首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the protective potential of anthocyanins from purple sweet potato Ipomoea batatas cultivar Ayamurasaki (APSP) against low-density lipoprotein (LDL) oxidation in vitro and atherosclerotic lesion development in apolipoprotein E-deficient mice given a cholesterol- and fat-enriched diet with or without 1% APSP for 4 weeks. APSP protected LDL against oxidation more potently than other anthocyanins and l-ascorbic acid in vitro. In mice, APSP significantly lowered the atherosclerotic plaque area to about half of the control, the liver level of thiobarbituric acid-reactive substances as an oxidative stress marker, and the plasma level of soluble vascular cell adhesion molecule-1 (sVCAM-1). However, APSP showed no effects on body weight and cholesterol and lipid levels in the plasma. The results suggest that APSP can suppress the development of atherosclerotic lesions and both enhancements of oxidative stress and sVCAM-1 independently of the changes in cholesterol and lipid levels in mice.  相似文献   

2.
A quantitative study of the phenolic constituents of wild and cultivated leaves of Sclerocarya birrea(Anacardiaceae) was carried out by HPLC-UV/PDA and LC-MS. Phytochemical analysis of the methanol extract of wild plants led to the isolation of one new flavonol glycoside, quercetin 3-O-alpha-l-(5' '-galloyl)-arabinofuranoside (1), and eight known phenolic compounds; two epicatechin derivatives were also isolated from the same extract of the cultivated species. The antioxidant activity of all isolated compounds was determined by measuring free radical scavenging effects using the Trolox equivalent antioxidant capacity assay and the coupled oxidation of beta-carotene and linoleic acid (autoxidation assay).  相似文献   

3.
Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was significantly correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects.  相似文献   

4.
Preparations of Echinacea are widely used as alternative remedies to prevent the common cold and infections in the upper respiratory tract. After extraction, fractionation, and isolation, the antioxidant activity of three extracts, one alkamide fraction, four polysaccharide-containing fractions, and three caffeic acid derivatives from Echinacea purpurea root was evaluated by measuring their inhibition of in vitro Cu(II)-catalyzed oxidation of human low-density lipoprotein (LDL). The antioxidant activities of the isolated caffeic acid derivatives were compared to those of echinacoside, caffeic acid, and rosmarinic acid for reference. The order of antioxidant activity of the tested substances was cichoric acid > echinacoside > or = derivative II > or = caffeic acid > or = rosmarinic acid > derivative I. Among the extracts the 80% aqueous ethanolic extract exhibited a 10 times longer lag phase prolongation (LPP) than the 50% ethanolic extract, which in turn exhibited a longer LPP than the water extract. Following ion-exchange chromatography of the water extract, the majority of its antioxidant activity was found in the latest eluted fraction (H2O-acidic 3). The antioxidant activity of the tested Echinacea extracts, fractions, and isolated compounds was dose dependent. Synergistic antioxidant effects of Echinacea constituents were found when cichoric acid (major caffeic acid derivative in E. purpurea) or echinacoside (major caffeic acid derivative in Echinacea pallida and Echinacea angustifolia) were combined with a natural mixture of alkamides and/or a water extract containing the high molecular weight compounds. This contributes to the hypothesis that the physiologically beneficial effects of Echinacea are exerted by the multitude of constituents present in the preparations.  相似文献   

5.
Three antioxidative phenolic compounds, one serotonin derivative and two flavonoids, were isolated from an ethanol extract of Japanese barnyard millet (cv. Kurohie) grains by Sephadex LH-20 chromatography and preparative high-performance liquid chromatography. Their structures were established to be N-(p-coumaroyl)serotonin, luteolin, and tricin on the basis of spectrometric data from (1)H and (13)C and two-dimensional nuclear magnetic resonance techniques, fast atom bombardment mass spectrometry, and Fourier transform infrared spectrophotometry. N-(p-Coumaroyl)serotonin exhibited a strong antioxidant activity almost equivalent to that of butylated hydroxyanisole at the same concentration (w/v). Although the antioxidant activity of luteolin was lower than that of N-(p-coumaroyl)serotonin, it was nearly equal to that of quercetin, whereas the activity of tricin was lower than that of luteolin. All of them were newly isolated from Japanese barnyard millet grains.  相似文献   

6.
Three different solvent extracts (methanol, ethyl acetate, and n-hexane) of longan ( Dimocarpus longan Lour.) flowers were assayed with three different antioxidant capacity methods, namely, the DPPH free radical scavenging effect, the oxygen radical absorbance capacity (ORAC) assay, and the inhibition of Cu(2+)-induced oxidation of human low-density lipoprotein (LDL). It was revealed that the methanol extract has the best antioxidative activity, followed by ethyl acetate and n-hexane extracts. The methanol extract was separated by liquid-liquid partition into n-hexane, ethyl acetate, n-butanol, and water fractions. The ethyl acetate fraction was found to have the highest activity of delaying LDL oxidation. After silica gel column chromatography, the fraction having a superior activity was identified as containing two major compounds, (-)-epicatechin and proanthocyanidin A2.  相似文献   

7.
The antioxidant potential of eight clingstone peach cultivars was investigated by determining phenolic compounds and inhibition of low-density lipoprotein (LDL) oxidation. Cultivars low in polyphenol oxidase (PPO) were also selected to minimize enzymatic browning. Inhibition of LDL oxidation varied from 17.0 to 37.1% in peach flesh extract, from 15.2 to 49.8% in whole peach extract, and from 18.2 to 48.1% in peel extract. Total phenols were 432.8-768.1 mg/kg in flesh extract, 483.3-803.0 mg/kg in whole extract, and 910.9-1922.9 mg/kg in peel extract. The correlation coefficient between relative LDL antioxidant activity and concentration of total phenols was 0.76. Peel PPO activity was higher than flesh activity in most cultivars. The lowest PPO and specific activities were found in the Walgant cultivar, followed by Kakamas and 18-8-23. These three cultivars combine the desirable characteristics of strong antioxidant activity, low PPO activity, and lower susceptibility to browning reactions.  相似文献   

8.
Volatile chemicals obtained from a commercial beer by liquid-liquid continuous extraction were evaluated for antioxidant activity. The inhibitory ability of this extract toward the conversion of hexanal to hexanoic acid was monitored over a 35-day period. The volatile extract demonstrated >99% effectiveness at inhibiting hexanal oxidation at 50 microg/mL, comparable to that of the natural antioxidant alpha-tocopherol (vitamin E). Volatile compounds contained in the extract were isolated and identified by gas chromatography-mass spectrometry (GC-MS). From the volatile constituents identified in beer extract, phenylethyl alcohol, maltol, and 2-furanmethanol were examined for antioxidative activities. At a concentration of 500 microg/mL, maltol and 2-furanmethanol demonstrated approximately 95 and 100% inhibition of hexanal oxidation over 35 days, respectively. Phenylethyl alcohol did not show any appreciable level of inhibition of hexanal oxidation. Heterocyclic compounds, some of which are known to possess antioxidative activities, were also identified in the volatile extract.  相似文献   

9.
Antioxidative activities of volatile extracts from six teas (one green tea, one oolong tea, one roasted green tea, and three black teas) were investigated using an aldehyde/carboxylic acid assay and a conjugated diene assay. The samples were tested at levels of 20, 50, 100, and 200 micrograms/mL of dichloromethane. The results obtained from the two assays were consistent. All extracts except roasted green tea exhibited dose-dependent inhibitory activity in the aldehyde/carboxylic acid assay. A volatile extract from green tea exhibited the most potent activity in both assays among the six extracts. It inhibited hexanal oxidation by almost 100% over 40 days at the level of 200 micrograms/mL. The extract from oolong tea inhibited hexanal oxidation by 50% in 15 days. In the case of the extract from roasted green tea, the lowest antioxidative activity was obtained at the level of 200 micrograms/mL, suggesting that the extract from roasted green tea contained some pro-oxidants. The extracts from the three black teas showed slight anti- or proactivities in both assays. The major volatile constituents of green tea and roasted green tea extracts, which exhibited significant antioxidative activities, were analyzed using gas chromatography-mass spectrometry. The major volatile chemicals with possible antioxidative activity identified were alkyl compounds with double bond(s), such as 3,7-dimethyl-1,6-octadien-3-ol (8.04 mg/kg), in the extract from green tea and heterocyclic compounds, such as furfural (7.67 mg/kg), in the extract from roasted green tea. Benzyl alcohol, which was proved to be an antioxidant, was identified both in a green tea extract (4.67 mg/kg) and in a roasted tea extract (1.35 mg/kg).  相似文献   

10.
Potato plants synthesize phenolic compounds as protection against bruising and injury from bacteria, fungi, viruses, and insects. Because antioxidative phenolic compounds are also reported to participate in enzymatic browning reactions and to exhibit health-promoting effects in humans, a need exists for accurate methods to measure their content in fresh and processed potatoes. To contribute to our knowledge about the levels of phenolic compounds in potatoes, we validated and used high-performance liquid chromatography and liquid chromatography/mass spectrometry to measure levels of chlorogenic acid, a chlorogenic isomer, and caffeic acid in flowers, leaves, stems, and tubers of the potato plant and in home-processed potatoes. The total phenolic acid content of flowers (626 mg/100 g fresh wt) was 21 and 59 times greater than that of leaves and stems, respectively. For all samples, chlorogenic acid and its isomer contributed 96-98% to the total. Total phenolic acid levels (in g/100 g fresh wt) of peels of five potato varieties grown in Korea ranged from 6.5 to 42.1 and of the flesh (pulp) from 0.5 to 16.5, with peel/pulp ratios ranging from 2.6 to 21.1. The total phenolic acid content for 25 American potatoes ranged from 1.0 to 172. The highest amounts were present in red and purple potatoes. Home processing of pulp with various forms of heat induced reductions in the phenolic content. The described methodology should facilitate future studies on the role of potato phenolic compounds in the plant and the diet.  相似文献   

11.
Antioxidant efficacies of ethanol extracts of defatted raw hazelnut kernel and hazelnut byproducts (skin, hard shell, green leafy cover, and tree leaf) were evaluated by monitoring total antioxidant activity (TAA) and free-radical scavenging activity tests [hydrogen peroxide, superoxide radical, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical], together with antioxidant activity in a beta-carotene-linoleate model system, inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol, and inhibition of strand breaking of supercoiled deoxyribonucleic acid (DNA). In addition, yield, content of phenolics, and phenolic acid profiles (free and esterified fractions) were also examined. Generally, extracts of hazelnut byproducts (skin, hard shell, green leafy cover, and tree leaf) exhibited stronger activities than hazelnut kernel at all concentrations tested. Hazelnut extracts examined showed different antioxidative efficacies, expected to be related to the presence of phenolic compounds. Among samples, extracts of hazelnut skin, in general, showed superior antioxidative efficacy and higher phenolic content as compared to other extracts. Five phenolic acids (gallic acid, caffeic acid, p-coumaric acid, ferulic acid, and sinapic acid) were tentatively identified and quantified (both free and esterified forms). Extracts contained different levels of phenolic acids. These results suggest that hazelnut byproducts could potentially be considered as an excellent and readily available source of natural antioxidants.  相似文献   

12.
The aqueous fraction (press juice, PJ) from herring muscle was recently shown to inhibit hemoglobin-mediated oxidation of washed fish mince lipids during ice storage. As a first step to evaluate potential in vivo antioxidative effects from herring PJ, the aim of this study was to investigate whether herring PJ retains its antioxidative capacity during a simulated gastrointestinal (GI) digestion. Press juice from whole muscle (WMPJ) and light muscle (LMPJ) was mixed with pepsin solution followed by stepwise pH adjustments and additions of pancreatin and bile solutions. Digestive enzymes were removed from samples by ultrafiltration (10 kDa). Before, during, and after digestion, samples were analyzed for their peptide content and for antioxidative properties with the oxygen radical absorbance capacity (ORAC) and the low-density lipoprotein (LDL) oxidation assays. From 0 to 165 min of digestion, the content of <10 kDa peptides in WMPJ and LMPJ samples increased 12- and 7-fold, respectively. Further, both samples got approximately 12.5 times higher ORAC values and gave rise to approximately 1.3-fold increased lag phase in Cu2+-induced LDL oxidation. The largest changes in peptide content, ORAC values, and LDL oxidation inhibition occurred between 30 and 75 min of digestion, indicating that these parameters might be interrelated. When comparing analytical data obtained after 165 min of digestion with data obtained from analyses of native nondigested PJs, it was found that the data on peptide content, ORAC, and LDL oxidation from digested PJs were 64-69%, 121-161%, and 112-115%, respectively, of those of nondigested PJs. The study thus showed that enzymatic breakdown of PJ proteins under GI-like conditions increases the peroxyl radical scavenging activity and the potential to inhibit LDL oxidation of herring PJs. These data provide a solid basis for further studies of uptake and in vivo activities of herring-derived aqueous antioxidants.  相似文献   

13.
Milled oat groat pearlings, trichomes, flour, and bran were extracted with methanol and the fractions tested in vitro for antioxidant capacity against low-density lipoprotein (LDL) oxidation and R-phycoerythrin protein oxidation in the oxygen radical absorbance capacity (ORAC) assay. The oxidative reactions were generated by 2,2'-azobis(2-amidinopropane) HCl (AAPH) or Cu(2+) in the LDL assay and by AAPH or Cu(2+) + H(2)O(2) in the ORAC assay and calibrated against a Trolox standard to calculate Trolox equivalents (1 Trolox equivalent = 1 TE = activity of 1 micromol of Trolox). The antioxidant capacity of the oat fractions was generally consistent with a potency rank of pearlings (2.89-8.58 TE/g) > flour (1.00-3.54 TE/g) > trichome (1.74 TE/g) = bran (1.02-1.62 TE/g) in both LDL and ORAC assays regardless of the free radical generator employed. A portion of the oat antioxidant constituents may be heat labile as the greatest activity was found among non-steam-treated pearlings. The contribution of oat tocols from the fractions accounted for <5% of the measured antioxidant capacity. AAPH-initiated oxidation of LDL was inhibited by the oat fractions in a dose-dependent manner, although complete suppression was not achieved with the highest doses tested. In contrast, Cu(2+)-initiated oxidation of LDL stimulated peroxide formation with low oat concentrations but completely inhibited oxidation with higher doses. Thus, oats possess antioxidant capacity most of which is likely derived from polar phenolic compounds in the aleurone.  相似文献   

14.
A novel model of peroxyl radical initiated low-density lipoprotein (LDL) oxidation (LDL oxidation model for antioxidant capacity, or LOMAC) was developed to assess the free radical scavenging capacity of antioxidants and the extracts of natural products. A water-soluble free radical initiator, 2,2'-azobis(amidinopropane) dihydrochloride, was used at physiological temperature (37 degrees C) to generate peroxyl radicals to catalyze lipid oxidation of LDL isolated from human plasma samples. Headspace hexanal, a major decomposition product of LDL oxidation, was measured by a headspace gas chromatograph as an indicator of antioxidant capacity of different concentrations of pure antioxidants (vitamins C and E) and the extracts of natural products (fresh apple phytochemical extracts). All vitamin C and E and apple extract concentrations tested resulted in increasing partial suppression and delay of LDL oxidation. On the basis of the median effective dose (EC(50)) calculated for each compound or extract tested, the LOMAC value of 100 g of apple against LDL oxidation was equivalent to 1470 mg of vitamin E or to 402 mg of vitamin C. This study shows that the LOMAC assay can be routinely used to analyze or screen antioxidants or phytochemical extracts against LDL oxidation to prevent cardiovascular disease. The food-specific LOMAC values will be very useful as a new alternative biomarker for future epidemiological studies of cardiovascular disease.  相似文献   

15.
The influence of charge status of both lipid emulsion droplets and phenolic antioxidants on lipid oxidation rates was evaluated using anionic sodium dodecyl sulfate (SDS) and nonionic polyoxyethylene 10 lauryl ether (Brij)-stabilized emulsion droplets and the structurally similar phenolic antioxidants gallamide, methyl gallate, and gallic acid. In nonionic, Brij-stabilized salmon oil emulsions at pH 7.0, gallyol derivatives (5 and 500 microM) inhibited lipid oxidation with methyl gallate > gallamide > gallic acid. In the Brij-stabilized salmon oil emulsions at pH 3.0, low concentrations of the galloyl derivatives were prooxidative or ineffective while high concentrations were antioxidative. In SDS-stabilized salmon oil emulsions, oxidation rates were faster and the galloyl derivatives were less effective compared to the Brij-stabilized emulsions. Differences in antioxidant activity were related to differences in the ability of the galloyl derivatives to partition into emulsion droplets and to increase the prooxidant activity of iron at low pH.  相似文献   

16.
The oxidative modification of low-density lipoprotein (LDL) is thought to have a central role in the pathogenesis of atherogenesis. Berberine, a natural constituent of plants of the genera Coptis and Berberis, has several anti-inflammation and anticancer biological effects. However, its protective effects on LDL oxidation and endothelial injury induced by oxLDL remain unclear. In this study, we evaluated the antioxidative activity of berberine and how berberine rescues human umbilical vein endothelial cells (HUVECs) from oxidized LDL (oxLDL)-mediated dysfunction. The antioxidative activity of berberine was defined by the relative electrophoretic mobility of oxLDL, fragmentation of ApoB, and malondialdehyde production via the Cu(2+)-mediated oxidation of LDL. Berberine also inhibited the generation of ROS and the subsequent mitochondrial membrane potential collapse, chromosome condensation, cytochrome C release, and caspase-3 activation induced by oxLDL in HUVECs. Our results suggest that berberine may protect LDL oxidation and prevent oxLDL-induced cellular dysfunction.  相似文献   

17.
This study investigated the phenolic composition and antioxidant activities of aqueous infusions from wild-grown caper (Capparis spinosa L.) and sea fennel (Crithmum maritimum L.) from the Dalmatia region (Croatia) before and after their submission to an in vitro digestion process. HPLC/UV-vis-DAD/ESI-MS analysis of the caper infusion identified rutin, kaempferol 3-O-rutinoside, and isorhamnetin 3-O-rutinoside as dominant flavonoids in the matrix together with a series of cinnamoylquinic acid derivatives, whereas in the sea fennel aqueous infusion chlorogenic acid (5-caffeoylquinic acid), its isomers, and higher derivatives were identified as almost the sole class of phenolics. Both infusions exhibited good and dose-dependent antioxidant activity before in vitro digestion by the DPPH method, the β-carotene bleaching method, and copper-induced oxidation of human LDL. The amount of total phenolics (Folin-Ciocalteu assay) strongly decreased in digested samples (from 3.0 and 2.2% in caper and sea fennel infusions, respectively, to <1.0%), as did their antioxidant activity as measured by the three aforesaid methods. The results showed that the majority of phenolic compounds detected in both infusions are not stable under applied simulated gastrointestinal conditions and that the stability of these secondary metabolites strongly depends on the nature of the corresponding matrix.  相似文献   

18.
In vitro studies show that some individual minor polar phenolic compounds (MPC) present in virgin olive oil prevent oxidation of human low-density lipoproteins (LDL), but few data are available on the antioxidant effect of whole oil extract. Thus, whole virgin olive extracts were studied to determine whether they maintain the antioxidant activity and whether this last is linked to MPC composition of a single virgin oil. Using HPLC-DAD the MPC content in Taggiasca and Seggianese virgin olive oils was measured. Taggiasca oil was less rich in total MPC (208.5 mg/L) than Seggianese oil (441.9 mg/L). In addition, the major compounds of Taggiasca oil were lignan derivatives, whereas the major compounds in Seggianese oils were secoiridoid derivatives. Moreover, Taggiasca oil was practically free of 5-hydroxytyrosol and 5-hydroxytyrosol derivatives, deacetoxy-oleuropein aglycone and oleuropein aglycone. The antioxidant activity of the oils on human LDL was evaluated by measuring malondialdehyde and conjugate diene generation induced by copper ions. In both tests, the oil extracts dose-dependently reduced malondialdehyde and conjugate diene generation. Moreover, antioxidant potency correlated with total MPC; thus, Seggianese extract was more active. The two oils differed quantitatively and qualitatively, and these differences influenced their biological activities; thus clinical trials focused on studying the effects of olive oils should specify the oils used.  相似文献   

19.
Eggs high in n-6 PUFA, predominant in Western markets, were found to increase blood LDL oxidation, suggesting a new health concern beyond raising cholesterol. Protective composition was explored by increasing egg antioxidants and MUFA and reducing n-6 PUFA. Lag times to plasma LDL oxidation were significantly shortened with two eggs/day of high-PUFA compositions compared to a low-egg (2-4/week) regime, by 28.8% following "HPUFA-regular" ( p < 0.01) and by 27.2% following antioxidant-fortified "HPUFA-HAOX" ( p < 0.01). However, two "HMUFA-HAOX" eggs/day with reduced egg n-6 PUFA FA% (LA by 30.7%) and PUFA:MUFA ratio (LA:OA by 45.8%) plus increased antioxidants (vitamin E 500%, carotenoids 260%), resulting in increased plasma OA 33.3%, vitamin E 22.4%, and carotenoids 55.0% ( p < 0.01), were associated with lag-time only 6.6% shorter than low-egg (NS). Among health-oriented egg modifications, here for the first time they reduced associated LDL oxidization, consistent with anti-inflammation and antioxidant paradigms, warranting further research on functional advantages of antioxidative egg composition.  相似文献   

20.
Phenols present in olive oil may contribute to the health effects of the Mediterranean lifestyle. Olive oil antioxidants increase the resistance of low-density lipoproteins (LDL) against oxidation in vitro, but human intervention studies have failed to demonstrate similar consistent effects. To better mimic the in vivo situation, plasma was incubated with either individual olive oil phenols or olive oil extracts with different phenolic compositions, and LDL was subsequently isolated and challenged for its resistance to oxidation. The results show that the ortho-dihydroxy phenols (hydroxytyrosol and oleuropein-aglycone) are more efficient than their mono-hydroxy counterparts (tyrosol and ligstroside-aglycone) in increasing the resistance of LDL to oxidation. However, the concentration of antioxidants required to inhibit LDL oxidation when added to whole plasma was substantially higher as compared to previous data where antioxidants are directly added to isolated LDL. In conclusion, this study supports the hypothesis that extra virgin olive oil phenols protect LDL in plasma against oxidation. The explanation that in vitro studies show protective effects in contrast to the lack of effect in the majority of human studies may be that the dose of the phenols and thus their plasma concentration in humans was too low to influence ex vivo LDL oxidizability. Further studies are required to gain a better understanding of the potential health benefits that extra virgin olive oil may provide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号