首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于深度学习中数字图像识别的理论,课题组构建了深层卷积神经网络,并使用网络模型对苹果树叶片进行分类试验,基于深度学习MobileNet,修改输出的全连接层尺寸,搭建了MobileNet苹果树叶分类模型,实现了Alternaria_Boltch(斑点落叶病)、Brown_Spot(褐斑病)、Grey_Spot(灰斑病)、...  相似文献   

2.
为提取水果图像的多维特征,运用卷积神经网络深度学习技术,在LeNet-5的模型结构的基础上,设计了一个卷积神经网络结构,进而完成水果识别任务.实验结果表明,所提出的网络结构取得了较高的识别准确率.  相似文献   

3.
针对现有的车牌识别方法存在车牌无法定位且车牌字符无法正确分割等情况,提出了一种基于卷积神经网络的车牌识别技术。首先,设计了一套图像处理流程实现车牌定位和字符分割,然后,利用提出的卷积神经网络对车牌字符集进行训练、识别。所提方法可以达到98.54%以上的准确率,极大提高适用性和准确率。  相似文献   

4.
病害是我国养蚕业健康发展面临的主要威胁之一,为研究机械化养蚕模式下的家蚕病害防治方法,采用卷积神经网络进行家蚕病害图像的识别研究。首先在实际环境下,采用饲养和添食病原的方法,集中获取家蚕品种芳·秀×白·春在大蚕期的部分生长阶段下患脓病、微粒子病、白僵病、细菌病、农药中毒以及健康状态的样本,并开展图像采集工作,构建出家蚕病害图像数据集。其次采用特征融合和缩减结构的方法,对残差神经网络进行部分改进,以避免直接使用该算法会导致不必要的计算耗损。最后进行家蚕病害识别试验。结果表明:卷积神经网络能够高效准确识别家蚕病害图像,使用改进的算法在测试集上的准确率达到94.31%,与标准的残差神经网络准确率相当,但训练的参数量仅为原来的1/3,且识别效率大幅提升,更有利于网络的训练与部署。  相似文献   

5.
农机工况识别在细化农机作业状态和帮助掌握区域污染物排放趋势方面有着重要的研究价值。基于拖拉机不同运行状态下的行驶速度、发动机转速以及实时油耗等时间序列,首次提出将图像识别方法引入到拖拉机工况识别中的思路,并分别应用参数优化的支持向量机与卷积神经网络对实际作业拖拉机工况进行研究。结果表明:(1)基于参数优化的支持向量机可以较好地实现样本点的工况识别且识别准确度达到99.851 9%,但无法实现农机工况的连续性识别,同时无法对农机工况转换阶段进行有效识别。(2)以拖拉机运行速度与发动机转速等信息构建样本图像来描述农机工况变化的数据表达,并在此基础上应用卷积神经网络可以有效实现农机工况的连续性识别,且识别准确率可以达到93.3%。本研究在农机工况识别方面具有一定参考价值,并为后续农机不同工况下区域污染物排放研究提供技术支持。  相似文献   

6.
农作物病害的精准检测与识别是推动农业生产智能化与现代化发展的重要举措。随着计算机视觉技术的发展,深度学习方法已得到快速应用,利用卷积神经网络进行农作物病害检测与识别成为近年来研究的热点。基于传统农作物病害识别方法,分析传统方法的弊端所在;立足于农作物病害检测与识别的卷积神经网络模型结构,结合卷积神经网络模型发展和优化历程,针对卷积神经网络在农作物病害检测与识别的具体应用进行分类,从基于公开数据集和自建数据集的农作物病害分类识别、基于双阶段目标检测和单阶段目标检测的农作物病害目标检测以及国外和国内的农作物病害严重程度评估3个方面,对各类卷积神经网络模型研究进展进行综述,对其性能做了对比分析,指出了基于农作物病害检测与识别的卷积神经网络模型当前存在的问题有:公开数据集上识别效果良好的网络模型在自建复杂背景下的数据集上识别效果不理想;基于双阶段目标检测的农作物病害检测算法实时性差,不适于小目标的检测;基于单阶段目标检测的农作物病害检测算法在复杂背景下检测精度较低;复杂大田环境中农作物病害程度评估模型的精度较低。最后对未来研究方向进行了展望:如何获取高质量的农作物病害数据集;如何提升网络的泛化性能;如何提升大田环境中农作物监测性能;如何进行大面积植株受病的范围定位、病害严重程度的评估以及单枝植株的病害预警。  相似文献   

7.
基于卷积神经网络的白背飞虱识别方法   总被引:4,自引:0,他引:4  
为了实现白背飞虱虫情信息的自动收集和监测,提出一种基于卷积神经网络的白背飞虱识别方法并进行应用研究。首先,用改进的野外环境昆虫图像自动采集装置,采集田间自然状态下的白背飞虱图像,对所获取的图像进行归一化处理。然后,随机选取1/2图像样本作为训练集、1/4作为测试集。利用5×5卷积核对训练样本进行卷积操作,将所获取的特征图以2×2邻域进行池化操作。再次经过卷积操作和3×3邻域池化操作后,通过自动学习获取网络模型参数和确定网络模型参数,得到白背飞虱的最佳网络识别模型。试验结果显示,利用训练后的网络识别模型,对训练集白背飞虱的识别正确率可达96.17%,对测试集白背飞虱的识别正确率为94.14%。  相似文献   

8.
基于卷积神经网络与迁移学习的稻田苗期杂草识别   总被引:1,自引:0,他引:1  
邓向武  马旭  齐龙  孙国玺  梁松  金晶 《农机化研究》2021,43(10):167-171
杂草类别信息获取是实现杂草智能化田间管理的基础,为实现自然光照和大田复杂背景下的稻田苗期杂草自动识别,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)与迁移学习相结合的稻田苗期杂草识别方法,可将预训练CNN图像分类模型的参数迁移到稻田苗期杂草识别任务.工作时,采集6种稻田苗...  相似文献   

9.
10.
冯权泷  陈泊安  牛博文  任燕  王莹  刘建涛 《农业机械学报》2021,52(11):181-189,218
城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题。开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度学习提出了一种新的城中村遥感识别模型,该模型包括一个多尺度扩张卷积模块和一个非局部特征提取模块,前者能够聚合多层级空间特征以适应城中村形状、尺度的变异性;后者用于提取全局语义特征以提高城中村的类间可分性。选取北京市二环与六环之间的区域作为研究区,实验结果表明本文模型取得了较好的识别效果,总体精度可达94.27%,Kappa系数为0.8839,且效果优于传统模型。本文研究表明,基于多尺度扩张卷积神经网络进行城中村遥感识别是可行且有效的,可为城乡统筹规划提供精确的城中村空间分布数据。  相似文献   

11.
为有效辨别雏鸡性别,提高养鸡效益,针对部分雏鸡的泄殖腔特征不明显、采集雏鸡泄殖腔图像易受光线影响的问题,提出了一种基于卷积神经网络和图像深度特征的雏鸡性别自动鉴别方法。以翻肛法采集的雏鸡泄殖腔图像为研究对象,利用卷积神经网络构建待识别雏鸡泄殖腔的深度特征和雏鸡泄殖腔的深度特征向量集合库;将待识别雏鸡泄殖腔的深度特征与雏鸡泄殖腔的深度特征集合库进行相似度比较,并对比较结果进行排序;将排序结果中排在前n个与待识别雏鸡泄殖腔图像最接近的深度特征,与待识别雏鸡泄殖腔的深度特征进行特征融合,再通过卷积神经网络进行识别。结果表明,本文方法在测试数据集的识别准确率达到了97. 04%,在生产环境下识别准确率达到了96. 82%,相比常规的卷积神经网络方法,本文方法提高了雏鸡性别的识别准确率。  相似文献   

12.
基于迁移学习的卷积神经网络植物叶片图像识别方法   总被引:10,自引:0,他引:10  
郑一力  张露 《农业机械学报》2018,49(S1):354-359
为了提高植物叶片图像的识别准确率,考虑到植物叶片数据库属于小样本数据库,提出了一种基于迁移学习的卷积神经网络植物叶片图像识别方法。首先对植物叶片图像进行预处理,通过对原图的随机水平、垂直翻转、随机缩放操作,扩充植物叶片图像数据集,对扩充后的叶片图像数据集样本进行去均值操作,并以4∶1的比例划分为训练集和测试集;然后将训练好的模型(AlexNet、InceptionV3)在植物叶片图像数据集上进行迁移训练,保留预训练模型所有卷积层的参数,只替换最后一层全连接层,使其能够适应植物叶片图像的识别;最后将本文方法与支持向量机(SVM)方法、深度信念网络(DBN)方法、卷积神经网络(CNN)方法在ICL数据库进行对比实验。实验使用Tensorflow训练网络模型,实验结果由TensorBoard可视化得到的数据绘制而成。结果表明,利用AlexNet、InceptionV3预训练模型得到的测试集准确率分别为95.31%、95.40%,有效提高了识别准确率。  相似文献   

13.
植物病害是造成农作物减产的主要原因之一。针对传统的人工诊断方法存在成本高、效率低等问题,构建了一个自然复杂环境下的葡萄病害数据集,该数据集中的图像由农民在实际农业生产中拍摄,同时提出了一个新的网络模型MANet,该模型可以准确地识别复杂环境下的葡萄病害。在MANet中嵌入倒残差模块来构建网络,这极大降低了模型参数量和计算成本。同时,将注意力机制SENet模块添加到MANet中,提高了模型对病害特征的表示能力,使模型更加注意关键特征,抑制不必要的特征,从而减少图像中复杂背景的影响。此外,设计了一个多尺度特征融合模块(Multi-scale convolution)用来提取和融合病害图像的多尺度特征,这进一步提高了模型对不同病害的识别精度。实验结果表明,与其他先进模型相比,本文模型表现出了优越的性能,该模型在自建复杂背景病害数据集上的平均识别准确率为87.93%,优于其他模型,模型参数量为2.20×106。同时,为了进一步验证该模型的鲁棒性,还在公开农作物病害数据集上进行了测试,该模型依然表现出较好的识别效果,平均识别准确率为99.65%,高于其他模型。因此,本文模型...  相似文献   

14.
基于卷积神经网络的奶牛发情行为识别方法   总被引:6,自引:0,他引:6  
对奶牛发情的及时监测在奶牛养殖中至关重要。针对现有人工监测奶牛发情行为费时费力、计步器接触式监测会产生奶牛应激行为等问题,根据奶牛发情的爬跨行为特征,提出一种基于卷积神经网络的奶牛发情行为识别方法。构建的卷积神经网络通过批量归一化方法提高网络训练速度,以Max-pooling为下采样,修正线性单元(Rectified linear units,Re LU)为激活函数,Softmax回归分类器为输出层,结合理论分析和试验验证,确定了32×32-20c-2s-50c-2s-200c-2的网络结构和参数。经过对奶牛活动区50头奶牛6个月的视频监控,筛选了具有发情行为爬跨特征的视频150段,随机选取网络训练数据23 000幅和测试数据7 000幅,对构建的网络进行了训练和测试。试验结果表明:本文方法对奶牛发情行为识别准确率为98. 25%,漏检率为5. 80%,误识别率为1. 75%,平均单幅图像识别时间为0. 257 s。该方法能够实现奶牛发情爬跨的无接触实时监测,对奶牛发情行为具有较高的识别率,可显著提高规模化奶牛养殖的管理效率。  相似文献   

15.
针对自然背景下牧草难识别的问题,提出一种基于双池化与多尺度核特征加权的卷积神经网络牧草识别方法。双池化特征加权结构通过将卷积层输出的特征图分别进行最大值池化和均值池化得到两组特征图,引入特征重标定策略,依照各通道特征图对当前任务的重要程度进行加权,以增强有用特征、抑制无用特征;多尺度核特征加权结构通过在卷积层中同时使用3×3和5×5两种卷积核,并将网络的前几层特征复用后进行加权,以提高重要特征的利用率。对10类牧草图像进行识别实验,结果表明,该方法识别率为94.1%,比VGG-13网络提高了5.7个百分点,双池化与多尺度特征加权有效提高了牧草识别精度。  相似文献   

16.
基于迁移学习的卷积神经网络玉米病害图像识别   总被引:17,自引:0,他引:17  
为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在Image Net图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95. 33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。  相似文献   

17.
基于自适应卷积神经网络的染病虾识别方法   总被引:1,自引:0,他引:1  
针对南美白对虾样本来源多样导致的泛化效果较差的问题,引入香农信息论构造不同来源样本的特征差异模型,以深度卷积神经网络(DCNN)为识别框架基础,依据多源样本组成的数据集在分类前后呈现的熵减规则计算DCNN中的网络超参数,消解数据集从随机输入到规则输出的信息熵,打破数据类型从三维输入到一维输出的熵变动,实现图像数据由高维空间向低维空间的映射,获取DCNN中关于超参数和网络深度的自适应优化策略,以提高识别不同来源染病虾的泛化效果。实验结果表明,所提方法在单个数据集上的识别精度最高可达97.96%,并在其他4个图像数据集上进行了测试泛化,泛化精度下降幅度小于5个百分点。  相似文献   

18.
基于FTVGG16卷积神经网络的鱼类识别方法   总被引:3,自引:0,他引:3  
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。  相似文献   

19.
溶解氧(Dissolved oxygen, DO)含量是影响水产养殖产量的重要因素之一,具有时序性、不稳定性和非线性等特点,且其影响因子过多、存在复杂的耦合关系,难以实现精准预测。针对传统长短时记忆神经网络(Long short term memory, LSTM)预测模型易引入冗余数据,且在训练过长序列时会出现梯度消失现象,从而不能捕捉因子间长期的依赖性问题,提出了基于小波变换(Wavelet transform, WT)、卷积神经网络(Convolutional neural network, CNN)和LSTM的溶解氧含量预测模型。首先,使用WT降低数据噪声;然后,使用CNN深度挖掘各变量之间的潜在关系;最后,利用LSTM的时序性预测2h后的水产养殖溶解氧含量。结果表明,本文提出的WT-CNN-LSTM模型预测效果良好,其平均绝对误差、均方根误差和决定系数分别为0.138、0.229和0.954,比传统LSTM模型分别优化了28.87%、21.03%和4.61%。  相似文献   

20.
提出了一种结合卷积神经网络,小波变换和奇异值分解理论的水电机组故障诊断方法.利用卷积神经网络提取机组轴心轨迹的图像特征;通过离散小波变换对摆度信号进行分解,获得信号的小波分解系数,对各分支系数进行重构,构造奇异值分解输入矩阵,提取矩阵奇异值作为特征向量.将两种方法提取的特征进行组合,构建包含图像特征和波形特征的混合特征...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号