0.05) were decreased due to an increased level of DDGS additive while the feed conversion ratio was improved (P < 0.05) by adding enzyme premix. The diet cost/gain (won/kg) was saved (P < 0.01) due to an increased level of DDGS additive. There were no significant differences in carcass characteristics and meat quality parameters of Longissimus dorsi muscle by DDGS level and enzyme premix. Palmitoleic acid, oleic acid and monounsaturated fatty acid (MUFA) decreased (P < 0.05) according to DDGS level. The results indicate that DDGS may be used in feeds for finishing pig as a replacement of corn and soybean meal without affecting their carcass characteristics and meat quality.  相似文献   

18.
Three experiments were conducted to determine the optimal level of dried distiller grains with solubles (DDGS) from a common ethanol manufacturing facility and to determine the potential interactions between dietary DDGS and added fat on performance and carcass characteristics of growing and finishing pigs. All experiments were conducted at the same commercial facility and used DDGS from the same ethanol manufacturing facility. In Exp. 1, a total of 1,050 pigs (average initial BW 47.6 kg), with 24 to 26 pigs per pen and 7 pens per treatment, were fed diets containing 0 or 15% DDGS and 0, 3, or 6% added choice white grease in a 2 x 3 factorial arrangement in a 28-d growth study. Overall, there were no DDGS x added fat interactions (P >/= 0.14). There was an improvement (linear, P < 0.01) in ADG and G:F as the percentage of added fat increased. There was no difference (P = 0.74) in growth performance between pigs fed 0 or 15% DDGS. In Exp. 2, a total of 1,038 pigs (average initial BW 46.3 kg), with 24 to 26 pigs per pen and 10 pens per treatment, were fed diets containing 0, 10, 20, or 30% DDGS in a 56-d growth study. Pigs fed diets containing DDGS had a tendency for decreased ADG and ADFI (both linear, P = 0.09 and 0.05, respectively), but the greatest reduction seemed to occur between pigs fed 10 and 20% DDGS. In Exp. 3, a total of 1,112 pigs (average initial BW 49.7 kg), with 25 to 28 pigs per pen and 9 pens per treatment, were used in a 78-d growth study to evaluate the effects of increasing DDGS (0, 5, 10, 15, or 20%) in the diet on pig growth performance and carcass characteristics. From d 0 to 78, ADG and ADFI decreased linearly (P 相似文献   

19.
Three experiments evaluated the lipids in distillers grains plus solubles compared with corn or other sources of lipid in finishing diets. Experiment 1 utilized 60 individually fed yearling heifers (349 +/- 34 kg of BW) fed treatments consisting of 0, 20, or 40% (DM basis) wet distillers grains plus solubles (WDGS), or 0, 2.5, or 5.0% (DM basis) corn oil in a finishing diet based on high-moisture corn (HMC) and dry-rolled corn. Cattle fed 20 and 40% WDGS had greater (P < 0.10) G:F than cattle fed 0% WDGS. Cattle fed the 5.0% corn oil had less overall performance than cattle fed the other diets. Results from Exp. 1 indicated that adding fat from WDGS improves performance, whereas supplementing 5.0% corn oil depressed G:F, suggesting that the fat within WDGS is different than corn oil. Experiment 2 used 234 yearling steers (352 +/- 16 kg of BW) fed 1 of 5 treatments consisting of 20 or 40% (DM basis) dry distillers grains plus solubles, 1.3 or 2.6% (DM basis) tallow, or HMC. All diets contained 20% (DM basis) wet corn gluten feed as a method of controlling acidosis. No differences between treatments for any performance variables were observed in Exp. 2. The dry distillers grains plus solubles may be similar to tallow and HMC in finishing diets containing 20% wet corn gluten feed. Experiment 3 used 5 Holstein steers equipped with ruminal and duodenal cannulas in a 5 x 5 Latin square design. Treatments were a 40% WDGS diet, 2 composites, one consisting of corn bran and corn gluten meal; and one consisting of corn bran, corn gluten meal, and corn oil; and 2 dry-rolled corn-based diets supplemented with corn oil or not. Cattle fed the WDGS diet had numerically less rumen pH compared with cattle fed other treatments. Cattle fed WDGS had greater (P < 0.10) molar proportions of propionate, decreased (P < 0.10) acetate:propionate ratios, greater (P < 0.10) total tract fat digestion, and a greater (P < 0.10) proportion of unsaturated fatty acids reaching the duodenum than cattle fed other treatments. Therefore, the greater energy value of WDGS compared with corn may be due to more propionate production, greater fat digestibility, and more unsaturated fatty acids reaching the duodenum.  相似文献   

20.
Crossbred beef steers (n = 615) were used in a 152-d experiment to compare steam-flaked corn (SFC) diets containing 0, 30, or 60% wet corn gluten feed (WCGF). On d 114 to 118, ruminal and fecal samples were collected from 180 steers and analyzed for pH, VFA, and total and acid-resistant Escherichia coli and coliforms. Acid resistance of E. coli and coliform populations was determined by exposure of the samples for 1 h in pH 2, 4, and 7 citric acid/sodium phosphate buffers. Increasing levels of WCGF linearly decreased total ruminal VFA (P = 0.01) and total fecal VFA (P = 0.06), but linearly increased ruminal and fecal acetate:propionate (P < 0.01) ratio and ruminal and fecal pH (P < 0.05). Feeding increasing WCGF levels resulted in a quadratic response (P < 0.05) with respect to numbers of ruminal E. coli and total coliform populations resistant to pH 4 exposure. Steers fed 30% WCGF had higher (0.7 log units) ruminal E. coli and total coliforms after exposure at pH 4 compared to steers fed 0 or 60% WCGF. Populations of E. coli and total coliforms at pH 2 and 7 were similar for all dietary treatments. Dietary WCGF linearly increased DMI (P = 0.07) and liver abscesses (P = 0.03) and linearly decreased dietary NEg (P = 0.02). Average daily gain and feed efficiencies were greatest when steers were offered 30% WCGF (quadratic, P < 0.05). Dietary manipulations that reduce acid concentrations may not correspond to changes in acid resistance of E. coli and total coliform populations detected in the gastrointestinal tracts of cattle. Moderate levels of WCGF complement SFC finishing diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号