共查询到14条相似文献,搜索用时 109 毫秒
1.
针对当前快速准确获取叶面积指数(Leaf area index, LAI)时大部分遥感预测方法将光谱信息作为模型主要特征,忽略时序变化特征的问题,利用无人机搭载五通道多光谱相机获取研究区玉米不同生育期的影像数据,基于该数据计算玉米相应生育期植被指数,然后采用植被指数建立各生育期子模型,采用Shapley理论计算子模型均方根误差对全生育期模型均方根误差的贡献度,从而确定各子模型权重,根据权重组合形成具有LAI时序变化特征的估算模型,分别基于支持向量回归(SVR)、多层感知机(MLP)、随机森林(RF)和极限梯度提升树(XGBoost)算法构建组合估算模型。结果表明:采用Shapley理论构建的组合LAI估算模型估算效果优于直接构建的全生育期LAI估算模型。相较于SVR-Shapley、MLP-Shapley以及RF-Shapley模型,XGBoost-Shapley模型的估算效果最佳(R2为0.97,RMSE为0.021,RPD为6.9)。将最优模型XGBoost-Shapley应用于研究区LAI预测,预测结果符合不同生育期玉米长势。本研究为大田玉米长势遥感监测提供... 相似文献
2.
为了探究无人机多光谱遥感影像估算作物光合有效辐射吸收比例(Fraction of absorbed photosynthetically active radiation,FPAR)的潜力,以无人机多光谱影像提取的植被指数、纹理指数、叶面积指数为模型输入参数,在分析不同参数与FPAR相关性的基础上优选植被指数与纹理指数,并分别以一元线性模型、多元逐步回归模型、岭回归模型、BP神经网络模型等方法估算玉米FPAR。结果表明:植被指数、纹理指数、叶面积指数 3种参数与FPAR都具有较强的相关性,其中植被指数相关系数最大;在不同类型的FPAR估算模型中,BP神经网络模型的估算效果最优,FPAR估算模型决定系数R2、均方根误差(RMSE)分别为0.857、0.173,验证模型R2、RMSE分别为0.868、0.186,模型估算值与田间实测值间相对误差(RE)为8.71%;在不同形式的模型参数组合中,均以植被指数、纹理指数、叶面积指数 3种参数融合的FPAR模型的估算与验证效果最优,说明多特征参数融合能有效改善FPAR估算效果。该研究为基于无人机多光谱遥感数据精准估算玉米FPAR及生产潜力提供了科学依据。 相似文献
3.
无人机多光谱遥感技术可以快速、无损地监测农作物叶面积指数(LAI)。为研究水分胁迫条件下,利用无人机多光谱植被指数估算夏玉米LAI的可行性,本研究基于无人机多光谱遥感系统,结合同时期实地采集的夏玉米LAI,选择5种植被指数,包括归一化差值植被指数(NDVI)、土壤调节植被指数(SAVI)、增强型植被指数(EVI)、绿度归一化植被指数(GNDVI)和抗大气指数(VARI),作为模型输入参数,使用随机森林回归算法建立全生育期不同灌溉条件下大田玉米冠层植被指数与LAI之间的关系模型,并与一元线性回归和多元线性回归算法建立的模型进行对比分析。结果表明,在充分灌溉条件下,植被指数的多元线性回归模型可以较好地估算LAI(R2 = 0.83);在水分胁迫条件下,植被指数的随机森林回归模型可以较好地估算LAI(R2 = 0.74~0.87),水分胁迫因素对该模型影响较小,且NDVI和VARI对估算LAI的贡献最大。上述结果表明基于无人机多光谱遥感技术,使用随机森林回归算法估算多种灌溉条件下的夏玉米LAI是可行的。该研究为实现快速、准确地监测全生育期不同灌溉条件下的大田夏玉米LAI提供了技术和方法支持。 相似文献
4.
为了在病害发生条件下进行玉米LAI的遥感估算,针对41个不同抗性的玉米自交系品种,通过人工接种方法,获得了不同病害严重程度(1~9级)的LAI数据,同时采集了地面高光谱和无人机多光谱数据,构建了K近邻算法、支持向量机、梯度提升分类树和决策分类树分类模型对病害进行分类,对玉米种质资源抗病性进行了划分。基于不同玉米病害胁迫程度分类结果,采用随机森林回归、梯度提升回归树、极端梯度增强算法、轻量梯度提升机4种机器学习模型对玉米LAI进行反演,讨论了不同模型在病害胁迫下的鲁棒性。研究结果表明,对不同生育期玉米病害程度进行划分,基于地面高光谱识别精度分别为84.72%(梯度提升分类树)、47.67%(支持向量机)、55.05%(K近邻算法)、83.02%(决策分类树)。基于病害分类结果,本文利用无人机多光谱数据估算了不同病情等级胁迫下的玉米LAI。构建了4种集成学习模型对不同病情等级的LAI进行估算,4个LAI反演模型的总体反演精度(rRMSE)分别为:19.11%(梯度提升回归树)、15.94%(轻量梯度提升机)、14.51%(随机森林回归)和15.45%(极端梯度增强算法)。其中极端梯度增强算... 相似文献
5.
6.
大田玉米作物系数无人机多光谱遥感估算方法 总被引:5,自引:0,他引:5
作物系数K_c快速获取是大田作物蒸散量(Evapotranspiration,ET)估算的关键,为研究无人机多光谱遥感估算玉米作物系数的可行性和适用性,以2017年内蒙古达拉特旗昭君镇实验站大田玉米、土壤、气象等数据为基础,采用经气象因子和作物覆盖度校正后的双作物系数法计算不同生长时期与不同水分胁迫玉米的作物系数,并使用自主研发的无人机多光谱系统航拍玉米的冠层多光谱(蓝、绿、红、红边、近红外,475~840 nm)影像,研究了不同生长时期(快速生长期、生长中期和生长后期)玉米的6种常用植被指数(Vegetation indices,VIs):归一化差值植被指数(NDVI)、土壤调节植被指数(SAVI)、增强型植被指数(EVI)、比值植被指数(SR)、绿度归一化植被指数(GNDVI)和抗大气指数(VARI),与作物系数K_c的关系模型及水分胁迫对其的影响。结果表明:玉米生长时期和水分胁迫是影响玉米VIs-K_c模型相关性的两个重要因素。不同生长时期玉米植被指数和K_c相关性不同:充分灌溉情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.731 2~0.940 1,p0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.276 5~0.373 2,p0.05,n=40)不同;水分胁迫情况下,快速生长期玉米VIs-K_c模型的相关性(R2为0.0002~0.0830,p0.05,n=25)与生长中期至生长后期VIs-K_c模型的相关性(R2为0.366 2~0.848 7,p0.05,n=40)不同。水分胁迫对VIs-K_c模型的相关性影响较大:快速生长期,充分灌溉玉米VIs-K_c模型的相关性(R2最大为0.940 1)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.083 0)强;生长中期至生长后期,充分灌溉玉米VIsK_c模型的相关性(R2最大为0.373 2)比水分胁迫玉米VIs-K_c模型的相关性(R2最大为0.848 7)弱。部分植被指数和作物系数相关性较强;快速生长期充分灌溉玉米的VIs-K_c模型的相关性由大到小依次为:SR、EVI、VARI、GNDVI、SAVI、NDVI;生长中期至生长后期水分胁迫玉米的VIs-K_c模型的相关性由大到小依次为:SR、GNDVI、VARI、NDVI、SAVI、EVI;其中比值植被指数SR与作物系数K_c的相关性最好。结果表明采用无人机多光谱技术估算K_c具有一定的可行性。 相似文献
7.
基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计 总被引:1,自引:0,他引:1
为探讨利用无人机多光谱遥感影像监测夏玉米冠层叶绿素含量的可行性,基于2019年不同施氮水平下(0,105,210,315 kg·N/hm2)夏玉米多光谱遥感影像和田间实测冠层叶绿素含量数据,分析了不同施氮水平下夏玉米冠层叶绿素含量的变化规律,同时选取10种常用光谱植被指数与实测冠层叶绿素含量进行相关性分析,采用与实测叶绿素含量极显著相关的9种植被指数,构建了基于遥感光谱指数的夏玉米冠层叶绿素含量遥感监测模型,并通过精度检验确定最优估测模型.结果表明,施用氮肥能够提高夏玉米冠层叶绿素含量,过量氮肥不能持续提高叶绿素含量,同一施氮水平下不同追肥处理之间叶绿素含量没有明显差异.绿色归一化植被指数与叶绿素含量的相关性系数最高,达到了0.892.采用逐步回归分析方法建立的模型表现最优,决定系数为0.87,均方根误差及相对误差分别为0.15和2.68%.因此,无人机多光谱遥感结合逐步回归模型可以实现田间尺度的夏玉米冠层叶绿素含量的实时监测. 相似文献
8.
氮素是玉米生长发育过程中必不可少的关键性因素,能够直接影响到玉米作物的生长情况。过去传统的玉米种植信息采集工作大多由人工作业完成,在实际工作中具有费时费力的缺点,难以大范围快速开展,且人工采集的信息数据质量无法得到有效保障,还会对玉米田地造成一定程度的影响和破坏。随着现代化技术的快速发展,无人机和计算机等技术的普及应用促使农业监测方法日新月异。基于此,笔者以实际案例为例并进行深入分析,探究多源遥感技术在夏玉米冠层氮素监测中的应用情况。结果表明,多源遥感技术在实际应用中能够实现高效精准的空间数据监测,实现了多角度的信息采集分析。本研究具有良好的发展前景,能够为其他农业监测研究提供参考。 相似文献
9.
10.
基于无人机多光谱遥感的玉米根域土壤含水率研究 总被引:3,自引:0,他引:3
及时获取农田作物根域土壤墒情是实现精准灌溉的基础和关键。以内蒙古自治区达拉特旗昭君镇试验站大田玉米为研究对象,利用无人机遥感系统,分别在玉米营养生长期(Vegetative stage,V期)、生殖期(Reproductive stage,R期)和成熟期(Maturation stage,M期)获得7次玉米冠层多光谱正射影像,并同步采集玉米根域不同深度土壤含水率(Soil moisture content,SMC);然后,采用灰色关联法对提取的多种植被指数(Vegetation index,VI)进行筛选,选取与土壤含水率敏感的植被指数;最后,分别采用多元混合线性回归(Cubist)、反向传播神经网络(Back propagation neural network,BPNN)和支持向量机回归(Support vector machine regression,SVR)等机器学习方法,构建不同生育期的敏感植被指数与土壤含水率的关系模型。结果表明,3种机器学习方法中SVR模型在各生育期的建模与预测精度均最优,BPNN模型次之,Cubist模型最差;其中SVR模型在M期效果最优,其建模集和验证集R~2分别为0. 851和0. 875,均方根误差(Root mean square error,RMSE)均为0. 7%,标准均方根误差(Normalized root mean square error,nRMSE)分别为8. 17%和8. 32%,R期效果最差,其建模集和验证集R~2分别为0. 619和0. 517。 相似文献
11.
基于多时相无人机遥感植被指数的夏玉米产量估算 总被引:6,自引:0,他引:6
为建立夏玉米无人机遥感估产模型,正确评价规模化农业经营管理和用水效率,以内蒙古自治区规模化种植的夏玉米为研究对象,设置了5个不同水分处理的实验区域,每个实验区域布置了3个样区,利用自主研发的多旋翼无人机多光谱遥感平台,对夏玉米进行多时相的遥感监测。采用牛顿-梯形积分和最小二乘法,构建了基于多种植被指数和多种生育期对应的夏玉米实测产量的6种线性模型,并采用阈值滤波法减少土壤噪声对模型精度的影响。结果显示,不同生育期的玉米估产模型精度存在显著差异。单一生育期中,精度由高到低依次为:抽雄期、吐丝期、蜡熟期、拔节期,最优植被指数为EVI2(决定系数R^2=0.72,均方根误差RMSE为485.46 kg/hm^2);多生育期的最优植被指数为GNDVI(R^2=0.89,RMSE为299.35 kg/hm^2)。经过土壤滤波后,拔节期和多生育期的R^2提升显著,其中基于植被指数GNDVI、MASVI2、EVI2的多生育期估产模型的决定系数R2提升到0.87以上。多生育期的无人机遥感估产优于单生育期,最优估产植被指数为GNDVI,阈值滤波法可以有效提升估产精度,优化后基于植被指数的无人机遥感估产模型可以快速有效诊断和评估作物长势和产量。 相似文献
12.
基于SPOT遥感数据的甘蔗叶面积指数反演和产量估算 总被引:3,自引:0,他引:3
利用SPOT遥感数据进行甘蔗叶面积指数LAI反演,建立最佳NDVI-LAI反演模型,同时结合不同生育期甘蔗叶面积指数的时序变化规律,建立各生育期甘蔗叶面积指数LAI与产量的相关关系,得到甘蔗叶面积指数LAI 产量最佳估产模型.在验证甘蔗叶面积指数LAI的基础上,利用遥感反演的甘蔗叶面积指数LAI进行甘蔗单产估算.结果表明:甘蔗叶面积指数LAI与NDVI之间存在显著的正相关关系,全生育期二者的相关性最高,以二次函数模型拟合效果最佳,决定系数R2为0.8429.将遥感数据反演得到的平均叶面积指数LAI数据代入甘蔗叶面积LAI-产量模型得到全县平均单产,与统计数据相比,相对误差仅为2.6%.说明该模型具有较好的估产效果,可以为甘蔗区域估产提供重要参考. 相似文献
13.
夏玉米叶面积指数遥感反演研究 总被引:4,自引:0,他引:4
利用LAI-2000的观测数据与基于HJ卫星遥感数据生成的植被指数,结合3种常用的回归模型,构造了夏玉米分别按全生育期、不同生育阶段和阈值分段的叶面积指数(Leaf area index,LAI)反演模型;获取了3种模式下LAI的最优反演模型;在验证和评价各模型可靠性之后,生成了夏玉米在营养生长期、抽雄期和生殖生长期的LAI分布图;并将基于HJ影像反演得到的LAIHJ与MODIS LAI产品(MOD15A2)LAIM进行了对比。研究发现,与各种通用植被指数相比,针对HJ CCD数据构造的环境植被指数HJVI与LAI的相关性在3种反演模式中均为最佳。HJVI与全生育期LAI的相关性达到0.875,在不同生育阶段与LAI的相关性也高于其他植被指数(营养生长期线性模型最佳,决定系数为0.769;抽雄期对数模型最佳,决定系数为0.783;生殖生长期指数模型最佳,决定系数为0.703)。普适性植被指数中,OSAVI适用于夏玉米生长前中期的LAI反演,NDVI适用于夏玉米生长后期的LAI反演。在夏玉米全生育期内,各植被指数与LAI的相关性整体较高,但最优回归模型出现在按不同生育阶段反演的模式中。LAI小于3时EVI为精度最佳指数(决定系数为0.358),LAI不小于3时OSAVI为精度最佳指数(决定系数为0.515)。在夏玉米3个生育阶段,LAIM与LAIHJ的相关性分别达到0.732、0.761、0.661。HJ遥感数据具有较强的LAI反演能力,其高时间和高空间分辨率的特征可以使其代替传统的中分辨率遥感数据而成为农业遥感研究的重要数据源。 相似文献
14.
基于无人机遥感与面向对象法的田间渠系分布信息提取 总被引:3,自引:0,他引:3
针对目前农田灌排系统识别研究中遥感影像分辨率不足,难以提取田间毛渠且对无水或少水灌排沟渠识别不足等问题,以内蒙古河套灌区磴口县坝塄村为研究区域,利用固定翼无人机搭载520~920 nm多光谱相机进行航拍试验,采用基于面向对象法的特征组合分层分类的提取方法对获取的高分辨率单幅多光谱影像数据进行解译,采用分割阈值为65、合并阈值为90的遥感影像最佳分割参数。利用含水田间毛渠和无水、少水田间毛渠在光谱、几何、空间关系等特征参量中表现出的与其它地物的特异性,建立不同分类层次的规则提取田间毛渠分布信息。提取结果表明,由于水体对近红外波段光谱的强烈吸收,含水毛渠提取效果很好,精度达到97.8%;无水、少水田间毛渠提取精度为75.7%。无人机遥感技术和面向对象法的特征组合分层分类方法为灌区田间渠系识别提供了一种新途径。 相似文献