首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
中美主要农作物灌溉水分生产率分析   总被引:13,自引:1,他引:12  
灌溉水分生产率反映了作物的灌溉用水效率,是衡量灌区的农业生产水平、灌溉工程状况、灌溉管理水平的关键指标。该文在大量的调查数据基础上,采用分类计算、加权平均方法分析了中国和美国主要农作物的灌溉水分生产率。结果表明:美国籽用粮食作物、块茎类作物、草类作物、絮状作物的平均灌溉水分生产率分别为1.98、8.90、2.54、0.26kg/m3。上述4类作物喷灌灌溉水分生产率分别为2.26、9.44、3.2和0.36kg/m3,而地面灌溉条件下的灌溉水分生产率则分别为1.55、6.96、2.15、0.23kg/m3;美国13个州玉米、小麦和水稻平均的灌溉水分生产率分别为2.94、1.24和1.39kg/m3,而中国10省市226个大中型灌区3种作物平均灌溉水分生产率分别为2.04、1.19和0.80kg/m3;灌溉技术落后、节水灌溉面积小造成的灌区灌溉水利用系数低,是导致中国灌溉水分生产率低的主要原因。  相似文献   

2.
基于气候信息的喀斯特地区植被EVI模拟   总被引:1,自引:0,他引:1  
该研究以喀斯特地区植被为研究对象,分析各种气候因子与植被指数的相关性及作用机制,在此基础上建立基于气候因子的植被EVI拟合模型,为定量分析气候条件对植被的综合影响奠定基础。结果表明:气候因子对喀斯特地区植被EVI影响显著,植被EVI与水汽压、平均气温、露点温度、最低气温、最高气温的相关性均大于0.8且空间一致性好。除日照时数和风速外,该地区植被EVI对其他气候因子的响应均存在显著滞后性,滞后期约16 d。对植被EVI起直接作用的主要是温度类气候因子,水分类气候因子对植被EVI的直接作用不明显,但通过其他气象因子起了较强的间接作用。根据该地区植被与气候因子的关系建立了2个EVI拟合模型,其中基于同期气候因子的同期模型中入选的气候因子为水汽压(0期)、日照时数(0期)、露点温度(0期),基于同期、前期气候因子的混合模型入选气候因子为水汽压(-1期)、最高气温(-1期)、降水量(-1期)、露点温度(-1期)、日照时数(0期)。分别利用2001-2010年建模数据和2011年非建模数据对2个模型进行了单站点和片区两种尺度的精度验证。验证结果表明,2个模型对整个片区植被EVI的拟合精度高于单站点,且混合模型的拟合精度高于同期模型。2001-2010年同期模型和混合模型的片区拟合R2分别为0.843、0.892,站点拟合R2分别为0.765±0.033、0.801±0.021。2011年2个模型的片区拟合R2分别为0.797、0.873,站点拟合R2分别为0.716±0.073、0.746±0.064。对大多数站点而言,混合模型的拟合精度较高,但是由于2个模型的建模气候因子不同及各个站点植被的EVI与气候因子的综合响应也存在较大差异,同期模型对部分站点植被EVI拟合精度高于混合模型。  相似文献   

3.
蒸散发的研究对于绿洲的生态安全、农业生产及水资源合理配置等问题具有重要意义。利用Landsat-8遥感影像获取于田绿洲2011年5月17日与2016年5月15日的地表温度和植被指数信息,根据地表能量平衡原理,构建三角形特征空间,基于一定的假设条件,并根据其"干边"和"湿边"方程系数计算研究区蒸散指数,同时采用MOD16-ET产品数据和研究区土壤含水量数据对地表温度与不三种不同植被指数计算出的蒸散指数进行对比分析。结果表明:基于三角形法的蒸散指数能够很好地估算陆面蒸散发,且与MOD16-ET产品的精度验证相关系数较高,R~2均大于0.7;而通过对比三种常用植被指数与地表温度计算的蒸散指数,采用ET-Ts/EVI计算出的蒸散指数精度较高,R~2大于0.8;同时,该方法与土壤含水量拟合结果同样,表现出ET-Ts/VI具有更高的精度(R~2大于0.7)。  相似文献   

4.
根据奇台县平原井灌区的地下水埋深观测数据、野外调查数据、社会经济数据和农业气象资料,借助柯尔一道格拉斯生产函数,建立了根据不同农作物产量变化的地下水埋深变化生产函数模型.模拟结果显示:粮食作物产量对地下水埋深的影响最大,蔬菜瓜果次之,经济作物影响最小.它们每增加1%,引起的地下水位埋深平均增加的幅度分别是0.639%,0.120%和0.205%.模型通过了精度检验(r=0.987,P<0.0001),模拟结果与实测埋深值拟合较好,模拟精度的相对误差都小于5%.同时,由反映农作物灌溉耗水量与地下水埋深变化之间关系的公式得知:灌溉粮食作物引起的地下水下降幅度最大,占总下降幅度的70.4%,每年可使地下水位下降0.339 2m/a.灌溉蔬菜瓜果引起的地下水位下降的比重和速率(14.8%,0.071 5 m/a)略高于灌溉经济作物产生的变化(14.7%;0.0709 m/a).  相似文献   

5.
基于多源遥感数据的草地生物量估算方法   总被引:6,自引:4,他引:2  
为了寻求有效的草地生物量估算方法和精确估计荒漠草原草地生物量及其变化规律,该文探讨了利用全极化RADARSAT-2 C波段雷达数据和HJ1B图像及野外调查获得的样方生物量数据,估算荒漠草原人工柠条灌木林地上生物量的方法。在对柠条灌木林地上生物量和雷达后向散射系数及HJ1B图像归一化植被指数(normalized difference vegetation index,NDVI)进行相关分析的基础上,采用多元逐步回归分析从RADARSAT-2数据及HJ1B植被指数NDVI建立了人工柠条林生物量模型,用实测草地生物量值对模型进行验证,同时将光学和雷达图像进行融合和分类处理,在此基础上对草地生物量进行分布制图,并将其结果与HJ1B的NDVI模型生物量估算结果进行对比。结果表明:柠条林地上生物量与RADARSAT-2雷达后向散射系数之间存在较好的定量关系(决定系数R2=0.71,均方根误差(root mean square error,RMSE)=14.2 kg/hm2,P0.001),其估算生物量与实测生物量一致性较好,估算生物量精度优于HJ1B的NDVI指数估算结果(R2=0.27,RMSE=20.58 kg/hm2)。由此可见,利用光学图像HJ1B和雷达数据RADARSAT-2融合分类能进行地物有效识别,雷达遥感数据可以用于草地结构参数的定量研究。利用光学和微波协同遥感进行草地生态系统监测研究具有一定的应用潜力。  相似文献   

6.
基于随机森林算法的冬小麦生物量遥感估算模型对比   总被引:13,自引:8,他引:5  
为了寻求高效的冬小麦生物量估算方法,该研究获取了2014年陕西省杨凌区拔节期、抽穗期和灌浆期的冬小麦生物量和对应的RADARSAT-2全极化雷达、GF1-WFV多光谱数据,并利用随机森林算法(random forest,RF)将光谱、雷达后向散射、光学植被指数和雷达植被指数结合进行冬小麦生物量回归建模。将相关系数分析(correlation coefficient, r)、袋外数据(out-of-bag data,OOB)重要性和灰色关联分析(grey relational analysis, GRA)与随机森林算法(RF)进行整合,构建了3种冬小麦生物量估算模型:r-RF、OOB-RF和GRA-RF,并分别利用3种估算模型对冬小麦生物量进行了估算。结果表明:r-RF、OOB-RF和GRA-RF3种模型分别采用3、4、10组数据时,验证决定系数分别为0.70、0.70和0.65,平均绝对误差分别为0.162、0.164和0.172 kg/m2,均方根误差分别为0.218、0.221和0.236 kg/m2,r-RF和OOB-RF比GRA-RF对冬小麦生物量有更好而的预测能力。研究结果证实了随机森林算法对冬小麦生物量进行遥感估算的潜力。  相似文献   

7.
基于MODIS EVI的冬小麦产量遥感预测研究   总被引:16,自引:17,他引:16  
Terra-MODIS数据集同时具有归一化植被指数(NDVI)和增强型植被指数(EVI)两种植被指数。为了对比这两种植被指数在农作物估产中的应用效果,该文利用MODIS-NDVI和MODIS-EVI作为遥感特征参量,以对美国冬小麦的长势监测与产量预测为例进行了研究:运用区域作物特定生育期内多年的NDVI和EVI值与作物产量进行相关分析,采用一次线性拟合方法分别建立回归方程,估算当年的农作物产量。结果表明,EVI明显地比NDVI更好地与产量建立回归方程,用EVI建立的回归方程,各州相关系数大多在0.7以上;而用NDVI建立的回归方程,相关性不稳定。因此利用EVI建立的模型对2004年美国冬小麦进行估产,并将预测结果与美国国家统计署6月1号公布的预测结果进行对比,结果发现,美国国家统计署预测单产误差为3.05%,总产误差为-2.56%,而该研究预测结果单产误差为2.62%,总产误差为-1.77%且预测时间比美国国家统计署预测时间提前约半个月。可见EVI可以更有效地进行作物监测及估产,提高预测的准确性。  相似文献   

8.
针对如何利用作物生长模型定量解析区域夏玉米生物量动态变化的热点问题,该文在沿东海岸的江苏省盐城市大丰区设置大田夏玉米生物量估测试验,在构建夏玉米生物量过程模拟模型的基础上,对夏玉米多个生育阶段的生物量(指地上部生物量)及其变化特征进行分析,并结合试验实测数据探讨利用实测叶面积指数和生物量数据调整生物量模拟模型参数的可行性。结果表明:夏玉米生物量过程模拟模型可以对夏玉米从出苗到灌浆期间的多个生育阶段生物量动态变化进行估测。出苗到拔节前的生长阶段,生物量积累主要来源于叶片形成,模拟模型可以对生物量进行有效预测,预测值与实测值之间的均方根差(root mean square error,RMSE)为18.31 kg/hm~2,相对误差为3.35%。拔节到抽雄前的生长阶段,由于茎节伸长与节数增加,生物量积累加快,预测值与实测值之间的差异较大。拔节初期生物量预测值为535.5 kg/hm~2,实测值为480 kg/hm~2,相对误差11.56%。抽雄前生物量预测值为7 036.46 kg/hm~2,实测值为5 794 kg/hm~2,相对误差21.44%。拔节到抽雄前生长阶段预测值与实测值之间的RMSE为825.94 kg/hm~2。经过模型参数调整,抽雄前生物量预测值为6 036 kg/hm~2,与实测值较为接近,RMSE为219.43 kg/hm~2,相对误差4.18%。利用参数调整后的模拟模型继续对抽雄到灌浆前生长期间生物量进行预测,预测值与实测值较为一致,灌浆期生物量预测值为11 156 kg/hm~2,实测值为10 785 kg/hm~2,相对误差3.44%,而参数调整前预测值为12 492 kg/hm~2,相对误差15.83%。在玉米拔节期进行模型参数调整,对拔节到抽雄和抽雄到灌浆2生长阶段的生物量预测效果较好。该研究可为县域夏玉米不同生长阶段生物量及其动态变化预测提供参考,可辅助县域农业管理部门进行适时生产措施调整。  相似文献   

9.
利用时序合成孔径雷达数据监测水稻叶面积指数   总被引:2,自引:0,他引:2  
为了确定全极化雷达数据监测水稻叶面积指数动态变化的精度,该文对水稻叶面积指数与后向散射系数进行了各生长阶段建模比较。采用广东雷州地区多时相多入射角精细全极化Radarsat-2数据,结合水稻全生育期地面样方实测数据,首先分析多入射角归一化后四极化(vertical-horizontal polarization,VH;vertical-vertical polarization,VV;horizontal-horizontal polarization,HH;horizontal-vertical polarization,HV)、比值极化HH/VV后向散射系数与水稻叶面积指数(leaf area index,LAI)随时间变化特征以及在营养生长阶段、生殖生长阶段和全生育期的相关关系,提取相关系数高于0.8的极化与生长阶段进行水云模型建模,最终生成多期水稻LAI反演分布图,并验证该数据反演水稻各生长阶段LAI的精度,探索SAR数据追踪区域尺度水稻长势的可行性。结果表明,在地形较为平坦的水稻集中连片种植区,VV、HH/VV后向散射系数与LAI在营养生长期、全生育期极显著相关(P0.01),相关系数均高于0.83。营养生长阶段VV、HH/VV水云模型拟合决定系数分别为0.77、0.87,全生育期VV、HH/VV水云模型拟合决定系数分别为0.73、0.8,营养生长阶段模型优于全生育期模型。精细四极化SAR数据监测区域尺度水稻LAI动态变化具有应用潜力,优选的极化模型为进一步的水稻长势监测提供依据。  相似文献   

10.
鄂尔多斯高原油蒿群落研究基本样方大小的确定   总被引:1,自引:0,他引:1  
油蒿群落在鄂尔多斯高原植被类型中占据绝对优势,针对油蒿群落的研究中采用的基本样方大小不一.以鄂尔多斯高原油蒿群落为研究对象,通过野外调查,采用群落种—面积曲线方程进行拟合分析,确定抽样到60%,70%,75%,80%,85%和90%以上的物种数,相对应地要求样方面积为4.77~6.34,10.45~12.62,15.48~18.52,20.20~26.50,25.95~37.12,34.06~50.99 m2.结果表明:在样方面积大于4 m×4 m时,植被盖度的变化较小,趋于稳定.综合种—面积曲线的结果和盖度变化情况,考虑到取样的效率,认为样方面积确定为16 m2(4m×4m)是比较合适的,此样方能够包括油蒿群落中全部的常见种,也能较准确地反映群落覆盖地表的状况,在保证样方代表性的同时也能最大限度地控制工作量.  相似文献   

11.
基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析   总被引:4,自引:1,他引:3  
作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km~2,其中大豆的种植面积最大,占作物种植面积的51.24%。基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R~2=0.823 7,均方根误差135.45 g/m~2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8 659、2 846 kg/hm~2,总产量分别为16.93×10~8、6.27×10~8 kg。利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考。  相似文献   

12.
基于作物及遥感同化模型的小麦产量估测   总被引:5,自引:3,他引:2  
为提高陕西省关中平原冬小麦的估产精度,该文通过粒子滤波算法同化Landsat遥感数据反演的状态量叶面积指数(leaf area index,LAI)、土壤含水量(0~20 cm)、地上干生物量数据和CERES-Wheat模型模拟的状态量数据,分析小麦不同生育期的LAI、土壤含水量及生物量同化值和实测单产的线性相关性,以构建同化估产模型。结果表明,在返青期土壤含水量同化值和实测单产的相关性高于LAI、生物量同化值和实测单产的相关性,选择土壤含水量作为最优变量;在拔节期和抽穗-灌浆期同时选择LAI、土壤含水量及生物量作为最优变量;在乳熟期选择生物量作为最优变量。在小麦各生育时期同化最优变量的估产精度(R2=0.85)高于同时同化LAI、土壤含水量及生物量的估产精度,同时同化LAI、土壤含水量及生物量的估产精度高于同时同化LAI和土壤含水量(或LAI和地上干生物量、或土壤含水量和地上干生物量)的估产精度,表明在作物不同生育时期同化与产量相关性较大的变量对提高估产精度有重要作用。  相似文献   

13.
为了对田块尺度农作物地上干生物量进行估测,提高大豆地上干生物量反演模型的精度和稳定性,该文获取了研究区地块2016年7、8月份的SPOT-6多光谱数据,并测定不同地形坡位的大豆地上干生物量,以归一化植被指数(normalized difference vegetation index,NDVI)和增强型植被指数(enhanced vegetation index,EVI)为输入量,建立田块尺度大豆地上干生物量一元线性回归模型;加入与地上干生物量相关的地形因子,建立逐步多元回归和神经网络多层感知反演模型.结果表明:1)使用传统的单一植被指数模型预测大豆地上干生物量有可行性,但模型精度和稳定性不高.2)加入地形因子(海拔、坡度、坡向)的神经网络多层感知器模型,有较高的精度和可靠性,模型准确度达到90.4%,验证结果显示预估精度为96.2%.反演结果与地块的地形、地貌、气温和降水特征基本吻合,反映了作物长势的空间分布特征,可以为田块尺度大豆地上干生物量动态监测和精准管理,提供借科学依据.  相似文献   

14.
基于无人机数码影像的冬小麦株高和生物量估算   总被引:4,自引:4,他引:0  
高效、快速地获取作物的株高和生物量信息,对农业生产有重要意义。该文利用2015年4月-6月获得了冬小麦拔节期、挑旗期和开花期的高清数码影像。首先基于无人机高清数码影像生成冬小麦的作物表面模型(crop surface model,CSM),利用CSM提取出冬小麦的株高(Hcsm),然后利用提取的21种数码影像图像指数,构建了拔节期、挑旗期和开花期混合的多生育期生物量估算模型,并进行单生育期和多生育期模型对比分析;最后选择逐步回归(stepwise regression,SWR)、偏最小二乘(partial least square,PLSR)、随机森林(random forest,RF)3种建模方法对多生育期估算模型进行对比,挑选出冬小麦生物量估算的最优模型。结果表明,提取的Hcsm和实测株高(H)具有高度拟合性(R2=0.87,RMSE=6.45 cm,NRMSE=11.48%);与仅用数码影像图像指数构建的生物量估算模型相比(R2=0.721 2,RMSE=0.137 2 kg/m2,NRMSE=26.25%),数码影像图像指数融入H和Hcsm所得模型效果更佳,其中融入Hcsm的模型精度和稳定性(R2=0.819 1,RMSE=0.110 6 kg/m2,NRMSE=21.15%)要优于加入株高H所构建的估算模型(R2=0.794 1,RMSE=0.117 9 kg/m2,NRMSE=22.56%);SWR生物量估算模型(R2=0.7212)效果优于PLSR(R2=0.677 4)和RF(R2=0.657 1)生物量估算模型。该研究为冬小麦生长状况高效、快速监测提供参考。  相似文献   

15.
基于CASA模型的区域冬小麦生物量遥感估算   总被引:3,自引:2,他引:1  
该文对原始CASA(carnegie-ames-stanford-approach)模型中归一化植被指数(normalized difference vegetation index,NDVI)最值提取方法及光合有效辐射吸收比(fraction of absorbed photosynthetically active radiation,FPAR)的算法进行了深入分析,并通过综合分析大量国内外文献,更加科学合理的确定了最大光能利用率的取值,最终确立了适合该研究区的CASA模型。该文以河北省邯郸市3个县域冬小麦为研究对象,以HJ-1A/B星遥感数据产品为数据支撑,采用CASA模型对研究区2014年冬小麦生物量进行了估算和精度验证,结果表明:研究区冬小麦生物量平均值为1 485 g/m~2,50%以上区域在1 500~2 000 g/m~2之间。冬小麦实测生物量与预测生物量相关性达到显著水平,R~2为0.811 5。经过50组数据分析对比,平均相对误差为2.13%,其中,最大值为11.54%,最小值为0.33%;平均预测生物量为1 807.54 g/m~2,与平均实测生物量1 720.74 g/m~2相比,绝对误差为86.80 g/m~2,为估算区域冬小麦产量提供理论支撑。  相似文献   

16.
冬小麦鲜生物量估算敏感波段中心及波宽优选   总被引:1,自引:2,他引:1  
开展高光谱作物生物量估算敏感波段中心和最优波段宽度筛选对提高作物生物量估算精度具有重要意义。该文以冬小麦为研究对象,利用小麦关键生育期内350~1000 nm 冠层高光谱数据和实测地上鲜生物量,研究任意两波段构建的窄波段归一化植被指数 N-NDVI(narrow band normalized difference vegetation index)与冬小麦地上鲜生物量间的相关关系,构建拟合精度 R2二维图,并以 R2极大值区域重心作为高光谱估算鲜生物量敏感波段中心。通过对敏感波段中心进行波段扩展和相应生物量估算验证,最终确定敏感波段最佳波段宽度。在此基础上,开展基于敏感波段最优波段宽度下冬小麦地上鲜生物量估算和精度验证。结果表明,在 N-NDVI 与冬小麦鲜生物量间拟合 R2≥0.65的二维区域内,确定了401 nm/692 nm、579 nm/698 nm、732 nm/773 nm、725 nm/860 nm、727 nm/977 nm 5个鲜生物量估算的高光谱敏感波段中心;在高光谱估算生物量归一化均方根误差 NRMSE≤10%、相对误差 RE≤10%条件下,上述5个敏感波段中心的最优波段宽度分别为±21 nm、±5 nm、±51 nm、±40 nm 和±23 nm。通过与实测鲜生物量数据对比,利用上述敏感波段中心最优波段宽度进行作物生物量估算,精度在 P<0.01水平上均达到极显著水平,且 RE、NRMSE 分别在8.15%~9.14%、8.69%~9.65%范围内。可见,利用作物冠层高光谱进行冬小麦地上鲜生物量估算时,N-NDVI 与鲜生物量间拟合 R2极大值区域重心的作物高光谱敏感波段筛选和最优波段宽度确定具有一定可行性,为开展作物高光谱数据波段优选提供了新思路,也为多光谱遥感波段设置及遥感数据应用潜力评价提供一定依据。  相似文献   

17.
凯氏定氮法(Kjeldahl)与杜马斯燃烧法(Dumas)是测定农业生物质总氮含量的主要检测手段,但二者的测定结果数值存在差异。该研究获取农作物秸秆样本(水稻、小麦、玉米、油菜和棉花)共计1 179个,分别采用Kjeldahl和Dumas方法测定总氮(TKN和TCN,total Kjeldahl nitrogen and total combustion nitroyen)含量,通过多种统计与分析方法,系统分析比较了不同农作物秸秆总氮含量及其分布的异同和相关关系。结果表明:不同农作物秸秆氮含量分布均呈非正态分布,建议采用中位数统计;5种秸秆总体的TKN质量分数为(7.12±1.87) g/kg,TCN质量分数为(8.00±2.13) g/kg,TKN含量显著小于TCN含量;小麦和棉花秸秆的TKN含量和TCN含量与其他秸秆间均存在显著差异(P <0.05);不同生物质TKN含量与TCN含量关系不同,建议采用最小中位数二乘法进行拟合分析。研究结果可为农作物秸秆科学利用提供数据及方法互通性支撑。  相似文献   

18.
采用SEPLS_ELM模型估算夏玉米地上部生物量和叶面积指数   总被引:2,自引:2,他引:0  
利用高光谱数据进行作物生长状况监测具有无损和高效的特点,是现代精准农业发展的必要手段。该研究以连续3 a(2018-2020)不同水氮供应下夏玉米营养生长期采集的212份植物样品(地上部生物量和叶面积指数)和高光谱实测数据为数据源,分别采用偏最小二乘回归(Partial Least Squares Regression,PLS)、极限学习机(Extreme Learning Machine,ELM)、随机森林(Random Forest,RF)和基于PLS叠加策略的叠加极限学习机算法(Stacked Ensemble Extreme Learning Machine based on the PLS,SEPLS_ELM)构建了夏玉米营养生长期地上部生物量和叶面积指数估算模型。结果表明:基于PLS和ELM构建的夏玉米地上部生物量和叶面积指数估算模型的精度均较低,前者验证集R2低于0.85、均方根误差高于550 kg/hm2,后者R2低于0.90、均方根误差高于0.40 cm2/cm2。相比之下,基于RF和SEPLS_ELM构建的夏玉米营养生长期地上部生物量和叶面积指数估算模型均有着较高的估算精度,SEPLS_ELM模型表现尤为突出,其地上部生物量和叶面积指数估算模型验证集的R2分别为0.955和0.969,均方根误差分别为307.3 kg/hm2和0.24 cm2/cm2,表明叠加集成模型能够充分利用高光谱数据并提高作物地上部生物量和叶面积指数估算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号