首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
防渗渠道输水损失的估算   总被引:4,自引:0,他引:4  
渠道防渗已成为我国大型灌区改造的主要手段 ,以提高水资源的利用率 ;如何估算防渗渠道的水量损失 ,已成为评价灌区改造的重要技术问题。在概括渠道输水损失的各种估算理论和方法的基础上 ,揭示了流量指数型估计式 σ=A/ Qm(% )对于防渗和非防渗渠道都具有广泛的适用性。并基于全国范围内的实测资料统计分析 ,对影响估计式参数的因素及规律性进行了深入分析 ,建议对防渗或非防渗渠道的渠道渗漏损失均采用该估计式 ,防渗渠道的参数可通过现场静水试验求得 ,或直接对透水性系数进行折减。  相似文献   

2.
The effect of watering up to approximately 100% of volumetric available soil water on total biomass, nitrogen (N) balance, and market yield of broccoli crops (Brassica oleracea L. convar. botrytis var. italica Plenck, cv. Emperor) was studied. The experiment was carried out in a microplot field installation on two soil types (alluvial loam and loessal loam) under spring and autumn cultivation and consisted of three soil water regimes: plants received 21 mm of water by irrigation until the soil moisture reached 75% of the available soil water (ASW), treatment 1; 42 mm after the soil moisture reached 55% ASW, treatment 2; and 63 mm after the soil moisture reached 35% ASW, treatment 3. The ASW of the three treatments was measured at a depth of 0.15 m. The total plant mass was significantly affected by the irrigation strategy on the loessal loam in spring and on the alluvial loam in autumn. The total mass and head mass were lowest when water was applied at 75% ASW in spring and autumn. Calculations of N-balances showed that N losses were large, i.e. more than 70 kg·ha–1 in spring and 130 kg·ha–1 in autumn on the alluvial loam in treatment 1, and were only slightly affected by the irrigation strategy on the loessal loam.Communicated by R. Evans  相似文献   

3.
Research on crop response to deficit irrigation is important to reduce agricultural water use in areas where water is a limited resource. Two field experiments were conducted on a loam soil in northeast Spain to characterize the response of maize (Zea mays L.) to deficit irrigation under surface irrigation. The growing season was divided into three phases: vegetative, flowering and grain filling. The irrigation treatments consisted of all possible combinations of full irrigation or limited irrigation in the three phases. Limited irrigation was applied by increasing the interval between irrigations. Soil water status, crop growth, above-ground biomass, yield and its components were measured. Results showed that flowering was the most sensitive stage to water deficit, with reductions in biomass, yield and harvest index. Average grain yield of treatments with deficit irrigation around flowering (691 g m−2) was significantly lower than that of the well-irrigated treatments (1069 g m(2). Yield reduction was mainly due to a lower number of grains per square metre. Deficit irrigation or higher interval between irrigations during the grain filling phase did not significantly affect crop growth and yield. It was possible to maintain relatively high yields in maize if small water deficits caused by increasing the interval between irrigations were limited to periods other than the flowering stage. Irrigation water use efficiency (IWUE) was higher in treatments fully irrigated around flowering.  相似文献   

4.
Experiments were undertaken at CCS Haryana Agricultural University Farm, Sirsa (India) to estimate the optimum irrigation schedule for cotton resulting in minimum percolation losses. The sprinkler line source technique was adopted for creating various irrigation regimes at different crop growth stages. The SWASALT (Simulation of Water And SALT) model after calibration and validation provided water balance components. The wa-ter management response indicators (WMRI's) such as transpiration efficiency Et/(Irr + P), relative transpiration Et/Etp, evapotranspiration efficiency ET/(Irr + P), soil moisture storage change ΔW/Wint (deficit/excess) and percolation loss Perc/(Irr. + P) were evaluated using water balance components as estimated by the simulation study. Under limited water supply conditions, the optimum irrigation depth was found to be 57 mm at crop growth stages with pre-sowing and 1st irrigation of 120 mm and 80 mm respectively for sandy clay loam underlain by sandy loam soil (Type I). The corresponding values of relative transpiration, transpiration efficiency and evapotranspiration efficiency were 0.65, 0.65 and 0.89 respectively. The crop yield varied linearly with increasing irrigation depth which was evident from increase in relative transpiration with increasing depth of water application. However, increased depth of irrigation resulted in less moisture utilisation from soil storage (20% depletion at 40 mm depth and 4.4% moisture built up at 100 mm depth). The extended simulation study for sandy soil underlain by loamy sand (Type II) indicated that two pre-sowing irrigations each 40 mm and subsequent irrigations of 40 mm at an interval of 20 days depending upon rainfall were optimum. This irrigation scenario resulted in zero percolation loss accompanied by 74% relative transpiration and 14 per cent soil moisture depletion. Received: 20 November 1995  相似文献   

5.
In southwestern Ontario, rain-fed crop production frequently fails to achieve its yield potential because of growing-season droughts and/or uneven rainfall distribution. The objective of this study was to determine if the Decision Support System for Agrotechnology Transfer (DSSAT) v4.5 model could adequately simulate corn and soybean yields, near-surface soil water contents, and cumulative nitrate-N losses associated with regular free tile drainage (TD) and controlled tile drainage with optional subsurface irrigation (CDS). The simulations were compared to observations collected between 2000 and 2004 from both TD and CDS field experiments on a Perth clay loam soil at the Essex Region Conservation Authority demonstration farm, Holiday Beach, Ontario, Canada. There was good model-data agreement for crop yields, near-surface (0-30 cm) soil water content and cumulative annual tile nitrate-N loss in both the calibration and validation years. For both TD and CDS, the CENTURY soil C/N model in DSSAT simulated water content and cumulative tile nitrate-N loss with normalized root mean square error (n-RMSE) values ranging from 9.9 to 14.8% and 17.8 to 25.2%, respectively. The CERES-Maize and CROPGRO-Soybean crop system models in the DSSAT simulated corn and soybean yields with n-RMSE values ranging from 4.3 to 14.0%. It was concluded that the DSSAT v4.5 model can be a useful tool for simulating near-surface soil water content, cumulative tile nitrate-N losses, and corn and soybean yields associated with CDS and TD water management systems.  相似文献   

6.
无压渗漏计(Zero-tension lysimeter,ZTL)多用于非饱和带土壤溶质通量的监测,但由于ZTL安装时与原状土壤相接触会存在毛管障碍界面,易形成分散流使其土壤溶液收集效率降低。为准确描述田间水分渗漏量或土壤溶质的运移过程与规律,基于HYDRUS模型模拟结果,对ZTL不同设计(加装不同高度分散流控制壁)和不同适用环境条件(土壤质地、灌水量、土壤蒸发量和初始土壤含水率)的土壤渗漏水收集效率及影响因素进行数值模拟和定量评价。结果表明,无分散流控制壁的ZTL(ZTL0),在0.35 cm3/cm3土壤初始含水率、0.2 cm/d蒸发量和1 000 mm灌水量条件下的砂壤土、壤土和粉土处理,收集效率分别仅为11%、13%和26%,而在相同环境条件下安装分散流控制壁的ZTL(ZTLd),当控制壁高度为20 cm时可使收集效率提升到50%以上。安装的分散流控制壁高度随灌水量的降低、土壤持水能力的提高和土壤蒸发量的增大而升高,初始土壤含水率降低会使偏砂性土壤中安装的ZTLd收集效率降低,但在壤土和粉土中安装时可使其收集效率增大。增加ZTLd安装深度可能会导致其收集效率降低,在某一特定安装深度对ZTL收集效率计算的结果并不适用于其他深度。  相似文献   

7.
A grazing system with Merino sheep and subterranean clover pasture was studied in a 550 mm rainfall, mediterranean climate in Western Australia.Changes over twelve months in seed, the quantities of green and dry herbage, soil moisture, animal intake and liveweight, wool growth and body composition were measured. Six paddocks, representing two soil types, were grazed continuously at 8·75 sheep per hectare. The system was also simulated and the actual results were compared with those from the simulation model.From a seed pool in March of 300 kg ha?1, 80% of which was soft and non-dormant, 4000 clover seedlings per square metre became established; subsequent drought reduced this to 1450 plants per square metre. From measurements of soil moisture it was shown that this population survived at available moisture levels as low as 0·5 mm in the main root zone in gravelly sandy loam. Pasture growth rate reached a spring peak of 102 kg ha?1 day?1 and total growth (estimated from pasture grazed for 26 weeks) was 6700 kg ha?1 for 500 mm of rainfall between germination and maximum biomass. At maturity, burr and seed made up 57% of the plant residues on offer, with a seed pool of 1160 kg ha?1. During the summer this biomass decreased at 5 kg ha?1 day?1 without grazing and 19 kg ha?1 day?1 under grazing.The liveweight losses and gains of the sheep were atypical, no liveweight gain until 1200 kg ha?1 of gree herbage was available—about treble the expected amount. Measurements of food intake indicate a gross inefficiency in energy utilisation during the winter and a low intake of energy in the spring.Total green and dry plant residues showed general agreement between actual and simulated results for most of the growing season. However, the field data highlighted error in the pasture sub-model which were corrected and are reported elsewhere.  相似文献   

8.
Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after tuber bulking and lasted for 6 weeks until final harvest. Analysis across the soil textures showed that fresh yields were not significant between the irrigation treatments. However, the same analysis across the irrigation treatments revealed that the effect of soil texture was significant on the fresh yield and loamy sand produced significantly higher fresh yield than the other two soils, probably because of higher leaf area index, higher photosynthesis rates, and “stay-green” effect late in the growing season. More analysis showed that there was a significant interaction between the irrigation treatments and soil textures that the highest fresh yield was obtained under FI in loamy sand. Furthermore, analysis across the soil textures showed that water productivities, WP (kg ha−1 fresh tuber yield mm−1 ET) were not significantly different between the irrigation treatments. However, across the irrigation treatments, the soil textures were significantly different. This showed that the interaction between irrigation treatments and soil textures was significant that the highest significant WP was obtained under DI in sandy loam. While PRD and DI treatments increased WP by, respectively, 11 and 5% in coarse sand and 28 and 36% in sandy loam relative to FI, they decreased WP in loamy sand by 15 and 13%. The reduced WP in loamy sand was due to nearly 28% fresh tuber yield loss in PRD and DI relative to FI even though ET was reduced by 9 and 11% in these irrigation treatments. This study showed that different soils will affect water-saving irrigation strategies that are worth knowing for suitable agricultural water management. So, under non-limited water resources conditions, loamy sand produces the highest yield under full irrigation but water-saving irrigations (PRD and DI) are not recommended due to considerable loss (28%) in yield. However, under restricted water resources, it is recommended to apply water-saving irrigations in sandy loam and coarse sand to achieve the highest water productivity.  相似文献   

9.
Elevation and infiltration in a level basin. I. Characterizing variability   总被引:3,自引:0,他引:3  
Spatial characterization of soil physical properties could improve the estimation of surface irrigation performance. The aim of this research was to characterize the spatial and time variability of a set of irrigation-related soil properties. The small-scale experimental level-basin (729 m2) was located on an alluvial loam soil. A corn crop was established in the basin and irrigated five times during the season. A detailed survey of the soil properties (generally using a 3 × 3 m network) was performed. Classic statistical and geostatistical tools were used to characterize the variables and their interactions. Semivariograms were validated for the studied variables, except for the clay fraction, the saturated hydraulic conductivity and the infiltration parameters. The resulting geostatistical range was often in the interval of 6–10 m. For the three surveys of soil surface elevation the range was smaller, about 4 m. No correlation was found between saturated hydraulic conductivity and the other soil physical properties. Soil surface elevation showed a high correlation between surveys. After the first irrigation, the standard deviation of elevation increased from an initial 9.6 mm to 20.8 mm. The soil physical parameters were used to map the soil water management allowable depletion. In a companion paper these results are used to explain the spatial variability of corn yield and soil water recharge due to irrigation. Received: 24 February 1998  相似文献   

10.
Rice (Oryza sativa L., var. Labelle) was grown in 300 m2 paddies of Beaumont clay soil (Typic pelludert) and subjected to two management schemes of flooded rice culture. These schemes were continuous irrigation and intermittent irrigation. Careful measurements of irrigation, precipitation, evapotranspiration, deep percolation and runoff were made, and the total water balance for the two water management schemes was calculated.The results show continuous irrigation to be very wasteful of water with slightly over 1 m of irrigation water applied to supply an evapotranspirational need of 0.5–0.6 m. The intermittent irrigation management is less wasteful but still could be improved upon. Suggestions are presented for techniques to help improve the water use efficiency and reduce runoff losses.  相似文献   

11.
The introduction of polysaccharide producing benthic algae and bacteria could provide a low cost technique for seepage control in irrigation channels. The ability of algae and bacteria to produce polysaccharides proved to be successful in reducing the hydraulic conductivity of irrigation channel soil. Hydraulic conductivity was reduced to less than 22% of its original value within a month of inoculating soil columns with algae. Chlorophyll and polysaccharide concentrations in irrigation channel soil were measured in order to assess the growth of algae and extent of polysaccharide production, and their correlation with hydraulic conductivity of channel soil. Increases in polysaccharide occurred in the top layer (0–5 mm) of the soil column. The reduction of hydraulic conductivity was highly correlated with the amount of polysaccharides produced (r 2 = 0.92). Hydraulic conductivity decreased with increasing algal and bacterial numbers. The first few millimetres of the soil core where microbial activity was concentrated, seemed effective in controlling seepage. Incorporation of extra nitrate and phosphate into algal medium did not increase the production of polysaccharides by algae in channel soil. The effect of salinity and turbidity of irrigation channel water on channel seepage was studied by measuring the effects on hydraulic conductivity of channel soils. When the electrical conductivity (EC) of the water increased above a threshold value, the hydraulic conductivity increased because of the flocculating effects on clay particles in channel soils. A relationship between sodium adsorption ratio (SAR) and EC of the channel water was established which indicated 15% increase in channel seepage due to increases in salinity. Increasing the turbidity of irrigation water (by increasing the concentration of dispersed clay) resulted in lowering the hydraulic conductivity of the channel soil due to the sealing of soil pores by dispersed clay particles. When the turbidity of the water was 10 g clay l–1, the hydraulic conductivity was reduced by 100%. An increase in clay concentration above 1 g l–1 resulted in significant reduction in hydraulic conductivity. Soil bowl experiments indicated that clay sealing with a coating of hydrophobic polymer on the surface could also effectively prevent seepage of saline water.  相似文献   

12.
Summary A field experiment was conducted on the west side of the San Joaquin Valley in California to determine water use, crop growth, yield and water use efficiency of Acala (SJ-2) cotton (Gossypium hirsutum L.) grown in 0.5 m spaced rows on a Panoche clay loam soil (Typic Torriorthents). Evapotranspiration was determined by water balance techniques utilizing neutron soil moisture measurements. All neutron measurements were made within a 3 m soil profile in 0.20 m increments. The measured evapotranspiration was compared to climatic estimates of potential evapotranspiration, and to calculations using a one-dimensional soil water balance model that separately computed soil water evaporation and plant transpiration. Crop growth was determined by weekly destructive plant sampling. Leaf area was determined along with dry matter components of leaves, stems, fruiting parts (flowers and squares) and bolls. Final yield was determined by machine harvesting (brush stripper) 720 m2 from each plot. Lint yields and fiber quality were determined by sample ginning and fiber analysis at the U.S. Cotton Research Station at Shafter, California. Three irrigation regimes were established that resulted in an evapotranspiration range from a high deficit condition to full irrigation at the calculated atmospheric demand.The measured evapotranspiration of narrow row cotton under a full irrigation regime was 778 mm, 594 mm under a limited irrigation regime and 441 mm under a regime with no post-plant irrigation. The evapotranspiration from these irrigation treatments was accurately simulated by a water balance model. that used inputs of potential evapotranspiration, leaf area index, soil water holding capacity and root development.The average lint yield from narrow row cotton with a full irrigation regime was 1583 kg/ha, the average lint yield from a limited irrigation regime was 1423 kg/ha and the average lint yield from a treatment with no postplant irrigation (fully recharged soil profile at planting) was 601 kg/ha. The full irrigation regime resulted in a dry matter production of approximately 16 t/ha while the limited irrigated regime produce 11 t/ha and the no-postplant irrigation regime produced 7 t/ha of dry matter. The fiber quality results indicated significant (0.05 level) differences only in 50% span length and micronaire, with the 2.5% span length, uniformity index, elongation and strength indicating no difference.Cotton lint yield was found to be directly related to total evapotranspiration although the relationship was slightly non-linear while dry matter yield was found to be linearly related to evapotranspiration. Both lint and dry matter yield were found to have a linear relationship to estimated transpiration from the water balance model calculations.Contribution from the Unived States Department of Agriculture, Agricultural Research Service, Western Region and the University of California  相似文献   

13.
The HYDRUS 2D finite difference two-dimensional water balance model was experimentally tested for transient and steady state seepage flux, mound height, and piezometric water level from soil surface as a function of time and horizontal distance from the centre of the canal (half width = 45 cm) under different canal bed elevations (20, 0, −40, −80 and −120 cm denoted as experiments D1, D2, D3, D4 and D5, respectively) and constant water head of 5 cm in a sand box (200 cm × 170 cm × 150 cm) filled with Hisar loam soil. Differences of means between measured and predicted values of infiltration flux, seepage flux and mound height as tested by paired t test were not found significant (P = 0.05). Seepage flux and mound height increased with increasing canal bed elevation. Phreatic level depths were everywhere much shallower than the piezometric water level depths in experiments D1, D2 and D3. However, in experiments D4 and D5 both phreatic and piezometric levels were at similar depths. The seepage parameters and mound height increased, and water table depth decreased, linearly with increasing canal bed elevation. Lowering the canal bed to 120 cm below the soil surface reduced the seepage rate to that of lined canals. The projections in a large flow domain also revealed that lowering the canal to −2 and −4 m below soil surface stabilized the water table at 2.5 and 4.5 m below soil surface, respectively. The practical implications are that open drains should be used for irrigation in areas underlain with a brackish groundwater aquifer and gravity canals may be allowed only where groundwater aquifer is of good quality and sub-surface water withdrawal is practiced for irrigation.  相似文献   

14.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

15.
A study of losses from field channels under arid region conditions   总被引:1,自引:0,他引:1  
In arid regions, water losses from unlined small field channels are usually high due to seepage and evaporation from open surfaces. These losses are often neglected by many project planners and engineers. A theoretical analysis has been developed to modify the equation usually used to determine the water losses based on the ponding method, where the channel longitudinal slope was considered in the analysis. A field investigation has been carried out in sandy soil to determine and evaluate the water losses for three different types of channels. They are: earthen-uncompacted channel, compacted channel bed and channel lined by jute mats coated with bitumen emulsion on both faces. The last two cases are relatively low-cost, need less skillful labour than lining by cement and are more suitable for temporary field channels. Manning's coefficient was determined for each case. The results show that the process of compating the channel bed reduced the rate of seepage by a considerable value and that lining of field channels by prefabricated bitumen jute mats caused a significant reduction in the seepage rate. The results also show that the evaporation from open surfaces caused a considerable loss and should be considered when studying water losses from irrigation channels in arid regions. Abbreviations A = channel surface area ⋅ Ac = channel cross section-area ⋅ b = channel bed width ⋅ d = observed difference in Class-A pan ⋅ h1 = original water depth in the canal ⋅ h2 = canal water depth after a certain time ⋅ k = constant ⋅ L = canal length ⋅ n = Manning's coefficient ⋅ p = average wetted perimeter ⋅ qevap = evaporation losses rate ⋅ qs = canal seepage losses rate ⋅ qt = total losses from the canal ⋅ Q = canal discharge ⋅ R = penetration resistance ⋅ Rh = hydraulic radius of the channel ⋅ s = channel longitudinal slope ⋅ t = time ⋅ Ve = volume of water lost by evaporation ⋅ vm = channel mean velocity ⋅ vs = channel surface velocity ⋅ Vs = volume of water lost by seepage ⋅ Vt = total volume of water lost ⋅ w = water surface width of the canal ⋅ y1 = downstream water depth at time zero ⋅ y2 = downstream water depth after a time t ⋅ z = canal side slope Received: 6 October 1995  相似文献   

16.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

17.
The majority of rice grown in south-east Australia is continuously flooded for much of its growing season, but reduced irrigation water availability brought about by a combination of drought and environmental flow legislation has presented a need to maintain (or even increase) rice production with less irrigation water. Delaying the application of continuous flooding until prior to panicle initiation can increase input water productivity by reducing non-beneficial evaporation losses from free water and the soil. A field experiment was conducted over two growing seasons, 2008/9 and 2009/10, comparing a conventional dry seeded treatment (the control - continuous flooding from the 3 leaf stage) with delayed continuous flooding (10-20 days prior to panicle initiation) with several irrigation scheduling treatments prior to flooding commencement. In the first year, the delayed water treatments were irrigated at intervals of 40, 80 and 160 mm of cumulative reference evapotranspiration (ETo) prior to delayed continuous flooding, thereby imposing differing degrees of crop water stress. In year 2, the 80 and 160 mm treatments were modified by use of a crop factor (Kc) when the plants were small and the 40 mm treatment was replaced with a continuously flooded treatment throughout the crop duration.Decreases in net water input (irrigation + rain − surface drainage) and increases in input water productivity were achieved by reducing the flush irrigation frequency during the pre-flood period. Savings of 150 and 230 mm (10 and 15%) were achieved in Year 1 from the 80 and 160 mm cumulative ETo irrigation frequency treatments, respectively, in comparison to the control. In the second year, net water input savings of 230 and 330 mm (15 and 22%) were achieved with the 80/Kc and 160/Kc mm treatments, respectively. Input water productivity of the 160 mm treatment was 0.06 kg/m3 (8%) higher than the control in Year 1, while in Year 2 a 0.15 kg/m3 (17%) increase in input water productivity above the control was achieved by the 160/Kc mm treatment. Delaying the application of continuous flooding in the second year greatly extended the period of crop growth suggesting the need for earlier sowing (by 7-10 days) to ensure pollen microspore still occurs at the best time to minimise yield loss due to cold damage. Nitrogen fertiliser management is an important issue when delaying continuous flooding, and nitrogen losses appeared to increase with the frequency of irrigation prior to continuous flooding. This was likely due to increased denitrification from alternate wetting and drying of the soil. Further research is required to determine the most appropriate nitrogen management strategies, and to also better define the optimal pre-flood irrigation frequency.  相似文献   

18.
To evaluate the effectiveness of various types of linings in reducing the seepage losses from field channels, 10 conventional and 12 low cost test sections were constructed. The conventional test sections included six rectangular brick masonry sections and four trapezoidal concrete sections with varying thickness of walls and bed lining materials. The low cost sections consisted of six rectangular brick masonry sections and six trapezoidal sections with brick masonry, pre-cast concrete slab and tile lining having different thickness of wall and bed linings. In some low cost sections lining was not provided in the bed. Water loss rates were measured before construction, immediately after construction and 24 years after construction. Higher seepage loss rates were measured in the cement–concrete conventional test sections than in the conventional brick masonry sections with plaster on the inside walls. Water loss rate measurements in concrete sections showed that quality control was more critical than the thickness and richness of the concrete mix. Economic analyses showed that low cost linings were a better investment than the conventional linings. Low cost lining with 11 cm thick brick masonry in vertical walls, or 2:1 sloped walls, plastered on the inside, without lining in the bed, is recommended. Lining walls, with 2:1 slope, using fired tile or pre cast concrete slabs were also good investments when the joints were plastered.  相似文献   

19.
The potato (Solanum tuberosum L.) is widely planted in the Middle Anatolian Region, especially in the Nigde-Nevsehir district where 25% of the total potato growing area is located and produces 44% of the total yield. In recent years, the farmers in the Nigde-Nevsehir district have been applying high amounts of nitrogen (N) fertilizers (sometimes more than 900 kg N ha−1) and frequent irrigation at high rates in order to get a much higher yield. This situation results in increased irrigation and fertilization costs as well as polluted ground water resources and soil. Thus, it is critical to know the water and nitrogen requirements of the crop, as well as how to improve irrigation efficiency. Field experiments were conducted in the Nigde-Nevsehir (arid) region on a Fluvents (Entisols) soil to determine water and nitrogen requirements of potato crops under sprinkler and trickle irrigation methods. Irrigation treatments were based on Class A pan evaporation and nitrogen levels were formed with different nitrogen concentrations.The highest yield, averaging 47,505 kg ha−1, was measured in sprinkler-irrigated plots at the 60 g m−3 nitrogen concentration level in the irrigation treatment with limited irrigation (480 mm). Statistically higher tuber yields were obtained at the 45 and 60 g m−3 nitrogen concentration levels in irrigation treatments with full and limited irrigation. Maximum yields were obtained with about 17% less water in the sprinkler method as compared to the trickle method (not statistically significant). On the loam and sandy loam soils, tuber yields were reduced by deficit irrigation corresponding to 70% and 74% of evapotranspiration in sprinkler and trickle irrigations, respectively. Water use of the potato crop ranged from 490 to 760 mm for sprinkler-irrigated plots and 565–830 mm for trickle-irrigated treatments. The highest water use efficiency (WUE) levels of 7.37 and 4.79 kg m−3 were obtained in sprinkle and trickle irrigated plots, respectively. There were inverse effects of irrigation and nitrogen levels on the WUE of the potato crops. Significant linear relationships were found between tuber yield and water use for both irrigation methods. Yield response factors were calculated at 1.05 for sprinkler methods and 0.68 for trickle methods. There were statistically significant linear and polynomial relationships between tuber yield and nitrogen amounts used in trickle and sprinkler-irrigated treatments, respectively. In sprinkler-irrigated treatments, the maximum tuber yield was obtained with 199 kg N ha−1. The tuber cumulative nitrogen use efficiency (NUEcu) and incremental nitrogen use efficiency (NUEin) were affected quite differently by water, nitrogen levels and years. NUEcu varied from 16 to 472 g kg−1 and NUEin varied from 75 to 1035 g kg−1 depending on the irrigation method. In both years, the NH4-N concentrations were lower than NO3-N, and thus the removed nitrogen and nitrogen losses were found to be 19–87 kg ha−1 for sprinkler methods and 25–89 kg ha−1 for trickle methods. Nitrogen losses in sprinkler methods reached 76%, which were higher than losses in trickle methods.  相似文献   

20.
High levels of soil sodicity, resulting from intensive irrigation with saline-sodic waters, lead to an increased soil susceptibility to seal formation and to severe problems of runoff and soil erosion. The objective of this study was to investigate the efficacy of the addition of small amounts of an anionic polyacrylamide (PAM) to the irrigation water in controlling seal formation, runoff and soil erosion. Two predominantly montmorillonitic soils were studied, a grumusol (Typic Haploxerert) and a loess (Calcic Haploxeralf), having naturally occurring exchangeable sodium percentage (ESP)>12. The soils were exposed to 60 mm of simulated irrigation with commonly used tap water (TW, electrical conductivity=0.8 dS m–1; sodium adsorption ratio (SAR)=2), or saline water (SW, electrical conductivity=5.0 dS m–1; SAR>12). PAM effectiveness in controlling runoff and erosion from the sodic soils was compared with runoff and erosion levels obtained from untreated soils having low ESPs (<4). For both soils and for both water qualities and polymer concentrations in the irrigation water, PAM was efficient in controlling runoff at low ESP levels and inefficient at high ESP levels. At moderate ESP levels, PAM's efficacy in controlling runoff was inconsistent and varied with water quality and polymer concentration. Conversely, in general, soil loss originating from rill erosion, was significantly and effectively reduced in moderate and high ESP soils by addition of PAM to the irrigation water, irrespective of water quality and polymer concentration. PAM was more effective in reducing rill erosion than in reducing runoff in the moderate and high ESP samples, because the energy involved in generating runoff is much higher than that involved in rill erosion. PAM treated surface aggregates were not stable against the distructive forces leading to seal formation and runoff production; but they were stable enough to resist the hydraulic shear exerted by the runoff flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号