首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven different strains of Trichoderma isolated from avocado roots showed antagonism to Rosellinia necatrix, which is the causal agent of white root rot. We studied these Trichoderma strains on the basis of the secondary metabolites produced in liquid culture. Five different compounds, namely, 6PP (6-pentyl-α-pyrone), Harzianolide (4-hexa-2,4-dienyl-3-(2-hydroxy-propyl)-5H-furan-2-one), T39butenolide (4-hexa-2,4-dienyl-3-(2-oxo-propyl)-5H-furan-2-one), Dehydroharzianolide (4-hexa-2,4-dienyl-3-propenyl-5H-furan-2-one) and Cerinolactone [(3-hydroxy-5-(6-isopropyl-3-methylene-3, 4, 4a, 5, 6, 7, 8, 8a-octahydronaphthalen-2-yl) dihydrofuran-2-one); a recently discovered novel metabolite], were obtained. In vitro studies of the effects of these compounds on different R. necatrix strains isolated from avocado roots and with different virulence demonstrated that 6PP had the strongest effect even at a low concentration. Although unstable, Cerinolactone and T39butenolide also had large effects on R. necatrix, mainly at a concentration of 200 μg. Harzianolide and Dehydroharzianolide exhibited the lowest effects on the pathogen. In vivo studies of Trichoderma metabolites on Lupinus luteus plants demonstrated the delay of white root rot epidemic through preventive application of 6PP or Harzianolide to seeds or plantlets by immersion in solutions of these metabolites at 1 mg l?1 (minimum effective dosage). In contrast, Cerinolactone only was effective at 10 mg l?1 when applied by plantlet immersion. Thus, this study reports the role that these metabolites could play for controlling avocado white root rot caused by R. necatrix.  相似文献   

2.
By transversely cutting infected avocado plant stems and using PCR techniques on avocado leaves, two experiments were carried out to determine whether Rosellinia necatrix can invade avocado vascular tissues. We were unable to detect the pathogen in either stems or leaves in either experiment, so we concluded that R. necatrix does not invade the vascular system of the plant. Additionally, the toxins produced by the pathogen were also studied to determine whether such toxins could contribute to the wilting and death of avocado plants infected by R. necatrix, having an effect on avocado leaves, where they can hinder the photosynthetic process. First, we isolated and identified the toxins cytochalasin E and rosnecatrone from filtrates of six R. necatrix isolates. Second, we tried to detect cytochalasin E in sap and leaves from infected avocado plants, and it was not detected at the minimum level of 50 μg/kg in leaves or 25 μg/kg on sap. Finally, we observed changes in fluorescence emitted by the avocado leaf surface (to detect photosynthetic efficiency) after inoculating avocado plants with this toxin. Fluorescence was higher in the leaves of plants immersed in toxin solution after 4 and 8 days, but not after longer periods of time. In this work, we demonstrated that although R. necatrix is not a fungus that invades the vascular system, its toxins are probably involved in the wilting and death of infected avocado plants, decreasing the efficiency of photosynthesis.  相似文献   

3.
Twenty-one isolates of Trichoderma spp. were collected from eight states in Colombia and characterized based on the 5′ end of the translation elongation factor-1α (EF1-α1) gene and RNA polymerase II gene encoding the second largest protein subunit (RPB2) by using mixed primers. Seven species of soil-dwelling Trichoderma were found: T. atroviride, T. koningiopsis, T. asperellum, T. spirale, T. harzianum, T. brevicompactum and T. longibrachiatum. Species identifications based on the EF1-α1 gene were consistent with those obtained from the RPB2 gene. Phylogenetic analyses with high bootstrap values supported the validity of the identification of all isolates. These results suggest that using the combination of the genes EF1-α1 and RPB2 is highly reliable for molecular characterization of Trichoderma species. Trichoderma asperellum Th034, T. atroviride Th002 and T. harzianum Th203 prevented germination of more than 70 % of sclerotia of Sclerotinia sclerotiorum in bioassay tests and are promising biological control agents. No relationship between mycelium growth rate and parasitism level was found.  相似文献   

4.
Trichoderma isolates are known for their ability to control plant pathogens. It has been shown that various isolates of Trichoderma, including T. harzianum isolate T-39 from the commercial biological control product TRICHODEX, were effective in controlling anthracnose (Colletotrichum acutatum) and grey mould (Botrytis cinerea) in strawberry, under controlled and greenhouse conditions. Three selected Trichoderma strains, namely T-39, T-161 and T-166, were evaluated in large-scale experiments using different timing application and dosage rates for reduction of strawberry anthracnose and grey mould. All possible combinations of single, double or triple mixtures of Trichoderma strains, applied at 0.4% and 0.8% concentrations, and at 7 or 10 day intervals, resulted in reduction of anthracnose severity; the higher concentration (0.8%) was superior in control whether used with single isolates or as a result of combined application of two isolates, each at 0.4%. Only a few treatments resulted in significant control of grey mould. Isolates T-39 applied at 0.4% at 2 day intervals, T-166 at 0.4%, or T-161 combined with T-39 at 0.4% were as effective as the chemical fungicide fenhexamide. The survival dynamics of populations of the Trichoderma isolates (T-39, T-105, T-161 and T-166) applied separately was determined by dilution plating and isolates in the mixtures calculated according to the polymerase chain reaction (PCR) using repeat motif primers. The biocontrol isolates were identified to the respective species T. harzianum (T-39), T. hamatum (T-105), T. atroviride (T-161) and T. longibrachiatum (T-166), according to internal transcribed spacer sequence analysis.  相似文献   

5.
The antagonistic Trichoderma spp. isolates P1 and T3 differed in their ability to colonize and to compete in sphagnum peat moss and on wood chips. In peat supplemented with straw, isolate T3 produced twice as many colony forming units (cfu) as isolate P1. On wood chips, the two isolates formed a similar number of cfu. When the two Trichoderma isolates were cultivated together approximately 85–90% of the cfu were from T3 on both substrates. The presence of Pythium ultimum in peat amended with straw did not influence the number of Trichoderma cfu formed. The two Trichoderma isolates produced different amounts of hydrolytic enzymes both in liquid cultures and in peat. Seven different enzyme activities were tested. Enzyme production by T. harzianum isolate T3 was less influenced by the type of carbon source amendment than that of isolate T. atroviride P1. Culture filtrates of isolate P1 grown on complex carbon sources were high in endochitinase activity, whereas cellulase and endo-1,3--glucanase activities were more pronounced in filtrates of isolate T3. There was no significant difference between the two isolates in their ability to protect cucumber seedlings against P. ultimum while the combination of the two fungi resulted in significantly less biocontrol than each isolate alone.  相似文献   

6.
Trichoderma spp. are common soil fungi used as biocontrol agents due to their capacity to produce antibiotics, induce systemic resistance in plants and parasitize phytopathogenic fungi of major agricultural importance. The present study investigated whether colonization of Arabidopsis thaliana seedlings by Trichoderma atroviride affected plant growth and development. Here it is shown that T. atroviride promotes growth in Arabidopsis. Moreover, T. atroviride produced indole compounds in liquid cultures. These results suggest that indoleacetic acid-related indoles (IAA-related indoles) produced by T. atroviride may have a stimulatory effect on plant growth. In addition, whether colonization of Arabidopsis roots by T. atroviride can induce systemic protection against foliar pathogens was tested. Arabidopsis roots inoculation with T. atroviride provided systemic protection to the leaves inoculated with bacterial and fungal pathogens. To investigate the possible pathway involved in the systemic resistance induced by T. atroviride, the expression profile of salicylic acid, jasmonic acid/ethylene, oxidative burst and camalexin related genes was assessed in Arabidopsis. T. atroviride induced an overlapped expression of defence-related genes of SA and JA/ET pathways, and of the gene involved in the synthesis of the antimicrobial phytoalexin, camalexin, both locally and systemically. This is the first report where colonization of Arabidopsis roots by T. atroviride induces the expression of SA and JA/ET pathways simultaneously to confer resistance against hemibiotrophic and necrotrophic phytopathogens. The beneficial effects induced by the inoculation of Arabidopsis roots with T. atroviride and the induction of the plant defence system suggest a molecular dialogue between these organisms.  相似文献   

7.
Trichoderma (T. asperellum-203, 44 and GH11; T. atroviride-IMI 206040 and T. harzianum-248) parasitism on Meloidogyne javanica life stages was examined in vitro. Conidium attachment and parasitism differed beween the fungi. Egg masses, their derived eggs and second-stage juveniles (J2) were parasitized by Trichoderma asperellum-203, 44, and T. atroviride following conidium attachment. Trichoderma asperellum-GH11 attached to the nematodes but exhibited reduced penetration, whereas growth of T. harzianum-248 attached to egg masses was inhibited. Only a few conidia of the different fungi were attached to eggs and J2s without gelatinous matrix; the eggs were penetrated and parasitized by few hyphae, while J2s were rarely parasitized by the fungi. The gelatinous matrix specifically induced J2 immobilization by T. asperellum-203, 44 and T. atroviride metabolites that immobilized the J2s. A constitutive-GFP-expressing T. asperellum-203 construct was used to visualize fungal penetration of the nematodes. Scanning electron microscopy revealed the formation of coiling and appressorium-like structures upon attachment and parasitism by T. asperellum-203 and T. atroviride. Gelatinous matrix agglutinated T. asperellum-203 and T. atroviride conidia, a process that was Ca2+-dependent. Conidium agglutination was inhibited by carbohydrates, including fucose, as was conidium attachment to the nematodes. All but T. harzianum could grow on the gelatinous matrix, which enhanced conidium germination. A biomimetic system based on gelatinous-matrix-coated nylon fibers demonstrated the role of the matrix in parasitism: T. asperellum-203 and T. atroviride conidia attached specifically to the gelatinous-matrix-coated fibers and parasitic growth patterns, such as coiling, branching and appressoria-like structures, were induced in both fungi, similarly to those observed during nematode parasitism. All Trichoderma isolates exhibited nematode biocontrol activity in pot experiments with tomato plants. Parasitic interactions were demonstrated in planta: females and egg masses dissected from tomato roots grown in T. asperellum-203-treated soil were examined and found to be parasitized by the fungus. This study demonstrates biocontrol activities of Trichoderma isolates and their parasitic capabilities on M. javanica, elucidating the importance of the gelatinous matrix in the fungal parasitism.  相似文献   

8.
Native Trichoderma spp. were isolated from agricultural fields in several regions of Ecuador. These isolates were characterized via morphological observation as well as molecular phylogenetic analysis based on DNA sequences of the rDNA internal transcribed spacer region, elongation factor-1α gene and RNA polymerase subunit II gene. Fifteen native Trichoderma spp. were identified as T. harzianum, T. asperellum, T. virens and T. reesei. Some of these strains showed strong antagonistic activities against several important pathogens in Ecuador, such as Fusarium oxysporum f. sp. cubense (Panama disease) and Mycosphaerella fijiensis (black Sigatoka) on banana, as well as Moniliophthora roreri (frosty pod rot) and Moniliophthora perniciosa (witches’ broom disease) on cacao. The isolates also showed inhibitory effects on in vitro colony growth tests against Japanese isolates of Fusarium oxysporum f. sp. lycopersici, Alternaria alternata and Rosellinia necatrix. The native Trichoderma strains characterized here are potential biocontrol agents against important pathogens of banana and cacao in Ecuador.  相似文献   

9.
Trichoderma spp. are used as antagonists against different pathogens. Despite many possibilities of using Trichoderma as an antagonist, there are gaps in the knowledge of the interaction between Trichoderma, cassava and Scytalidium lignicola. This fungus causes cassava black root rot and is an inhabitant of the soil, so it is difficult to control. Antagonists may contribute to the possible induction of resistance of plants because, when exposed to such pathosystems, plants respond by producing antioxidative enzymes. The test for potential inhibition of growth of S. lignicola CMM 1098 in vitro was performed in potato-dextrose-agar with two Trichoderma strains T. harzianum URM3086 and T. aureoviride URM 5158. We evaluated the effect of the two selected Trichoderma to reduce the severity of cassava black root rot and shoots. Subsequently, the production of enzymes (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase) was evaluated in cassava plants. All two Trichoderma strains show an inhibition of the growth of S. lignicola CMM 1098. The most efficient was T. harzianum URM 3086, with 80.78% of mycelial growth inhibition. T. aureoviride URM 5158 was considered the best chitinase producer. All treatments were effective in reducing severity, especially treatments using Trichoderma. Cassava plants treated with T. aureoviride URM 5158 had the highest enzyme activity, especially peroxidase and ascorbate peroxidase. Trichoderma harzianum URM3086 and Trichoderma aureoviride URM 5158 were effective in reducing the severity of cassava black root rot caused by S. lignicola CMM 1098.  相似文献   

10.
An experiment was conducted to study the effectiveness of contact, systemic and botanical fungicides, and indigenous biocontrol agents in controlling red root rot disease of tea plants. In general, all tested bioagents, the combination of Pseudomonas fluorescens and Trichoderma atroviride reduced red root disease incidence recorded in two consecutive field experiments. Among the fourteen treatments tested, soil drenching of systemic fungicides was superior but similar to the combination between P. fluorescens and T. atroviride. In contrast, the maximum green leaf yield and plant growth was achieved when soil application of biocontrol agents was carried out. However, the performance of these biocontrol agents under various combinations was on par with systemic fungicides, but superior to botanical fungicides. Correspondingly, the physiological and biochemical parameters were also greatly increased in plants in several treatments when compared to untreated control. The disease increased from 31.5 % to 40.0 % in untreated control plots and those plants were unhealthy in terms of leaf yellowing, stunted growth with heavy flowering, drying of branches and sudden death of bushes. The tea quality parameters were significantly improved in treated plants including total liquor colour, thearubigins, theaflavins, highly polymerized substance and caffeine contents.  相似文献   

11.
The soilborne pathogen Rosellinia necatrix causes white root rot, a serious disease of various trees, and is extremely difficult to control. In this study, using one-dimensional electrophoresis coupled with nanoliquid chromatography-electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-Q-TOF-MS/MS), we identified 696 proteins from R. necatrix mycelium (KACC 40445) grown in liquid culture. In addition, 573 proteins were assigned to at least one gene ontology term including 26 functional groups. Most were related to catalytic activity in the molecular function category. This proteomic data set advances understanding of R. necatrix biology and will inform further investigations to manage white root rot using novel strategies.  相似文献   

12.
水稻纹枯病菌拮抗细菌的筛选及鉴定   总被引:3,自引:0,他引:3  
为获得对水稻纹枯病有生防效果的拮抗细菌,从江苏南京、徐州和常州等地采集的土样中分离细菌分离物1914株,采用平板对峙法筛选获得70株对水稻纹枯病菌有较强抑菌活性的分离物,其中11株对5种水稻病害病原菌均有抑制作用;对11株拮抗菌进行田间防效和室内促生试验,测定菌株分泌的抑菌物质和促生物质,并进行种属鉴定.结果表明,拮抗菌对水稻纹枯病的盆栽和田间小区防效在48.41%和43.03%以上;均可产生蛋白酶与嗜铁素,而不产生几丁质酶,除XF-174外其余10个菌株均可产生纤维素酶;对水稻苗株高和鲜重具有促生作用,并均可产生赤霉素(GA3);除ZF-273和XF-174外的9个菌株可产生吲哚乙酸(IAA),且细菌发酵液中IAA和GA3含量与水稻株高和鲜重的增长率呈正相关.结合各菌株形态特征、生理生化特性和16S rDNA与gyr-B序列分析结果,鉴定SF-181为枯草芽胞杆菌Bacillus subtilis,XF-174为荧光假单胞菌Pseudomonas fluorescens,其余9个菌株为解淀粉芽胞杆菌B.amyloliquefaciens.  相似文献   

13.
The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media.  相似文献   

14.
抗不同生化型青枯菌的生防菌筛选鉴定及其活性分析   总被引:1,自引:3,他引:1  
为更好地利用生防菌控制青枯病危害,从不同地区的土壤中分离到569株细菌菌株,筛选到3株对5种不同生化型青枯劳尔氏菌Ralstonia solanacearum具有较强拮抗活性的菌株,其中菌株BS2004的拮抗活性最强。以BS2004的菌悬液为对照,分别测定无菌滤液、蛋白酶K及高温热处理后拮抗物质抑菌活性的变化。结果显示,蛋白酶K及高温热处理后,该菌的抑菌活性显著降低,表明其主要抑菌成分为蛋白类物质。在设施栽培条件下用生防菌BS2004菌悬液处理番茄植株,能有效控制番茄青枯病的发生,防治效果达66.75%,同时还发现,重新分离得到的青枯菌菌体数明显受到生防菌的抑制。通过对BS2004的形态、生理生化特征、脂肪酸鉴定、16S rDNA序列等进行分析,该菌株被鉴定为解淀粉芽孢杆菌Bacillus amyloliquefaciens。  相似文献   

15.
Fusarium graminearum (teleomorph: Gibberella zeae) is the causal agent of several destructive diseases in cereal crops worldwide. In the present study we have evaluated the potential of two strains of Trichoderma sp. (T23, and T16), a strain of Paecilomyces sp. (PS1), and their secondary metabolites (SMs) in suppressing F. graminearum. Results from dual culture experiments show that in the presence of either Trichoderma sp., or Paecilomyces sp. mycelial growth of F. graminearum is considerably inhibited. Strain T23 causes the greatest inhibition (83.8%), followed by strain T16 (72.2%), and strain PS1 (61.9%). Likewise, mycelial growth of the pathogen is completely inhibited ( 98%) when grown under exposure to volatile metabolites excreted from Trichoderma cultures. Bioautographic analyses using culture filtrates revealed that several antifungal SMs are excreted. Among five metabolites tested, 6-pentyl-alpha-pyrone (6PAP) from strain T23, and PF3 from strain PS1 exhibit pronounced antifungal activity against F. graminearum. A new method for mass production of perithecia of F. graminearum which is simple and more effective than traditional methods was developed, which allows an increase in perithecial formation of more than 5-fold. Using this method, we found, that in the presence of SMs perithecial formation was negatively affected. Perithecial production was suppressed by 81.4% and 76.6% using 200 μg ml?1 of either 6PAP or PF3, respectively. Moreover, ascospore discharge was significantly suppressed (67.0%) when perithecia were exposed to the metabolite F116 produced by T16. Including 6PAP or PF3 in conidial suspensions impeded germination of conidia completely. Similarly, both metabolites strongly inhibited ascospore germination (? 90%).  相似文献   

16.
Lactic acid bacteria (LAB) can be a source of biological control agents (BCA) of fire blight disease. Several species of LAB are inhabitants of plants and are currently used as biopreservatives of food because of their antagonistic properties against bacteria, and are considered as generally safe. Candidates to BCA were selected from a large collection of LAB strains obtained from plant environments. Strains were first chosen based on the consistency of the suppressive effect against E. amylovora infections in detached plant organs (flowers, fruits and leaves). Lactobacillus plantarum strains PC40, PM411, TC54 and TC92 were effective against E. amylovora in most of the experiments performed. Besides, strains PM411, TC54 and TC92 had strong antagonistic activity against E. amylovora and also other target bacteria, and presented genes involved in plantaricin biosynthesis (plnJ, plnK, plnL, plnR and plnEF). The strains efficiently colonized pear and apple flowers; they maintained stable populations for at least 1 week under high RH conditions, and survived at low RH conditions. They were effective in preventing fire blight on pear flowers, fruits and leaves, as well as in whole plants and in a semi-field blossom assay. The present study confirms the potential of certain strains of L. plantarum to be used as active ingredient of microbial biopesticides for fire blight control that could be eventually extended to other plant bacterial diseases.  相似文献   

17.
Rosellinia compacta, described recently, resembles R. necatrix and also causes white root rot. Here a species-specific PCR was developed for R. compacta, and the two R. necatrix-specific primer sets already available were validated in terms of species specificity. PCRs using the primer sets for R. necatrix amplified specific products exclusively from R. necatrix isolates. The R. compacta-specific primer set exclusively detected R. compacta, which appears to be a rare but widely distributed species. We conclude that R. necatrix is the major cause of the disease in Japan but that the involvement of R. compacta should be studied further.  相似文献   

18.
采用前期筛选出的对黄瓜枯萎病菌有较好拮抗作用的3株木霉菌,即哈茨木霉Trichoderma harzianum 809、拟康氏木霉Trichoderma pseudokoningii 886和棘孢木霉Trichoderma asperellum 525,利用盆栽试验,测定了木霉菌孢子不同类型施用对黄瓜幼苗生长、生理特性...  相似文献   

19.
采用前期筛选出的对黄瓜枯萎病菌有较好拮抗作用的3株木霉菌,即哈茨木霉菌(Trichoderma harzianum)809、拟康氏木霉菌(Trichoderma pseudokoningii)886和棘孢木霉菌(Trichoderma asperellum)525,利用盆栽试验,测定了木霉菌分生孢子和厚垣孢子对黄瓜幼苗...  相似文献   

20.
Ralstonia solanacearum is the causal organism of bacterial wilt of more than 200 species representing 50 families of plants in tropical, subtropical, and warm temperate regions in the world. Traditionally classified into five races based on differences in host range, R. solanacearum has also been grouped into six biovars on the basis of biochemical properties. With recent developments in molecular biology, various DNA-based analyses have been introduced and used to confirm that this binary system does not completely represent the diversity within R. solanacearum strains. Therefore, a new hierarchical classification scheme has been suggested, which defines R. solanacearum as a species complex and reorganized the concept of the species as a monophyletic cluster according to a phylogenetic analysis based on genomic sequence data. Here we discuss the current bacterial wilt situation and genetic relationships based on the recent classification system of Japanese R. solanacearum strains as well as worldwide strains. We also review the genetic, biochemical, and pathological characteristics of R. solanacearum strains, in particular, those affecting potato and Zingiberaceae plants as distinctly important pathogens in relation to continuously problematic and recent emergent diseases in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号