首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary DNA restriction fragment length polymorphism (RFLP) analysis was performed on 50 wild and old cultivated sugarcane accessions. Ninety-four maize low copy nuclear DNA sequences of known chromosomal position were screened for hybridization to digested sugarcane genomic DNA blots. Seventy-five (80%) gave very strong hybridization signals and usually yielded many bands and detected profuse polymorphism. Twenty-nine probes and 36 probe/enzyme combinations were selected on the basis of the scorability of the banding profiles. A total of 1110 fragments were separately identified among the 50 genotypes. Multivariate analyses of the data allowed the separation of the three basic species, Saccharum spontaneum, S. robustum and S. officinarum, showed that S. spontaneum had structure which could be related to the geographic origin of the clones and supported current hypotheses on the origin of secondary species S. barberi and S. sinense. The use of more probes did not improve the resolution between the various species examined but identified a few key polymorphisms which were not accounted for by current phylogenetic hypotheses and can guide future analyses. RFLPs in sugarcane will be useful essentially for depicting the genomic constitution of modern varieties of interspecific origin.  相似文献   

2.
The germplasm for modern sugarcane cultivars (Saccharum spp. hybrids)has been derived principally from S. officinarum (2n = 80), and S. spontaneum (2n = 40 to 128). Diploid gamete formation has been significant in developing cultivated sugarcane, but the cytological basis for the processes involved is not clearly understood. This research investigated microsporogenesis in nine clones of Saccharum spp. Hybrids and in S. officinarum and S. spontaneum. Diploid gamete formation occurred in all 11 lines, but was least frequent in S. spontaneum and S. officinarum which produced 0.5% and 0.8%2n gametes, respectively. In the hybrid lines, 2n gametes were formed infrequencies ranging from 0.9% to 4.4%. Cytological evidence was obtained for dyad and triad formation during microsporogenesis. Detailed analysis of chromosome behaviour at meiosis indicated that 2n male gamete formation is probably attributable to the absence of cytokinesis rather than a combination of asynchrony and non-disjunction. The clones were ranked on the basis of the frequencies with which they formed 4 × 1n microspores and the data were analysed using χ 2 tests for homogeneity. These established that theSaccharum spp. hybrids could be designated as either ‘high’ or ‘low’ frequency haploid gamete producers. Conversely, the latter group, which formed diploid gametes most frequently (2.2%–4.4%), can be described as high frequency diploid gamete producers. The identification of clones most frequently forming diploid gametes may facilitate the more rapid recovery of desirable sugarcane genotypes because such clones could be selected for preferential use in clonal improvement. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Phillip Jackson 《Euphytica》1994,79(1-2):101-108
Summary Saccharum spontaneum is being used in sugarcane breeding programs in attempt to improve characteristics such as ratooning ability and stress tolerance. A population of F1 (Saccharum officinarum or commercial variety x S. spontaneum) and F1 x F1 sugarcane clones was evaluated for sugar yield and a range of yield components in a plant and two ratoon crops. The aim was to determine genetic correlations between attributes in clones with a large component of S. spontaneum, that could be used to help derive appropriate selection indices in such populations.There were close associations between the same attributes measured in different crop-years and the associations between different attributes were generally similar across crop-years. Stalk number and fibre content were positively correlated, as were stalk weight and CCS. The latter two attributes (which are low in S. spontaneum but high in S. officinarum) were negatively correlated with the former two (high in S. spontaneum, low in S. officinarum). Sugar yield was more closely associated with stalk weight and CCS than with stalk number but became more closely associated with stalk number with successive ratoon crops.CCS was positively correlated (rg=0.55) with cane yield in the plant crop but showed a small negative correlation with cane yield (rg=–0.20) in the second ratoon crop. CCS (measured in any crop) also had a negative correlation with cane yield in the ratoon crops expressed as a percentage of plant cane yield. This suggests that CCS is negatively correlated with levels of traits contributing to ratooning ability. Intensive selection among such populations for CCS without consideration of ratooning performance may reduce the frequency of favourable specific ratooning characteristics.Abbreviations CCS commercial cane sugar  相似文献   

4.
Stability and potential use of RAPD markers in a sugarcane genealogy   总被引:7,自引:0,他引:7  
Summary A complete ancestral history of the recently developed and closely related South African commercial sugarcane varieties N11 and NCo376, which differ markedly in their response to sugarcane mosaic virus (SCMV), was elucidated from archival records. The genealogy spans seven generations, starting with early intraspecific crosses between varieties of Saccharum officinarum and interspecific crosses between S. officinarum and either S. spontaneum or S. barberi. In total, the genealogy comprises 38 different varieties. Genomic DNA samples from N11 and NCo376 respectively were screened for polymorphisms using the PCR-RAPD technique. Ten polymorphic fragments ranging in molecular size from 317 to 1263bp were identified from a total of 1159 loci amplified with 100 random decamer primers. Two of the 10 polymorphic fragments were shown to be consistently present in N11 (resistant) and absent in NCo376 (susceptible), while 8 showed the reverse occurrence. The primers producing the polymorphisms were used to screen genomic DNA samples from all 19 varieties representing the genealogy. Results have indicated that (1) specific PCR-RAPD generated polymorphic fragments can indeed be identified across the seven generations; (2) certain fragments are sufficiently definitive to be used as markers to trace parentage; (3) the validity of documented crosses and/or the authenticity of germplasm material may be questioned using this technique, and (4) there is the potential to subject the markers to linkage analysis once a full and accurate assessment of the SCMV resistance phenotype is obtained.  相似文献   

5.
G. Bremer 《Euphytica》1961,10(1):59-78
In this article a survey is given on sugar cane breeding, as it was performed in Java during a period of about fifty years. When in the eighties of the nineteenth century sugar cane was heavily affected by the sereh disease it was Soltwedel, the first director of the Sugar Experiment Station Midden Java, who tried to obtain sereh resistant cane varieties by species hybridization, until his early death intervened. The first species hybrids were obtained in 1893 by Wakker, who crossed noble sugar cane, Saccharum officinarum, with Kassoer, considered by him as a wild species. In later years it appeared from morphological investigations by Jeswiet (1916) and from cytological investigations by Bremer (1921) that Kassoer is to be considered as a spontaneous hybrid between S. officinarum and S. spontaneum, the wild glagah. In 1895 Kobus imported the Indian sugar cane Chunnee in Java. Chunnee, not belonging to S. officinarum, was crossed with noble sugar cane (for the first time) in 1897. From this cross many clones were obtained which appeared to be resistant against the sereh disease but were highly susceptible to mosaic. The continued crossing between noble sugar cane and Kassoer, however, was very successful. Many clones were obtained, which as commercial varieties, showed a high degree of resistance against sereh disease and mosaic and moreover gave a much higher sugar production than the susceptible varieties of noble sugar cane.The following terms are introduced: first, second and third nobilisation of the wild S. spontaneum. Kassoer cane itself is a product of the first nobilisation, the direct cross between noble sugar cane and wild cane. The back cross between Kassoer and noble sugar cane is called the second nobilisation. When cane varieties belonging to the second nobilisation are crossed again with noble sugar cane, the third nobilisation of S. spontaneum is said to take place. The well-known sugar cane variety 2878 P.O.J. belongs to the third nobilisation.In all clones investigated Saccharum officinarum has 2n=80 chromosomes. Within S. spontaneum types occur which in chromosome number vary from 2n=48 to 2n=128. The Java glagah has 2n=112 chromosomes.Clones of the first glagah nobilisation S. officinarum (n=40) x S. spontaneum (n=56) did not have 2n=40+56 chromosomes, but 2n=40+40+56=136 chromosomes.In relation to the taxonomy of Saccharum many other cytological details are given. Within S. officinarum the basic chromosome number x=10. About S. spontaneum opinions are divided. The author supposes that x=6,8 and 10 are basic numbers of S. spontaneum.  相似文献   

6.
The cultivated sugarcane (Saccharum spp. hybrids, 2n = 100–130) is one crop for which interspecific hybridization involving wild germplasm has provided a major breakthrough in its improvement. Few clones were used in the initial hybridization event leading to a narrow genetic base for continued cultivar development. Molecular breeding would facilitate the identification and introgression of novel alleles/genes from the wild germplasm into cultivated sugarcane. We report the identification of molecular markers associated with sugar-related traits using an F1 population derived from a cross between S. officinarum ‘Louisiana Striped’ × S. spontaneum ‘SES 147B’, the two major progenitor species of cultivated sugarcane. Genetic linkage maps of the S. officinarum and S. spontaneum parents were produced using the AFLP, SRAP and TRAP molecular marker techniques. The mapping population was evaluated for sugar-related traits namely, Brix (B) and pol (P) at the early (E) and late (L) plant growing season in the plant cane (04) and first ratoon (05) crops (04EB, 04LB, 04LP, 05EB and 05EP). For S. officinarum, combined across all the traits, a total of 30 putative QTLs was observed with LOD scores ranging from 2.51 to 7.48. The phenotypic variation (adj. R2) explained by all QTLs per trait ranged from 22.1% (04LP) to 48.4% (04EB). For S. spontaneum, a total of 11 putative QTLs was observed with LOD scores ranging from 2.62 to 4.70 and adj. R2 ranging from 9.3% (04LP) to 43.0% (04LB). Nine digenic interactions (iQTL) were observed in S. officinarum whereas only three were observed in S. spontaneum. About half of the QTLs contributed by both progenitor species were associated with effects on the trait that was contrary to expectations based on the phenotype of the parent contributing the allele. Quantitative trait loci and their associated effects were consistent across crop-years and growing seasons with very few QTLs being unique to the early season. When the data were reanalyzed using the non-parametric discriminant analysis (DA) approach, significant marker-trait associations were detected for markers that were either identical to or in the vicinity of markers previously identified using the traditional QTL approach. Discriminant analysis also pointed to previously unidentified markers some of which remained unlinked on the map. These preliminary results suggest that DA could be used as a complementary approach to traditional QTL analysis in a crop like sugarcane for which saturated linkage maps are unavailable or difficult to obtain.  相似文献   

7.
In most sugarcane cultivation areas, sugarcane brown rust (SBR), caused by Puccinia melanocephala, is an economically important fungal disease that leads to severe yield loss in susceptible cultivars. Bru1, which is the major dominant SBR resistance gene, has been widely used in the prediction of brown rust resistance in sugarcane. In this study, three panels of sugarcane germplasms, the major varieties approved over the past 10 years and new elite clones in the current national regional trial, together with one panel of Saccharum spontaneum, were employed in estimating the possibility of SBR epidemic and to assess the efficiency of 9O20-F4-HaeIII in eliminating false positives. Among the current top five varieties used as sucrose feedstock, accounting for more than 68.9% of the total cultivated area, all were highly resistant to SBR, although only three harboring Bru1. Two major varieties Yuetang60 and Guitang46 without harboring Bru1 were highly susceptible to SBR, together with highly susceptible Funong41, which need prudent promotion. Approximately 60.5% of the 38 new elite clones were Bru1 positive. Considering the susceptibility of Liucheng03-1137, which exhibits a strong promotion momentum, together with Funong41, Guitang46, Yuetang60, and Yunzhe06-47, four were favored by the enterprise due to their superior sucrose content and good stalk yield, despite their high susceptibility to SBR, and additional Yuetang93-159, one current top five varieties with declining resistance, which results in a potential risk for brown rust epidemic. Furthermore, low frequency of the wild germplasm of S. spontaneum from five different countries was Bru1 positive. In addition, a perfect molecular diagnostic result was observed in all modern sugarcane clones using two dominant markers, and HaeIII can prevent the occurrence of false positive results when the 9O20-F4 PCR products of S. spontaneum are digested by RsaI. The prevalent chewing cane Badila without Bru1 is highly resistant to SBR. Our results provide valuable information for the extension of sugarcane varieties and a batch of novel SBR resistance sources with superior comprehensive characters for crossbreeding, and for SBR-resistant gene pyramiding by crossing or through mining and using of new SBR-resistant genes.  相似文献   

8.
Framework genetic linkage maps of two progenitor species of cultivated sugarcane, Saccharum officinarum ‘La Striped’ (2n = 80) and S. spontaneum ‘SES 147B’ (2n = 64) were constructed using amplified fragment length polymorphism (AFLP), sequence related amplified polymorphism (SRAP), and target region amplification polymorphism (TRAP) markers. The mapping population was comprised of 100 F1 progeny derived from the interspecific cross. A total of 344 polymorphic markers were generated from the female (S. officinarum) parent, out of which 247 (72%) were single-dose (segregating in a 1:1 ratio) and 33 (9%) were double-dose (segregating in a 3.3:1 ratio) markers. Sixty-four (19%) markers deviated from Mendelian segregation ratios. In the S. spontaneum genome, out of a total of 306 markers, 221 (72%) were single-dose, 43 (14%) were double-dose, and 42 markers (14%) deviated from Mendelian segregation ratios. Linkage maps with Kosambi map distances were constructed using a LOD score ≥5.0 and a recombination threshold of 0.45. In Saccharum officinarum, 146 markers were linked to form 49 linkage groups (LG) spanning 1732 cM whereas, in S. spontaneum, 121 markers were linked to form 45 LG spanning 1491 cM. The estimated genome size of S. officinarum ‘La Striped’ was 2448 cM whereas that of S. spontaneum ‘SES 147B’ was 3232 cM. Based on the two maps, genome coverage was 69% in S. officinarum and 46% in S. spontaneum. The S. officinarum parent ‘La Striped’ behaved like an auto-allopolyploid whereas S. spontaneum ‘SES 147B’ behaved like a true autopolyploid. Although a large disparity exists between the two genomes, the existence of simple duplex markers, which are heterozygous in both parents and segregate 3:1 in the progeny, indicates that pairing and recombination can occur between the two genomes. The study also revealed that, compared with AFLP, the SRAP and TRAP markers appear less effective at generating a large number of genome-wide markers for linkage mapping in sugarcane. However, SRAP and TRAP markers can be useful for QTL mapping because of their ability to target gene-rich regions of the genome, which is a focus of our future research.  相似文献   

9.
Jens Weibull 《Euphytica》1994,78(1-2):97-101
Summary Accessions of Hordeum vulgare subsp. spontaneum, the progenitor of cultivated barley, were screened in field and glasshouse trials for resistance to the aphid Rhopalosiphum padi. A few selected lines were furthermore hybridized with a modern barley variety and the resulting populations evaluated. High levels of resistance were found among some of the spontaneum accessions resulting in lower aphid growth rates (maximum reduction 57%). Segregation patterns among siblings in F2 populations were continuous, indicating the presence of several genes with possibly additive effects. The usefulness of H. vulgare subsp. spontaneum for breeding aphid resistant barley is discussed.  相似文献   

10.
Genotypic variation in polyphenol content of barley grain   总被引:1,自引:0,他引:1  
The polyphenol content in pearl barley, which is highly correlated to a browning reaction after heat treatment, was investigated using 1,347 cultivated barley varieties (H. vulgare) and two wild accessions (H. vulgare subsp. spontaneum) collected from different areas of the world. The polyphenol content in the cultivated barley shows a wide variation ranging from 0.19 to 0.75 mg/g with a nearly normal frequency distribution. The polyphenol content in the hulless varieties from Japan and Korea was low. On the other hand, the polyphenol content in wild barley was about two times higher than the average value recorded in cultivated barley. Based on HPLC analysis, five lowest-polyphenol content local varieties do not represent proanthocyanidin-free mutants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Brown rust, caused by Puccinia melanocephala, is an important disease of sugarcane worldwide. Molecular markers for a major brown rust resistance gene, Bru1, were used to screen a total of 1,282 clones in the World Collection of Sugarcane and Related Grasses (WCSRG) to determine the distribution and frequency of the gene in Saccharum species and related genera. Bru1 was found across all species within the Saccharum complex, but the frequency varied among species. Bru1 was more prevalent in S. robustum clones (59.1%), whereas it occurred in low frequency and exhibited the highest level of variability as determined by the presence of one or both markers (18.8%) in clones of S. spontaneum. Bru1 frequency was highest in the two secondary cultivated species, S. barberi (79.3%) and S. sinense (71.8%). The frequency of Bru1 was 26.4% and 21.0% in S. officinarum and interspecific hybrid clones, respectively. Knowledge of the distribution and frequency of Bru1 in the WCSRG will complement efforts to characterize diversity in the Saccharum complex for the expected expanded use of marker‐assisted selection in the future.  相似文献   

12.
Eight genotypes of Saccharum officinarum were crossed with Saccharum spontaneum and 14 genotypes of S. officinarum were crossed with Erianthus arundinaceus. A total of 39 hybrids were evolved. These 39 hybrids were raised in the field and used as donor clones for in vitro culture studies. Plantlets were regenerated from 1-month-old callus. The grown up plants were transplanted to well prepared field, to study the variations generated for the biometric as well as for biochemical characters. There were significant differences between the donor clones and their sub clones for all the character of interest. The somatic segregation was gradual and wider, showing a range of divergence from the mean towards the end of the scale. Fifty-one sub clones were selected with commercial potential which have 13% fibre, 200 cm stalk length, 10 cm internode length and pure obtainable cane sugar per cent of 10.  相似文献   

13.
J. R. Witcombe 《Euphytica》1978,27(2):601-604
Summary Plants of seeds of Hordeum spontaneum and H. agriocrithon were collected from eight villages in Ladakh, north western India. This is the furthest east that H. spontaneum has been reported. It is the most westerly occurrence and largest find of H. agriocrithon in the Tibetan and Himalayan region. It is possible that H. agriocrithon occurs in Ladakh, not as a hybrid swarm resulting from a cross between H. spontaneum and sin-rowed cultivated barley, but as a pure population.  相似文献   

14.
Genetic variation in ratoon growth and cane yieldafter mechanical harvesting under wet conditions wasexamined among 26 sugarcane clones of diverse geneticbackground, including materials closely related toSaccharum spontaneum and some commercialcultivars. The clones were evaluated under a controltreatment (harvesting under dry conditions andallowing the cane to ratoon without furtherdisturbance), and a traffic treatment (sprayirrigation and then driving heavy field equipment overthe cane stubble immediately after harvesting). Averaged over all clones, the traffic treatment had alarge adverse effect on early growth and final ratoonyield. There was significant genotype × treatmentinteraction for early growth and canopy development,but not for final cane yield. There was also a highgenetic correlation between genetic performance underthe different treatments, indicating that selectionfor ratooning after dry harvesting conditions would bealso effective for improving performance after wetharvesting conditions. A sugarcane breeding programspecifically targeting better ratoon performance underwet conditions would be difficult to justify.  相似文献   

15.
Teosinte comprises different Zea species (Zea mays, Zea diploperennis, Zea perennis, Zea luxurians) that can be crossed with cultivated maize (Z. mays ssp. mays). Nine microsatellites from maize were applied to different teosinte species in order to evaluate their usefulness in markerbased exploitation of these genetic resources. The same microsatellites were tested with rye, barley, and sorghum as potential molecular markers for these species. Almost all microsatellite × teosinte combinations yielded polymerase chain reaction (PCR) fragments in the range of cultivated maize. Using an F2 population of a cross between maize inbred A188 and an individual of Zea mays ssp. mexicana, amplification products for maize and teosinte originated from the same genomic location for each of nine microsatellites investigated. PCR fragments of reduced intensity were generally obtained by applying maize microsatellites to rye, barley and sorghum. Polymorphisms among accessions within teosinte (sub)species occurred frequently. In contrast, no polymorphisms were obtained within rye, barley, and sorghum. Hence, application of maize microsatellites to teosinte for fingerprinting or marker-assisted introgression of genomic regions from teosinte into cultivated maize appears promising.  相似文献   

16.
L. R. Pinto    K. M. Oliveira    T. Marconi    A. A. F. Garcia    E. C. Ulian    A. P. de Souza   《Plant Breeding》2006,125(4):378-384
Microsatellites or simple sequence repeats (SSRs) are one of the most suitable markers for genome analysis as they have great potential to aid breeders to develop new improved sugarcane varieties. The development of SSR derived from expressed sequence tags (EST) opens new opportunities for genetic investigations at a functional level. In the present work, the polymorphism obtained with a subset of 51 EST–SSRs derived from sucest was compared with those generated by 50 genomic SSRs (gSSR) in terms of number of alleles, polymorphism information content, discrimination power and their ability to establish genetic relationships among 18 sugarcane clones including three Saccharum species (S. officinarum, S. barberi, S. sinense). The majority of EST–SSRs loci had four to six alleles in contrast to the seven to nine observed for the gSSRs loci. Approximately, 35% of the gSSRs had PIC values around 0.90 in contrast to 15% of the EST–SSRs. However, the mean discrimination power of the two types of SSR did not differ significantly as much as the average genetic similarity (GS) based on Dice coefficient. The correlation between GS of the two types of SSRs was high (r = 0.71/P = 0.99) and significant. Although differences were observed between dendrograms obtained with each SSR type, both were in good agreement with pedigree information. The S. officinarum clone IJ76‐314 was grouped apart from the other clones evaluated. The results here demonstrate that EST–SSRs can be successfully used for genetic relationship analysis, extending the knowledge of genetic diversity of sugarcane to a functional level.  相似文献   

17.
D. M. Burner 《Euphytica》1991,54(1):125-133
Summary Meiosis was studied in 31 wild Saccharum relatives, including Erianthus (8 clones), Miscanthus (5 clones), Narenga prophyrocoma (1 clone), S. robustum (3 clones), and S. spontaneum (14 clones). Chromosome number for 18 clones confirmed published counts or was typical of the particular species. Chromosome number for seven clones (Djatiroto 2n=58, Molokai 5099 2n=80, SES 84/58 2n=58, SES 114 2n=64, SES 260 2n=64, Taiwan 100 2n=112, and US 57-11-2 2n=60) differed from published counts (2n=112, 86-100, 64, 60, 60, 96, and 30, respectively). Counts were obtained for the first time for six clones (Local escape 2n=96, Nepal 2n=72, NG 77-77 2n=108–112, NG 77-199 2n=166, US 57-60-2 2n=20, and US 68-1-4 2n=38). Bivalent chromosome pairing predominated in all clones. Meiotic irregularity (numeric aberrations, univalents, multivalents, and telophase II micronuclei) tended to be associated with taxonomic grouping and level of polyploidy. Clones in Erianthus, Miscanthus, and Narenga were apparent euploids (2n=20–60) and tended to have fewer meiotic irregularities than Saccharum clones. Differences in level of meiotic stability among taxonomic groups may reflect error in chromosome association and synapsis associated with high chromosome number.  相似文献   

18.
Sugarcane (Saccharum spp) is an important crop for both sugar and biofuel production. However, the sugarcane breeding process has resulted in modern sugarcane cultivars with a narrow genetic basis. To broaden the genetic basis and promote international collaborations in sugarcane cultivar development, we documented the peidgrees of representative sugarcane culativars widely used in China and the United States of America (USA), recruited more than six thousand simple sequence repeat (SSR) markers for sugarcane, and assessed the genetic diversity and relationships beween representative sugarcane cultivars and their potential ancestry accessions. The SSR gentoyping results indicated that both the USA and Chiniese cultivars had low genetic diversity, specifically the Chinese cultivars. The USA sugarcane cultivars experienced high presure of selection for sugar content as they had the closest relationship with S. officinarum, followed by Chinese cultivars, S. robustum, and S. spontaneum. The sugarcane accessions assessed could be divided into five and four groups through cluster and principal component analysis, respectively. S. spontaneum as a potential ancestor contributing to the stress tolerance of sugarcane cultivars was grouped into distinct clusters, and S. officinarum was grouped with sugarcane cultivars in both countries. S. robustum did not seem to contribute to the sugarcane cultivar development in China, but may have contributed to the USA cultivar development. This study not only provided a collection of easy to use SSR markers, but also detailed genetic diversity and relationship among the cultivars in the two counties, which will be referable to promote international collaboration and broaden the genetic basis of sugarcane cultivars.  相似文献   

19.
Fourty two barley lines direved from the F7 of crosses between barley cultivars and different accessions of Hordeum spontaneum collected in Israel and 30 lines or varieties with known genes for resistance to powdery mildew were included m this study. Eleven European and three Israeli powdery mildew cultures, possessing virulence genes corresponding to known resistance genes, were used to make comparisons between the varieties with known resistance genes and H. spontaneum derived lines. The reaction pattern of 39 H. spontaneum derived lines was clearly different from the reaction pattern o; any of the known genes for mildew resistance included in this study. Only two cases were observed in which the reaction pattern of H. spontaneum derived lines agreed with reaction patterns of known genes for mildew resistance viz. Ml-a9 and Ml-p. Trie Mildew resistance of one line apparently traces back to uncontrolled outcrossing with a Ml-a.6+Ml-g resistant cultivar. Since the majority of the 42 host genotypes tested showed distinctive variation in resistant reaction types against different mildew cultures, this study docs not support the assumption that differences in resistant infection types against distinct mildew cultures are sufficient to indicate the presence of supplementary genes for resistance in a given genotype of the host. The results justify the conclusion that the natural population of H. spontaneum in Israel forms a large gene pool for mildew resistance which is not yet used m cultivated barley.  相似文献   

20.
The independent target region amplification polymorphism (TRAP) and single‐nucleotide polymorphism (SNP) marker s were used for genetic evaluation of different selected 47 sugarcane genotypes. A total of 23 pairs of TRAP markers generated 925 alleles, of which 74% alleles were polymorphic. Polymorphism was generally high (>50%), ranging from 54 to 98%. The polymorphism information content (PIC) values 0.20 varied among the primer combination ranging from 0.17 in SAI + Arbi 2 to 0.31 in GL 2+ Arbi 1 with an average of 0.24. However, the Pearson correlation between PIC and power of discrimination (PD) was found to be less significant. Single‐nucleotide polymorphisms were used first time for the assessment of genetic diversity among different species of Saccharum and cultivated sugarcane varieties. The SNPs were detected from 454 sequencing. A total of 245 SNP markers were assayed across the 47 genotypes, and 167 SNPs were found to be polymorphic. The PIC values ranged from 0.04 to 0.38 with an average of 0.21, and their respective PD varied from 0.58 to 0.04 with an average value of 0.31. The obtained results relatively significant were compared with the other marker systems through genetic similarity and the clusters formed in different unweighted pair group method with arithmetic mean clustering dendrogram. The clustering analysis established genetic relationship in the order of Erianthus Sclerostachya Narenga Saccharum spontaneum S. robustum > S. barberi > S. officinarum/cultivars. These results ratify TRAP and SNP marker systems for assessing genetic diversity studies, and more diversified Erianthus spp. can contribute substantially towards sugarcane varietal improvement through breeding with Saccharum spp. or hybrid cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号