首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to evaluate the efficacy of immunohistochemical (IHC) staining for diagnosis of persistent bovine viral diarrhea virus (BVDV) infection using formalin-fixed, paraffin-embedded skin biopsy specimens. Skin from 41 of 42 calves shown to be persistently infected (PI) with BVDV by repeated virus isolation more than 3 weeks apart were immunohistochemically positive for BVDV antigen. Positive IHC staining was most pronounced in the keratinocytes and in hair follicle epithelium, hair matrix cells of the hair bulb, and the dermal papilla. All of the skin sections from 10 calves experimentally infected postnatally with BVDV (10(5) median tissue culture infective doses [TCID50]) and biopsied on days 0, 5, 7, and 9 postinfection were negative for viral antigen. Ten calves from a second group experimentally infected with a higher dose of BVDV (10(8) TCID50) were biopsied when viremic between 10 and 14 days postinfection and 4 calves exhibited positive IHC staining for BVDV; however, staining in these skin biopsies was confined to small foci in the nonfollicular epidermis and follicular ostia. This staining was distinct from that observed in skin obtained from PI cattle. Skin biopsy represents an effective method for identifying animals PI with BVDV.  相似文献   

2.
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 10(6)-10(7) tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin-stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.  相似文献   

3.
Skin biopsies and blood samples from 117 calves, the offspring of dams that had been pastured on communal Alpine pastures while pregnant, were examined for bovine viral diarrhoea virus (BVDV) antigen. Immunohistochemical evaluation of skin biopsy samples revealed BVDV antigen in nine (7.7%) calves, and ELISA testing of serum samples was positive for BVDV antigen in six (5.1%). Three calves with positive skin biopsy samples and negative serum results were < 11 days old; it was assumed that maternal antibody interfered with the ELISA testing. Serum samples that were collected at a later date from two of the three calves were positive for BVDV antigen. These results were significantly different from those of a previous study in which the prevalence of persistently infected calves in an average Swiss cattle population was 0.64%. It was concluded that the risk of infection with BVDV is high in cattle sharing a communal Alpine pasture.  相似文献   

4.
Bovine viral diarrhea viruses (BVDV) cause both acute and persistent infections. While diagnostic tests have been designed to detect animals persistently infected (PI) with BVDV, the reliability of these tests in detecting acute BVDV infections is not known. It is also possible that acute BVDV infections may be confused with persistent infections in surveys for PI animals. In this study, 2 tests presently in use in diagnostic laboratories to test for PI animals, polymerase chain reaction amplification followed by probe hybridization (RT-PCR/probe) of serum samples and immunohistochemical detection of viral antigen in skin biopsies (IHC), were evaluated for their ability to detect acute BVDV infections. Sixteen colostrum-deprived, BVDV-free, and BVDV-antibody-free calves were infected with 6 different BVDV strains. Clinical signs, seroconversion, and virus isolation indicated that inoculated animals did replicate virus. Virus could be detected in 19% (3/16) of acutely infected animals by the RT-PCR/probe technique. No acutely infected animals were positive by IHC.  相似文献   

5.
Persistent infection following in utero exposure to bovine viral diarrhea virus (BVDV) early in gestation is a serious cause of morbidity and mortality in cattle industries worldwide. The brain is a primary target of persistent infection. In the current study, the types of cells infected and topography of viral antigen expression were examined in brain sections from 9 BVDV persistently infected crossbred calves, all less than 1 year of age, by immunohistochemical staining using the 15C5 primary monoclonal antibody. BVDV antigen was detected in the brains of all persistently infected calves. A variety of cell types was infected, including neurons, astrocytes, oligodendroglia, blood vessel-associated cells (pericytes, perivascular macrophages, smooth muscle cells), and cells in the leptomeninges (blood vessel-associated cells). Conclusive demonstration of viral antigen in vascular endothelial cells was elusive. The intensity and distribution of viral antigen staining in neurons were highly variable. Viral antigen staining was most consistent and intense in thalamic nuclei, most notably in dorsal and medial nuclear groups, followed by the hippocampus, entorhinal cortex, basal nuclei, and piriform cortex. Staining in other brain areas was often less intense and inconsistent. The variability in the intensity and topography of viral antigen in the brain may explain the heterogeneity in the clinical manifestations of BVDV-induced disease. Additionally, infection of the brain in persistently infected calves may underlie or at least contribute to endocrine disturbances and immunologic deficits that are protean manifestations of BVDV-induced disease.  相似文献   

6.
7.
Bovine viral diarrhea virus (BVDV) is one of the most relevant pathogens affecting today's cattle industries. Although great strides have been made in understanding this virus in cattle, little is known about the role of wildlife in the epidemiology of BVDV. While persistently infected cattle are the most important reservoir, free-ranging ungulates may become infected with BVDV as demonstrated by serosurveys and experimental infections. Therefore, free-ranging wildlife may maintain BVDV as the result of an independent cycle and may serve as a reservoir for the virus. Systematic studies on prevalence of BVDV-specific antibodies or frequency of persistent BVDV infection in North American wildlife are sparse, and no information is available from the southeastern United States. The objective of this study was to evaluate blood and skin samples from hunter-harvested white-tailed deer (Odocoileus virginianus) for evidence of BVDV infection. Virus-neutralizing antibodies were detected in 2 of 165 serum samples. Skin biopsy immunohistochemistry (IHC) was performed on samples from 406 deer using a BVDV-specific monoclonal antibody (MAb) (15c5), and BVDV antigen was detected in one sample. A similar IHC staining pattern was obtained using a second BVDV MAb (3.12F1). Viral antigen distribution in the skin sample of this deer resembled that found in persistently infected cattle and in a previously described persistently infected white-tailed deer; thus, the deer was presumed to be persistently infected. Evidence of BVDV infection in free-ranging white-tailed deer should encourage further systematic investigation of the prevalence of BVDV in wildlife.  相似文献   

8.
AIM: To assess the ability of two commercial bovine viral diarrhoea (BVD) virus (BVDV) antigen-capture enzyme-linked immunosorbent assays (ELISAs) to detect virus in serum and skin biopsies. METHODS: Thirty cattle persistently infected (PI) with BVDV were identified using routine diagnostic laboratory testing. Additional ear-notch skin biopsies and blood samples were collected from these animals to confirm the diagnosis, and from 246 cohorts, to determine their BVDV status. Skin biopsies were soaked overnight in buffer and the eluate collected. All sera and eluate were tested using two commercially available ELISAs for detecting BVDV antigen, and a subsample of positive and negative sera was tested using a polymerase chain reaction (PCR) test. A study was also performed to ascertain the risk of cross contamination occurring during the collection and processing of skin biopsies. RESULTS: Both serum and skin samples tested using either ELISA resulted in the detection of all cattle identified as PI and no non-infected cattle were incorrectly classified as infected using either method. Agreement between all assays (ELISAs, whether performed on serum or skin, and PCR) was 100%. No cross-contamination of skin samples between animals was evident using routine biopsy methods. CONCLUSIONS: Viraemic cattle infected with BVDV were accurately identified using either of the two commercial ELISAs evaluated on either serum or skin samples. CLINICAL RELEVANCE: Either skin biopsies or serum samples can be collected from cattle to determine their BVDV status. This should overcome problems in accurately identifying the infection status of young calves in which colostral antibodies might interfere with the antigen-capture ELISA.  相似文献   

9.
Tissues were obtained at necropsy from the nasal vestibule, turbinates, nasopharynx, trachea, tracheobronchial bifurcation, and lung from each of 10 clinically healthy calves persistently infected (PI) with bovine viral diarrhea virus (BVDV) serotype 2a. Tissues from the nasal vestibule were obtained by biopsy from five additional PI calves. Formalin-fixed tissues were processed for immunohistochemistry to localize the distribution of BVDV throughout the respiratory tract. Antigen distribution and intensity were subjectively evaluated. Throughout the respiratory tract, mononuclear leukocytes, vascular smooth muscle, and endoneural and perineural cells had BVDV immunoreactivity (BVDV-IR). Multifocally, squamous and ciliated columnar epithelium throughout the respiratory tract contained weak to moderate BVDV antigen. Viral antigen was not seen in goblet cells. BVDV-IR in mixed tubuloalveolar glands of the nasal cavity was weak to strong in serous secretory cells and ductular epithelium. Chondrocytes of the concha often contained BVDV antigen diffusely. Nasal mucus-secreting and tracheobronchial glands multifocally contained weak viral signal. In all cases, alveolar macrophages had moderate to strong BVDV-IR, whereas BVDV-IR in alveolar epithelial cells was weak to moderate. BVDV was present in interalveolar leukocytes and mesenchymal cells. Results indicate that serous secretions of the nasal cavity, productive viral infection of epithelium, and infected leukocytes in respiratory secretions are likely major sources of infectious BVDV from PI calves. The presence of BVDV antigen in respiratory epithelium is, at least, indirect support for the notion that this virus predisposes PI cattle to secondary microbial infections.  相似文献   

10.
11.
Previous studies have shown that the brain is a target of persistent infection with bovine viral diarrhea virus (BVDV) and have demonstrated viral tropism for neurons as well as other endogenous cell types in diverse brain areas. Apart from foci of mild residual inflammation in some postnatal calves, consistent brain lesions, per se, have not been reported. No similar comprehensive studies of the brain have been reported in bovine fetuses. In the current study, 12 BVDV-seronegative heifers were inoculated intranasally with a 2-ml 4.4 log(10) TCID(50)/ml dose of noncytopathic type 2 BVDV at 75 and 175 days of gestation to create persistently and transiently infected fetuses, respectively. In only persistently infected fetuses, encephaloclastic lesions resulting in pseudocysts were observed in the subependymal zone in the region of the median eminence and adjacent corona radiata as well as in the region of the external capsule associated with lenticulostriate arteries. Additionally, areas of rarefaction in white matter were observed at the tips of cerebrocortical gyri and in the external capsule. The distribution of viral antigen was examined by immunohistochemical labeling using the 15C5 anti-BVDV monoclonal antibody. Viral antigen was detected only in calves inoculated at 75 days of gestation, i.e., persistently infected. The pattern of BVDV immunolabeling revealed both similarities and differences compared with previous studies in postnatal calves, suggesting that viral infection in the brain is a dynamic and progressive rather than static process.  相似文献   

12.
13.
Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves.  相似文献   

14.
OBJECTIVES: To estimate risk and identify risk factors for congenital infection with bovine viral diarrhea virus (BVDV) not resulting in persistent infection and examine effect of congenital infection on health of dairy calves. ANIMALS: 466 calves. PROCEDURES: Calves from 2 intensively managed drylot dairies with different vaccination programs and endemic BVDV infection were sampled before ingesting colostrum and tested with their dams for BVDV and BVDV serum-neutralizing antibodies. Records of treatments and death up to 10 months of age were obtained from calf ranch or dairy personnel. Risk factors for congenital infection, including dam parity and BVDV titer, were examined by use of logistic regression analysis. Effect of congenital infection on morbidity and mortality rates was examined by use of survival analysis methods. RESULTS: Fetal infection was identified in 10.1% of calves, of which 0.5% had persistent infection and 9.6% had congenital infection. Although dependent on herd, congenital infection was associated with high BVDV type 2 titers in dams at calving and with multiparous dams. Calves with congenital infection had 2-fold higher risk of a severe illness, compared with calves without congenital infection. CONCLUSIONS AND CLINICAL RELEVANCE: The unexpectedly high proportion of apparently healthy calves found to be congenitally infected provided an estimate of the amount of fetal infection via exposure of dams and thus virus transmission in the herds. Findings indicate that congenital infection with BVDV may have a negative impact on calf health, with subsequent impact on herd health.  相似文献   

15.
In 1992, significant calf losses occurred between birth and weaning in a 650-cow Saskatchewan beef herd. These losses occurred subsequent to ill-thrift and disease, and every calf necropsied was found to be persistently infected with bovine viral diarrhea virus (BVDV). The objectives of this study were to describe the losses associated with fetal infection with BVDV in this herd and to determine why they occurred. For investigative purposes, blood samples were collected from the entire cow herd and the surviving calves at pregnancy testing in 1992, and tested by virus isolation for BVDV. Between 51 and 71 persistently infected calves were born in 1992. Bovine viral diarrhea virus was only isolated from calves. The only confirmed fetal infections with BVDV were recorded as the birth of persistently infected calves. However, abortions, reduced pregnancy rates, and delayed calvings were also recorded in the cow herd and may have been the result of fetal infections. The herd was monitored again in 1993. Fetal infections with BVDV were recorded as the birth of stunted, deformed, and persistently infected calves. The greatest losses due to fetal infection with BVDV in the 2 years of this study occurred in cows that were 3-years-old at calving (second calves). Bovine viral diarrhea virus appears to have remained endemic in this herd by transmission from persistently infected calves on young 3- and 4-year-old cows to naive calved 2-year-old cows that were mingled with them annually for rebreeding. Significant numbers of the 2-year-old cows remained naive to BVDV, because they were segregated from persistently infected calves at weaning, preventing cross-infection with BVDV.  相似文献   

16.
Thrombocytopenia has been associated with type II bovine viral diarrhea virus (BVDV) infection in immunocompetent cattle, but the mechanism is unknown. The purpose of the present study was to develop and characterize a model of type II BVDV-induced thrombocytopenia. Colostrum-deprived Holstein calves were obtained immediately after birth, given a BVDV-negative and BVDV antibody-negative plasma transfusion, housed in an isolation facility, and randomly assigned to either control (n = 4) or infected (n = 5) groups. Infected calves were inoculated by intranasal instillation on day 3 of age with 10(7) TCID50 of the prototype type II isolate, BVDV 890, whereas control calves were sham inoculated. Blood counts and virus isolations from serum, white blood cells, and platelets were performed daily until day 12 after infection, at which time all experimental calves were euthanatized, and pathologic, virologic, and immunohistochemical examinations were performed. On physical examination, the control calves remained normal, but the infected calves developed pyrexia and diarrhea characteristic of type II BVDV infection. The platelet count decreased in all infected calves, and a statistically significant difference in the platelet count between control and infected calves was observed on days 7-12 after infection. In addition, the mean platelet volume and white blood cell counts also decreased. Examination of the bone marrow from the infected calves revealed immunohistochemical staining for BVDV antigen in megakaryocytes and evidence of concurrent megakaryocyte necrosis and hyperplasia.  相似文献   

17.
To ascertain the virulence of bovine viral diarrhea virus (BVDV) genotype II, isolate NY-93 was inoculated intranasally into 3 calves, 2 of which were treated with a synthetic glucocorticoid prior to and after virus inoculation. Anorexia, fever (up to 42 C), dyspnea, and hemorrhagic diarrhea developed 6 days after intranasal inoculation with BVDV NY-93. The condition of all calves deteriorated further until the end of the study on day 14 postinoculation. The most significant postmortem macroscopic changes in all calves were limited to the gastrointestinal tract and consisted of moderate to severe congestion of the mucosa with multifocal hemorrhages. Microscopic lesions found in the gastrointestinal tract were similar to those observed in mucosal disease, including degeneration and necrosis of crypt epithelium and necrosis of lymphoid tissue throughout the ileum, colon, and rectum. The basal stratum of the epithelium of tongue, esophagus, and rumen had scattered individual necrotic cells. Spleen and lymph nodes had lymphocytolysis and severe lymphoid depletion. Severe acute fibrinous bronchopneumonia was present in dexamethasone-treated calves. Abundant viral antigen was detected by immunohistochemistry in the squamous epithelium of tongue, esophagus, and forestomachs. BVDV antigen was prominent in cells of the media of small arteries and endothelial cells. The presence of infectious virus in tissues correlated with an absence of circulating neutralizing antibodies. These findings highlight the potential of BVDV genotype II to cause severe disease in normal and stressed cattle.  相似文献   

18.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

19.
Five diagnostic techniques performed on skin biopsies (shoulder region) and/or serum were compared for detection of bovine viral diarrhea virus infection in 224 calves 0-3 months of age, 23 calves older than 3 months but younger than 7 months, and 11 cattle older than 7 months. The diagnostic methods used were immunohistochemistry (IHC), 2 commercial antigen ELISAs, 1 commercial antibody ELISA, and real-time RT-PCR. Results of 249 out of 258 skin and serum samples were identical and correlated within the 3 antigen detection methods and the real-time RT-PCR used. Twenty-six of these 249 samples were BVDV-positive with all antigen detection methods and the real-time RT-PCR. Nine out of 258 samples yielding discordant results were additionally examined by RT-PCR, RT-PCR Reamplification (ReA), and antigen ELISA I on serum and by immunohistochemistry on formalin fixed and paraffin-embedded skin biopsies. Virus isolation and genotyping was performed as well on these discordant samples. In 3 cases, transiently infected animals were identified. Two samples positive by real-time RT-PCR were interpreted as false positive and were ascribed to cross-contamination. The antigen ELISA II failed to detect 2 BVDV-positive calves due to the presence of maternal antibodies; the cause of 2 false-positive cases in this ELISA remained undetermined. Only persistently infected animals were identified in skin samples by IHC or antigen ELISA I. The 3 antigen detection methods and the real-time RT-PCR used in parallel had a high correlation rate (96.5%) and similar sensitivity and specificity values.  相似文献   

20.
During the past several years, acute infections with bovine viral diarrhea virus (BVDV) have been causally linked to hemorrhagic and acute mucosal disease-like syndromes with high mortality. The majority of BVDVs isolated in such cases have been classified as type II on the basis of genetic and antigenic characteristics. It was our objective to examine clinical disease, lesions and potential sites of viral replication, following experimental BVDV type II infection in young calves. On approximately day 35 after birth, calves that had received BVDV-antibody-negative colostrum were infected by intranasal inoculation of 5 x 10(5) TCID50 of BVDV type II isolate 24,515 in 5 mL of tissue culture fluid (2.5 mL/nostril). Calves were monitored twice daily for signs of clinical disease. Approximately 48-72 h after infection, all calves developed transient pyrexia (39.4-40.5 degrees C) and leukopenia. Beginning on approximately day 7 after infection, all calves developed watery diarrhea, pyrexia (40.5-41.6 degrees C), marked leukopenia (> or = 75% drop from preinoculation values), variable thrombocytopenia, and moderate to severe depression. Calves were euthanized on days 10, 11, or 12 after infection due to severe disease. Gross and histological lesions consisted of multifocal bronchointerstitial pneumonia (involving 10%-25% of affected lungs), bone marrow hypoplasia and necrosis, and minimal erosive lesions in the alimentary tract. Immunohistochemical staining for BVDV revealed widespread viral antigen usually within epithelial cells, smooth muscle cells and mononuclear phagocytes in multiple organs, including lung, Peyer's patches, gastric mucosa, thymus, adrenal gland, spleen, lymph nodes, bone marrow, and skin. This BVDV type II isolate caused rapidly progressive, severe multisystemic disease in seronegative calves that was associated with widespread distribution of viral antigen and few gross or histological inflammatory lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号