首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

-

PREAMBLE According to the German Federal Soil Protection Act (BBodSchG 1998), the habitat function of soils must be protected. Despite the fact that in the Federal Soil Protection Ordinance (BBodSchV 1999) it has not been established how this goal can be reached reliably, it is clear that such a biological function can only adequately be assessed using biological test methods. This is especially true when a soil is contaminated by a mixture of often unknown chemicals. In such a case the use of chemical analysis aiming at a small range of known substances is not sufficient and must therefore be supplemented by biological methods. For this reason, several standardised test methods are available (e.g. using earthworms, collembolans or plants; Römbke and Knacker 2003; ISO 2003). Since acute tests are usually not sensitive enough for the assessment of potentially contaminated soils (e.g. Hund-Rinke et al. 2002), chronic tests like the earthworm reproduction tests (ISO 1998) are recommended for this purpose.

-

A chronic plant test for the determination of phytotoxicity was missing until quite recently. The term phytotoxicity is understood here as the capacity of a compound or a contaminated soil to cause temporary or long-lasting damage to plants (EPPO 1997). Therefore, the German Ministry for Education and Research sponsored a project (1997 – 1999) in which – based on existing standardised methods – such a chronic plant laboratory test was developed and partly validated (Kalsch and Römbke 2000). The new test can be used for the evaluation of single chemicals (see Part 1 of this mini-series) as well as for the assessment of contaminated or remediated soils (see Part 2 of this mini-series).

-

ABSTRACT Background and Scope. A new chronic plant test system which is based on experiences with various acute plant tests (e.g. published by OECD or ISO) and existing North American Plant-Life-Cycle Bioassays was standardised in a project sponsored by the German government. Characteristic properties of the test system, which can be performed either with Brassica rapa (turnip rape) or Avena sativa (oat), are described in Part I of this mini-series.

Methods

This new test was used to assess the effects of natural soil samples contaminated with TNT (2,4,6-Trinitrotoluene) or PAHs (poly-aromatic hydrocarbons). The soils were tested after taken from the field as well as after being remediated. Different control and reference soils were used to evaluate the test results. In addition, they were compared with the results of tests in which either TNT or Pyrene was spiked to field and standard soils (see Part I of this mini-series).

Results

All contaminated soils showed clear effects in the Chronic Plant Test (usually B. rapa was more sensitive than A. sativa). LUFA 2.2 standard soil and OECD artificial soil are well-suited as control and mixture substrates, while reference soils collected at uncontaminated sites were several times phytotoxic. In most of the latter cases, soil properties could be identified as the main cause of these effects (e.g. the pH value). While in general the sensitivity of the reproduction and biomass endpoints did not differ much, it is recommended to measure different endpoints (i.e. biomass and reproduction) due to the different mode-of-action of contaminants. In the case of TNT a good agreement between the results of single chemical tests and tests with TNT-contaminated soils was found (due to the minimal effects of Pyrene the same statement is not possible for PAHs).

Outlook

The results of this work have been used to prepare a draft test guideline, which has recently been standardised by the International Organisation for Standardisation (ISO). Based on these experiences, recommendations are given how this chronic test system could be used as part of a test battery for the assessment of contaminated soils.  相似文献   

2.

Purpose

The use of chlordecone (CLD) has caused pollution of soils, which are now a source of contamination for crops and ecosystems. Because of its long-term impacts on human health, exposure to CLD is a public health concern and contamination of crops by CLD must be limited. To this end, we conducted field trials on chlordecone sequestration in soil with added compost.

Materials and methods

The impact of added compost on chlordecone sequestration was measured in nitisols. After characterization of the soil, the transfer of chlordecone from soil to water was assessed in a leaching experiment and from soil to two crop plants in a nitisol plot. Finally, to understand the underlying processes, changes in CLD content were measured in soil fractions and soil porous properties were assessed after the addition of compost.

Results and discussion

A rapid seven-fold decrease in water extractable CLD was observed in amended soils. Five percent amendment led to a significant reduction in the contamination of crops by CLD; edible radish tubers were 50% more contaminated without added compost and cucumber fruits were 60% more contaminated. After the addition of compost, CLD content increased in the fraction of pre-humified or partially mineralized organic debris. Finally, in contrast to andosols, adding compost to nitisols did not affect the soil microstructure.

Conclusions

Increasing chlordecone sequestration by adding compost could be an alternative solution until soil decontamination techniques become available. This could be a provisional way to control further release of CLD from contaminated soils towards other environmental compartments.  相似文献   

3.

Background, Goal and Scope

Nearly all large European rivers have been used as disposal pathways for several unwanted substances. Deposition of the contaminated solids occurs in regions of slack water and also during floods in adjacent floodplains. As a result of the recurrent input, most of the floodplains in central Europe are contaminated by manifold inorganic and organic pollutants, representing a risk for both plants and groundwater at the site, and for areas downstream. The aim of the present paper is to demonstrate and assess the sink and source functions of a highly contaminated 'fluvisol' (= alluvial soil) for inorganic and persistent organic pollutants. The extent of contamination is described on the basis of national guidelines. These results are further discussed on the basis of the 'monitored natural attenuation' (MNA) potential, i.e., with respect to the requirements for the cheapest problem solution for large scale contamination of floodplains. The MNA potential is assessed according to several lines of evidence such as contaminant burial, mechanical and chemical mobility, transformation to less toxic forms, and dilution due to dispersion.

Methods

The existing inorganic and organic pollutant status and the ecotoxicological potential of the Spittelwasser floodplain near Jeßnitz was documented by analysing several element and compound depth profiles of a typical alluvial soil site. Geochemical analyses were performed on solid material and soil solution according to standard procedures. In laboratory experiments monoliths were continuously irrigated with deionised water and the leachate was analysed weekly. In addition to the geochemical, the ecotoxicological status of the samples was studied using different biotests for the dissolved and the solid phase.

Results

The measured alluvial soil profile is severely contaminated with numerous inorganic and organic pollutants. Highest enrichment factors according to the catchment based, element specific geological background were found for Hg (402), Pb (8.9), Cr (7.1) and Cd (6.3). Assessment was made of the hazard potential of both the solid material and the soil solution according to the German Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV). Relating to the respective maximum contents in the soil profile, the overstepping of BBodSchV trigger values is highest for Hg with a coefficient of 49.0 followed by Cd (14.3), Pb (12.2), Zn (7.3), Cr (5.9) and Cu (3.6). Pollutant concentrations in the soil solution exceed the threshold values for Cd, Cu and Zn by factors of 6.3 to 12. While DDT is retained in the topsoil, there is a considerable translocation of HCH towards deeper horizons.

Discussion

The algae test confirms a strong toxicity in the top layer of the soil profile. In contrast, no such toxic reactions were indicated by the luminescent bacteria test and the Daphnia test at this depth. However, the deeper layers (10 - 100 cm) show a toxic reaction by the Daphnia test, thus indicating a relevant translocation of contaminants.

Conclusions and Perspectives

The Spittelwasser floodplain represents a significant sink for inorganic and persistent organic pollutants. Simultaneously, the area is a relevant secondary source of dissolving contaminants like heavy metals and HCH. Although strict criteria in the lines of evidence for applying MNA are not fulfilled, it can be stated that the alluvial soil offers a high natural retention potential for As, Hg, DDT, and PCDD/F. These pollutants are firmly retained and are not found in the soil leachate. This meets the demands of the EC-WFD for pollutant retention close to their primary source. But for agricultural use and groundwater recharge the natural attenuation potential of the soils in the Spittelwasser area will not be sufficient to achieve acceptable conditions medium-term. The main problem for the dissemination of pollutants is not chemical stability but mechanical dispersion. This is particularly the case for PCDD/F, with concentrations of more than 10,000 ng/kg I-TEQ in the upper Spittelwasser soil layers. Dispersion processes can result in a wide spatial contamination of downstream floodplains.  相似文献   

4.

Purpose

Acute whole-sediment bioassay with the estuarine and marine amphipod Corophium volutator (Pallas) is widely used to assess toxicity of sediments. According to the guidelines DIN EN ISO 16712, mortality is the determined toxic endpoint. Additionally, the reburrowing ability of the surviving organisms of this acute toxicity test in fresh uncontaminated sediment is suggested as the sublethal endpoint, but insufficient information (e.g., exact measurement protocols) on this endpoint is provided, thus confounding factors and the interpretation of the results. The aim of this study was to provide information on burrowing activity as a sublethal endpoint.

Materials and methods

Amphipod tests were carried out in the laboratory, and the burrowing behavior was examined in a size- and gender-specific manner. For sediment testing, only animals of the same size were used in a defined sex ratio because it was found that female animals buried themselves faster than males and that smaller animals burrowed faster than bigger organisms. Statistical analyses were applied to determine whether burrowing time and ability differ significantly between sexes and sizes. Finally, tests were run to discern whether the burrowing ability could be a more sensitive endpoint than mortality.

Results and discussion

When the burrowing ability was examined in toxicity tests with contaminated sediment, the test organisms were affected in a dose-dependent manner. With rising concentrations of the contaminated sediment in a sublethal testing following the sediment exposure over 10 days, fewer animals buried themselves into the sediment.

Conclusions

The burrowing behavior can be used as an additional endpoint. For the tested sediment, burrowing was found to be more sensitive than the mortality. Guidance on the measurement protocol for this additional endpoint was developed. Under the test conditions examined, burrowing ability is an appropriate sublethal endpoint to supplement the toxicity test procedure.  相似文献   

5.

Purpose

The emerging recycling of electronic and electric waste (e-waste) is causing critical levels of soil pollution in those relatively poor towns surrounding the central cities, which have been involved in recycling activities for quite some time. Agricultural soil is of great importance due to its direct impact on food and human health. The objective of this study was to provide a systematic investigation of the contamination in agricultural soil for a range of inorganic compounds (Cr, Cd, Pb, Zn, Cu, and Ni) and organic compounds (PAHs and PCBs) in town A, an emerging e-waste recycling town in China.

Materials and methods

A total of 20 agricultural soil samples were collected from three sampling locations throughout town A. Levels of inorganic compounds (Cr, Cd, Pb, Zn, Cu, and Ni) and organic compounds (PAHs and PCBs) were determined by AAS, GC/MS, and GC/electron capture detector, respectively. Data was processed with SPSS 13 and Arcview 3.3 GIS software.

Results and discussion

The findings demonstrate that agricultural soil was contaminated to various extents by inorganic and/or organic pollutants. Comparison among the three sampling areas indicated that the soil was highly contaminated in the agricultural area near e-waste recycling workshops. Moreover, the contaminants (Cu, Pb, PAHs, and PCBs) may be connected through a common source as found in the Pearson correlations and cluster analysis.

Conclusions

There exists a heightened sense of awareness concerning the hazardous implications of current emerging e-waste recycling issues in the agricultural soil of those areas close to the central city in Taizhou.  相似文献   

6.

Background, aim, and scope

An innovative stabilization/solidification (S/S) process using high-performance additivated concrete technology was developed for remediating soil contaminated by metals from abandoned industrial sites. In order to verify the effectiveness of this new ex situ S/S procedure, an area highly contaminated by metallic pollutants (As, Cd, Hg, and Pb), due to the uncontrolled discharge of waste generated from artistic glass production on the island of Murano (Venice, Italy), was selected as a case study. The technique transforms the contaminated soil into an aggregate material suitable for reuse as on-site backfill. This paper reports the main results of the demonstration project performed in collaboration with the local environmental protection agency (ARPAV).

Materials and methods

An ex situ treatment for brownfield remediation, based on the transformation of contaminated soil into very dense, low porous, and mechanically resistant granular material, was set up and tested. Specific additives (water reducers and superplasticizers) to improve the stabilized material properties were developed and patented. A demonstration plant assembled on the study area to treat 6 m3 h–1was then tested. After excavation, the contaminated soil was screened to remove coarse material. The fraction Ø?>?4 mm (coarse fraction), mainly composed of glass, brick, concrete, and stone debris, was directly reused on site after passing through a washing treatment section. The highly polluted fraction Ø?≤?4 mm (fine fraction) was treated in the S/S treatment division of the plant (European patent WO/2006/097272). The fine fraction was mixed with Portland cement and additives defined on the basis of the high performance concrete technique. the mixture was then granulated in a rolling-plate system. After 28 days curing in an onsite storage area to allow for cement hydration, the stabilized material was monitored before its in situ relocation. The chemical, mechanical, and ecotoxicological reliability and performance of the treatment was checked. Metal leachability was verified according to four leaching test methods: Italian Environmental Ministry Decree (1998), EN 12457 (2002) tout court, amended only with MgSO4 and, lastly, with artificial sea water. The mechanical properties were measured according to BS (1990) and AASHTO (1999) to obtain the Aggregate Crushing Value and California Bearing Ratio, in that order. Moreover, leachate samples prepared with artificial seawater were assessed via the Crassostrea gigas embryotoxicity test and Vibrio fischeri bioluminescence inhibition test to discriminate the presence of potential ecotoxicological effects for the brackish and saltwater biota.

Results

Outcomes from all leachate samples highlighted the effectiveness of the remediation treatment, fully complying with the Italian legislation for non-hazardous material reuse under a physicochemical viewpoint. The stabilized granular material demonstrated high mechanical strength, low porosity, and leachability. Moreover, ecotoxicological surveys indicated the presence of low toxicity levels in leachate samples according to both toxicity tests.

Discussion

Remediated soil samples revealed a significant decrease in leachability of heavy metals as a consequence of the application of additivated cement that enhanced granular material properties, resulting in improved compactness due to the reduction in water content. The toxicity data confirmed this state-of-the-art technique, indicating that leachates could be deemed as minor acutely toxic.

Conclusions

The proposed S/S treatment proved to be able to remediate soil contaminated by heavy metals through trapping pollutants in pellet materials presenting adequate physicochemical, mechanical, and ecotoxicological properties in order to prevent leachability phenomena, their reclamation, and reuse being made easier by its granular form.

Recommendation and perspectives

This project foresees long-term monitoring activity over several years (until 2014) to consider treatment durability.  相似文献   

7.

Purpose

The present work evaluates the influence of different soil properties and constituents on As solubility in laboratory-contaminated soils, with the aim of assessing the toxicity of this element from the use of bioassays to evaluate the soil leachate toxicity and thereby propose soil guideline values for studies of environmental risk assessment in soil contamination.

Materials and methods

Seven soils with contrasting properties were artificially contaminated in laboratory with increasing concentrations of As. Samples were incubated for 4 weeks, and afterwards, soil solution (1:1) was obtained after shaking for 24 h. The soil leachate toxicity was assessed with two commonly used bioassays (seed germination test with Lactuca sativa and Microtox ® test with Vibrio fischeri).

Results and discussion

The relationship between soluble As and soil properties indicated that iron oxides and organic matter content were the variables most closely related to the reduction of the As solubility, while pH and CaCO3 increased As solubility in the soil solutions. Toxicity bioassays showed significant differences between soils depending on their properties, with a reduction of the toxicity in the iron-rich soil (no observed effect concentration (NOEC)?=?150 mg kg?1) and a significant increase in the highly carbonate samples (NOEC between 15 and 25 mg kg?1).

Conclusions

Soil guideline values for regulatory purposes usually set a single value for large areas (regions or countries) which can produce over- or underestimation of efforts in soil remediation actions. These values should consider different levels according to the main soil properties controlling arsenic mobility and the soil leachate toxicity.  相似文献   

8.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers.

Materials and methods

Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil.

Results and discussion

The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation.

Conclusions

Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance dissipation of PAHs and mitigate soil pollution.  相似文献   

9.

Purpose

An efficient method was developed for treating polychlorinated biphenyl (PCB)-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation, and the photocatalytic degradation mechanism of PCBs was explored.

Materials and methods

Hydroxypropyl-??-cyclodextrin (HP??CD) and polyoxyethylene lauryl ether (Brij35) were used to extract PCBs from contaminated soil at first, and then the degradation of PCBs in the soil extracts was performed by TiO2 photocatalysis under UV irradiation.

Results and discussion

Washing conditions including washing time, the concentration of HP??CD/Brij35, and the ratio of soil mass to solution volume for extracting 2,4,4??-trichlorobiphenyl (PCB28) from a PCB28-spiked soil were investigated at first. The results indicated that both HP??CD and Brij35 exhibited good performance. The intermediates of photocatalytic degradation of PCB28 were from its dechlorination and hydroxylation in the HPCD and aqueous solutions, respectively. A field PCB-contaminated soil from e-waste recycling sites was treated by this method. The results showed that the extracting percentage was significantly affected by the chlorination degree of PCBs, and HP??CD slowed down the photocatalytic degradation efficiency of overall PCBs.

Conclusions

Soil washing and subsequent TiO2 photocatalytic degradation was successfully applied for treating PCB-contaminated soil, and HP??CD strongly altered the pathways of the photocatalytic degradation of PCBs.  相似文献   

10.

Purpose

Enhancing desorption of hydrophobic organic contaminants from soils is a promising approach for the effective remediation of soils contaminated with organic compounds. The desorption efficiency of chemical reagent, such as surfactant, should be evaluated. In this study, the effect of mixed anionic–nonionic surfactants sodium dodecylbenzene sulfonate (SDBS)–Tween 80 on the distribution of polycyclic aromatic hydrocarbons in soil–water system was evaluated.

Materials and methods

Batch desorption experiments were employed to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and surfactants in soil–water system. PAHs and SDBS were determined by high-performance liquid chromatography, Tween 80 by spectrophotometry, and total organic carbon with a carbon analyzer.

Results and discussion

Sorption of PAHs to soil was increased at low surfactant concentration due to the effective partition phase on soil formed by sorbed surfactants. The mixture of anionic and nonionic surfactants decreased the sorption of surfactants to soil, increasing the effective surfactant concentration in solution and thus decreasing the sorption of PAHs on soil. Anionic–nonionic mixed surfactant showed better performance on desorption of PAHs from soil than single surfactant. The greatest desorption efficiency was achieved with low proportions of SDBS (SDBS/Tween80?=?1:9).

Conclusions

SDBS–Tween 80 mixed surfactant showed the highest desorption rate with low proportion of SDBS, which indicated that the addition of relative low amount of anionic surfactant could significantly promote the desorption efficiency of PAHs by nonionic surfactants. Results obtained from this study did provide useful information in surfactant-enhanced remediation of soil and subsurface contaminated by hydrophobic organic compounds.  相似文献   

11.

Purpose

The present research aimed to assess the influence of two phosphorous (P) amendments on metal speciation in rhizosphere soil and the soil–plant transfer of metals.

Materials and methods

Complementary experiments were performed: field experiments on a contaminated cultivated soil and laboratory experiments on an uncultivated contaminated soil to highlight the mechanisms involved in metal-phosphorous interactions. In laboratory experiment, P amendments were added at 120 mg P/kg of soluble KH2PO4 amendment and 9,000 mg P/kg of solid Ca5(PO4)3OH amendment.

Results and discussion

Field-culture results showed the possible food-chain contamination due to Pb, Cd, Cu, and Zn phytoaccumulation by pea and mustard plants from a cultivated agricultural soil. Moreover, P-metal complexes were observed by microscopy in the rhizosphere soil. In laboratory experiments, the application of P amendments significantly increased Pb and Zn level in rhizosphere soil compared to control. Phosphate amendments significantly increased metal-P fraction and decreased “oxides” and “organic matter” fractions of Pb and Zn. Soluble-P amendment was more effective than solid P amendment in changing Pb and Zn speciation. The changes in metal speciation are higher in the rhizosphere soil of pea than tomato. Application of P amendments increased Pb and Zn TF root/soil but decreased TF shoot/root.

Conclusions

The effectiveness of in situ metal immobilization technique varies with the type and quantity of applied P amendment as well as plant and metal type.  相似文献   

12.

Purpose

Previous investigations—field samplings and laboratory experiments—support the hypothesis that the degradation of s-triazines is enhanced in previously exposed as compared to pristine soils in terrestrial environments. Despite this, bottlenecks of soil sampling and various soil modification practices in microcosm studies have made it difficult to guarantee that previous contamination history enhances contaminant degradation regardless of soil origin in terrestrial ecosystems. We test the hypothesis that the degradation of simazine (2-chloro-4,6-bis(ethylamino)-s-triazine) is enhanced in previously exposed soils as compared to pristine soils in 10 l buckets at the mesocosm scale.

Materials and methods

We collected soil at three separate sites consisting of a previously exposed and a pristine field. At every field, soil was collected at three separate plots and simazine degradation (days 0 and 65) and the response to atzB degrader gene primers (days 0 and 110) were followed. We analyzed the results using analysis of covariance (ANCOVA). Previous exposure and field site were assessed as fixed factors and initial simazine concentration and abiotic soil conditions as covariates.

Results and discussion

After the 65-day exposure, remaining simazine concentrations depended on previous exposure but not on collection site. The response to atzB gene primers was positive in all mesocosms where simazine degradation had been rapid. Soil moisture, pH, and organic matter content were insignificant. If soil moisture was not included in the ANCOVA model, previous exposure did not appear as a significant factor.

Conclusions

The results support the hypothesis that simazine is degraded more rapidly in previously exposed soils as compared to pristine environments, provided that degradation genes are available. Previously exposed soil might be used to enhance the degradation of simazine in recently contaminated terrestrial soils, supposing that the central requirements for microbial growth are adequate.  相似文献   

13.

Purpose

The influence of bone sorbent addition onto distribution of 90Sr in artificially contaminated soil was preliminary studied to assess the possibility of biogenic apatite utilization for reduction of 90Sr mobility and availability. Simultaneously, the disruption of soil micro- (Cd, Zn, Co, Cu, Cr, and Ni,) and macroelements (Al, Fe, Mn, K, Mg, and Ca) upon Sr contamination and sorbent addition was monitored.

Materials and methods

The model soil was contaminated by inactive Sr, in the form of Sr(NO3)2 solution. As a soil additive, sorbent obtained by annealing bovine bones at 400 °C (B400) was applied. Both the uncontaminated and Sr-contaminated soils were mixed with 1, 3, 5, and 10 % of sorbent, suspended in distilled water (initial pH?5; solid/solution ratio, 1:2), and equilibrated for 15 days on a rotary shaker. Solid residues were subjected to modified Tessier five-step sequential extraction analysis, and the amounts of chosen metals in each fraction were determined by inductively coupled plasma–optical emission spectroscopy.

Results and discussion

In the original soil, Sr was mainly found in exchangeable (61 %) and carbonate phase (16 %), whereas after contamination, the content of Sr in exchangeable phase raised to 94 %. With the addition of B400, the decrease in Sr amounts in exchangeable fraction was detected, whereas increase occurred mainly in operationally defined carbonate phase and in the residual. High level of Sr contamination caused the increase in Zn, Ni, Co, Cu, Cd, and Mn and decrease in Ca content in exchangeable phase. Sorbent addition resulted in a migration of these cations to less soluble fractions. This effect was observed even for major soil elements such as Fe, Al, and Mn, regardless of the excessive amounts of Sr in the soil.

Conclusions

Mixing the soil with B400 resulted in reduced Sr mobility and bioavailability. B400 acted as a stabilizing agent for heavy metals, as well. Apatite distinguished selectivity towards heavy metals may interfere with the Sr immobilization and disrupt original cation distribution. Further studies should include more realistic (lower) Sr concentrations in the soil, different soil types, pH, and longer incubation times.  相似文献   

14.

Purpose

Little information is available heretofore on the gradient distribution of persistent organic pollutants in rhizosphere on a field scale. In this field study, we seek to explore the in situ distribution gradient of polycyclic aromatic hydrocarbons (PAHs) in rhizosphere soil proximal to the roots.

Materials and methods

Clover (Trifolium pratense L.) and hyssop (Hyssopus officinalis L.) grew in situ in the contaminated field soil near a petrochemical plant and were harvested when about 30 cm tall with mature roots. Rhizosphere soils of the plants were sampled including the rhizoplane, strongly adhering soil, and loosely adhering soil. Eleven EPA-priority PAHs were detected in each layer of rhizosphere soils in proximity to the root surface.

Results and discussion

The PAH concentrations followed the descending order of bulk soil, loosely adhering soil, strongly adhering soil, and rhizoplane soil in proximity to the root surface of clover and hyssop. The rhizosphere effect (R, in percent) on PAH distribution clearly decreased with increasing distance from the root, and a more significant decrease was observed for hyssop compared to clover. R values were generally lower for three- and four-ringed PAHs in the rhizosphere, which were more significant in loosely and strongly adhering rhizosphere layers.

Conclusions

Our field observations combined with previous potted studies demonstrated that PAH concentrations in rhizosphere soils increased with distance from the root. Results of this work provide new information on the fate of PAHs in rhizosphere.  相似文献   

15.

Purpose

Laboratory experiments were conducted to examine the potential for metal (Cu, Ni and Zn) and herbicide (simazine, atrazine and diuron) release from agricultural soil and dredged sediment in managed realignment sites following tidal inundation.

Materials and methods

Column microcosm and batch sorption experiments were carried out at low (5?practical salinity units, psu) and high (20?psu) salinity to evaluate the changes in the partitioning of metals and herbicides between the soil/sediment and the aqueous phase, and the release of metals and herbicides from soil/sediment to the overlying water column.

Results and discussion

For both the metals and herbicides, the highest contaminant loads were released from the sediment within the first 24?h of inundation suggesting that any negative impacts to overlying water quality in a managed realignment scheme will be relatively short term following tidal inundation of soil and sediment. The release of metals was found to be dependent on a combination of salinity effects and the strength of binding of the metals to the soil and sediment. In the case of the herbicides, salinity impacted on their release. Particulate organic carbon was found to control the binding and release of the herbicides, highlighting the importance of assessing soil and sediment organic matter content when planning managed realignment sites.

Conclusions

Our research demonstrates that metals and herbicides may be released from contaminated sediments and agricultural soils during initial periods of flooding by seawater in managed realignment sites.  相似文献   

16.

Purpose

Heavy metals pollution of city soil has become a serious environmental issue. Attention has been given to the issue of soil contamination in big cities, but little research has been done in the Loess Plateau, which is the largest loess deposition area in the world. The aim of this study was to assess the contamination of topsoil.

Materials and methods

Forty soil samples were collected from different districts and sieved through nylon sieves. The coarse particles (2 mm) were used to determine pH and electrical conductivity using a suspension of 1:5 soil to deionized water. The fine particles (150 μm) were used to determine soil organic matter and selected heavy metals. Metals were measured in digested solutions by a flame atomic absorption spectrophotometer.

Results and discussion

The mean concentrations of heavy metals in urban soils in the study area are significantly lower than the mean concentrations across China. The integrated pollution index was determined to be 1.13, indicating moderate pollution. Weathering of parent material, the use of pesticide and fertilizer, discharge of waste from traffic, wastes from commodities and industry, and coal combustion are considered to be the main sources of heavy metal pollution in the study area.

Conclusions

The results indicate that, at least in the study area, land use greatly influences the soil quality and heavy metal contents in urban topsoils. Soil backfill may change heavy metal contents to some extent. Deep digging and backfill can be effectively used for the remediation of heavy metal contaminated soil and sediments.  相似文献   

17.

Purpose

Soil properties are the main explanation to the different toxicities obtained in different soils due to their influence on chemical bioavailability and the test species performance itself. However, most prediction studies are centred on a few soil properties influencing bioavailability, while their direct effects on test species performance are usually neglected. In our study, we develop prediction models for the toxicity values obtained in a set of soils taking into account both the chemical concentration and their soil properties.

Materials and methods

The effects on the avoidance behaviour and on reproduction of the herbicide phenmedipham to the collembolan Folsomia candida is assessed in 12 natural soils and the Organisation for Economic Co-operation and Development (OECD) artificial soil. The toxicity outcomes in different soils are compared and explanatory models are constructed by generalised linear models (GLMs) using phenmedipham concentrations and soil properties.

Results and discussion

At identical phenmedipham concentrations, the effects on reproduction and the avoidance response observed in OECD soil were similar to those observed in natural soils, while effects on survival were clearly lower in this soil. The organic matter and silt content explained differences in the avoidance behaviour in different soils; for reproduction, there was a more complex pattern involving several soil properties.

Conclusions

Our results highlight the need for approaches taking into account all the soil properties as a whole, as a necessary step to improve the prediction of the toxicity of particular chemicals to any particular soil.  相似文献   

18.

Purpose

Sediment contamination in US waterways is an expensive and complicated issue, and as acceptance of nontraditional sediment remediation strategies broadens, novel and efficient methods to assess and monitor the bioavailability of hydrophobic organic contaminants (HOCs) in contaminated sediments will play an important role.

Materials and methods

In this project, solid phase microextraction (SPME) fibers inside perforated steel tubes were used as in situ passive samplers to measure polycyclic aromatic hydrocarbon (PAH) concentrations in sediment before and after treatment with activated carbon (AC). Two modes of waterjet amendment injection were used to apply the AC. In the first treatment, a single 2-min injection was shot into the center of a test vessel, and in the second treatment, multiple 7-s injections in a grid were placed in sediment.

Results and discussion

In the single injection, no treatment was observed 5 cm away from the injection, while at 2.5 cm, >90 % decrease of PAH pore water concentration was observed, indicating a similar bioavailability decrease. In the multiple injection experiment, >90 % PAH pore water level reductions were observed throughout the test vessel. Highly contaminated and less contaminated sediments were mixed with 0–5 % AC by weight to develop AC treatment curves. Over 99 % reduction in PAH pore water concentrations and bioavailability was observed in the less contaminated sediment at 3 % AC, while 99 % reduction was never reached even at 5 % AC addition in the highly contaminated sediment. Different treatment curves were observed for the different contaminated sediments. In situ equilibration times were 120, 215, and 250 h for phenanthrene, pyrene, and benzo(a)anthracene, respectively.

Conclusions

The results show that in situ SPME is a viable method to observe AC treatment and evaluate reductions in pore water concentrations and bioavailability.  相似文献   

19.

Purpose

Soil functioning becomes a matter of growing concern in soil remediation projects as, apart from preparing contaminated land for construction purposes, some parts of the sites are usually transformed into green spaces for recreation and inspiration. The objective of this paper is to develop and apply a minimum data set (MDS) for evaluating the ecological soil functions for green areas in remediation projects.

Materials and methods

The MDS was chosen from the previous applications in literature. Using a nonlinear scoring algorithm to transform observed data into sub-scores for evaluating ecological soil functions, the MDS was applied on the Kvillebäcken site in Sweden. The mean sub-scores of the individual soil quality indicators (SQIs) were integrated into a soil quality index to classify the soil into one of the five soil classes. Monte Carlo simulations were used to treat the uncertainties in the predicted soil class resulting from spatial heterogeneity of SQIs, a limited sampling size, and analytical errors.

Results and discussion

The suggested MDS consists of soil texture, content of coarse material, available water capacity, organic matter content, potentially mineralizable nitrogen, pH, and available phosphorus. The high mean sub-score for organic matter at Kvillebäcken indicated that the soil was rich on organic matter thus having a good water storage and nutrient cycling potential. However, the low mean sub-score for potentially mineralizable nitrogen indicated limited biological activity in the soil. The low mean sub-score for the content of coarse fragments indicated plant rooting limitations. Further, the soil quality index (that integrates the sub-scores for SQIs) corresponded to soil class 3 and a medium soil performance with a high certainty.

Conclusions

The suggested MDS can provide practitioners with relevant basic information on soil’s ability to carry out its ecological functions. The suggested scoring method helps to interpret and integrate information from different SQIs into a decision-making process in remediation projects.  相似文献   

20.

Background, Aims and Scope

Bioavailability of toxic compounds in soil can be defined as the fraction able to come into contact with biota and to cause toxic effects. The contact toxicity tests may detect the total toxic response of all bioavailable contaminants present in a sample. The objectives of this study were to evaluate the use of microbial contact toxicity tests for cadmium bioavailability assessment and to evaluate the relationship between sorption, soil characteristics and cadmium bioavailability.

Methods

A test soil bacterium,Bacillus cereus, was put in direct contact with the solid sample. Four unpolluted soils were selected to provide solid samples with a variety of physicochemical characteristics. The toxicity and sorption behaviour of cadmium spiked to the soil samples were determined.

Results, Discussion and Conclusions

A significant correlation between contact toxicity test results and partitioning of cadmium in the soil samples (r2= 0.79, p <0.05; n = 26) was found. The results confirm that the bioavailability of cadmium in soil depends on its sorption behaviour. Cadmium sorbed to the cation exchange sites associated with fulvic acids is non-bioavailable in the toxicity test employed in this study. It is concluded that the microbial contact toxicity test is a suitable tool for detecting cadmium bioavailablity in the soils used in this study.

Outlook

The application of microbial contact toxicity tests for bioavailability assessment can be very useful for the risk identification and remediation of soil-associated contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号