首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
肿瘤发生、发展的生物学本质是细胞内遗传调控和表观遗传调控的紊乱,人类基因组计划的完成和人类表观基因组计划的实施将表观遗传学的研究推向了新的高度,DNA甲基化作为表观遗传调控的重要分子基础更是成为新的研究热点。伴随着甲基化研究的深入.DNA甲基化的分析技术也不断推陈出新.这些新技术的出现极大地提高了肿瘤甲基化研究的效率和深度。  相似文献   

2.
癌症的表观遗传决定因素   总被引:1,自引:0,他引:1  
癌症发生的原因从根本上说是基因表达系统的紊乱,即可继承的基因发生调控错误,这些基因包括癌基因、抑癌基因以及与DNA修复有关的基因等。癌症发生中涉及的表观遗传现象包括DNA甲基化异常、组蛋白的修饰及它们相互作用造成的非编码RNA异常表达和染色体重塑等,这些表现遗传的变化使某些基因出现异常激活或沉默,从而使细胞的生长进入不受控制状态。从癌细胞中发生的表观遗传变化入手,阐述这些变化在在癌症发生中的作用和机理,并探讨应用表观遗传学原理治疗癌症的前景。  相似文献   

3.
水稻是最重要的粮食作物之一,也是重要的单子叶模式植物.近年来,水稻表观遗传调控机制的研究取得较大进展.越来越多的研究表明,水稻表观遗传修饰在调节基因的表达继而影响生长发育、作物种质改良以及胁迫应答等方面发挥重要作用.本文对表观遗传调控的作用机制以及在水稻中的研究进展进行综述,并对其发展前景进行展望.  相似文献   

4.
表观遗传学是研究基因核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象较多,已有DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控、基因组印记、基因沉默、母体效应、核仁显性、休眠转座子激活等。在集约化的水产养殖模式中,养殖密度提高,投喂过量等均会产生刺激鱼类生长的环境因素。已有文献报道,环境胁迫因素刺激可影响鱼类表观遗传修饰,但并未涉及遗传信息的变化,所以在一定范围内可以解释为表型变化。本研究围绕环境胁迫因素对鱼类表观遗传产生的影响进行了综述,为进一步阐释环境因素与基因互作关系提供了参考。  相似文献   

5.
DNA甲基化作用的生物学功能   总被引:4,自引:0,他引:4  
DNA甲基化作为DNA序列的修饰方式,是一种重要的表观遗传机制,能够在不改变DNA分子一级结构的情况下调节基因组的功能,在生命活动中起着重要的作用。其功能主要可归结为以下4个方面:维持基因组遗传物质的稳定性,调控基因的表达,建立表观遗传模式以及参与细胞及胚胎的形态建成。  相似文献   

6.
动物骨骼肌约占体重的50%左右,因此被认为是机体最大的器官。骨骼肌的发育是一个严格调控的过程。在胚胎发育早期,一部分具有肌肉发育潜能的干细胞在一系列不同基因的精确调控下激活、增殖,经融合后形成有功能的骨骼肌。骨骼肌细胞的增殖、分化等过程是诸多转录因子协同作用的结果,这些因子包括Pax3/Pax7、MyoD、Myf5、Myogenin和MRF4等。表观遗传是指不改变DNA序列的情况下对目的基因表达的调控。近年来的研究表明动物骨骼肌的发育也受到了表观遗产的调控。综述了当前关于表观遗传,包括DNA、组蛋白以及miRNA等水平对骨骼肌发育调控的最新研究进展。  相似文献   

7.
综述表观遗传对植物开花过程中基因表达的调控。目前,对表观遗传的研究越来越深入,对植物开花过程中的基因调控过程也有很大程度上的把握,但二者的结合即表观遗传对植物开花过程中基因表达的调控还处于初级的探索阶段。因此,对这方面进行深入的研究有助于加深对植物生命周期调控机制的理解,并且对农业生产具有较大的指导意义。  相似文献   

8.
表观遗传学在木本植物中的研究策略及应用   总被引:1,自引:0,他引:1  
表观遗传学可以解释DNA序列不改变而遗传功能改变,环境诱导的表型性状具有可遗传性的问题。介绍了表观遗传学的起源与发展,DNA甲基化(DNA methylation)、组蛋白密码(histone code)、基因组印迹(genomic imprinting)等多种表观遗传机制,并对目前木本植物的表观遗传学研究进行简要综述。由于木本植物自身基因组庞大,许多物种的全基因序列未知等原因,其表观遗传学研究滞后于拟南芥、水稻等草本模式植物。目前,仅杨树(Populus trichocarpa×P. deltoides)、辐射松(Pinus radiate D.Don.)、马占相思(Acacia mangium Willd.)等树种的基因组DNA甲基化研究取得初步进展,大多数树种尚未开展此部分研究。MSAP等木本植物上可行性技术的广泛应用,将为木本植物的表观遗传研究带来新的契机,并揭示出木本植物所特有的基因调控等表观遗传现象。  相似文献   

9.
表观遗传是指在不涉及基因组DNA序列改变的情况下,基因功能发生了可逆的、可遗传的改变。研究表明,表观遗传调控在植物的生长发育及逆境胁迫应答反应中起着重要的作用。目前,表观遗传学研究主要集中在DNA甲基化、小RNA调控、组蛋白修饰、染色质重塑及基因组印迹等。与模式植物相比,橡胶树表观遗传的研究相对滞后,主要涉及DNA甲基化及miRNAs研究这2个方面。本文就橡胶树DNA甲基化及miRNAs的相关研究进行了简要综述,并对表观遗传在橡胶树中的研究前景提出展望。  相似文献   

10.
表观遗传学是指以不涉及到核苷酸序列的改变、但可以通过有丝分裂和减数分裂进行遗传的生物现象为内容的生命学科.它通过DNA的甲基化、组蛋白修饰、染色质重塑和非编码RNA调控4种方式来控制表观遗传的沉默.据此,对表观遗传学涉及的机制、改变的特征及表观遗传学的相关研究进展等方面问题进行综述.  相似文献   

11.
前沿动态     
表观遗传学研究获进展细胞需要持续不断的合成核糖体来保证蛋白质的合成。核糖体RNA由RNA聚合酶Ⅰ转录,转录水平主要由表观遗传机制来控制。这一机制能够高效快速地应答细胞分化、癌化、衰老等信号,来调整核糖体基因的表观遗传修饰状态,从而调控核糖体基因的表达和蛋白质合成水平,最终帮助完成细胞的各种生命活动。  相似文献   

12.
表观遗传学是遗传学的分支学科,研究非DNA序列改变所导致的可遗传的基因表达水平的变化。与肿瘤相关的表观基因改变主要是DNA甲基化和组蛋白修饰.该文分别从这两方面阐述了肿瘤相关基因的表观遗传学改变的研究进展。  相似文献   

13.
植物体细胞胚胎发生及其分子调控机制研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
植物的每个细胞都包含着该物种的全部遗传信息,具备发育成完整植株的遗传能力,这被称为植物细胞的全能性。体细胞胚胎(体胚)发生是指在没有受精的情况下,由体细胞或营养细胞发育成胚胎,是诱导植物细胞全能性的一种形式。体胚发生在种质资源保存、种苗生产、分子育种和植物基础研究等方面都有着广泛的应用,已成为重要的植物生物技术工具和研究平台。多年来的分子遗传学研究表明:体胚发生受到由众多转录因子、激素信号途径及表观遗传修饰等构成的复杂网络的调控。本研究概述了植物体胚发生的途径,并重点综述了体胚发生关键基因的功能与调控机制、体胚发生的表观遗传修饰以及体胚发生关键基因在基因工程中的应用。随着研究的深入和新技术的出现,体胚发生过程中涉及的代谢组分动态变化、转录调控、激素信号转导与表观遗传调控等复杂生物学过程有望得到更深入地阐释,将更进一步地解析植物体胚发生的分子调控机制。此外,利用体胚发生关键基因的功能与调控机制,开发更高效的体胚诱导和遗传转化方法,有望为更多植物的基因功能研究和遗传改良提供新的思路和技术。参81  相似文献   

14.
长链非编码RNA(IncRNA)是一类转录本长度超过200 nt的RNA分子,它们不编码蛋白,而是以RNA的形式在表观遗传调控、转录调控以及转录后调控等多种层面上调控基因的表达.对lncRNA在畜禽遗传育种中的研究进展进行了综述,并对IncRNA在畜禽育种中的应用进行了展望.  相似文献   

15.
白丽荣  时丽冉 《安徽农业科学》2007,35(20):6056-6057
表观遗传学是研究没有DNA序列变化的可遗传的基因表达的改变。遗传学和表观遗传学系统既相区别、彼此影响,又相辅相成,共同确保细胞的正常功能。表观遗传学信息的改变,可导致基因转录抑制、基因组印记、细胞凋亡、染色体灭活以及肿瘤发生等。  相似文献   

16.
朱金龙  李转见 《安徽农业科学》2014,(29):10152-10154,10164
长链非编码RNA(lncRNA)是一类转录本长度超过200 nt的RNA分子,它们不编码蛋白,而是以RNA的形式在表观遗传调控、转录调控以及转录后调控等多种层面上调控基因的表达。对lncRNA在畜禽遗传育种中的研究进展进行了综述,并对lncRNA在畜禽育种中的应用进行了展望。  相似文献   

17.
18.
表观遗传学的分子机制及其研究进展   总被引:1,自引:1,他引:1  
表观遗传学(epigenetics)是指不涉及DNA序列改变、可以通过有丝分裂和减数分裂进行遗传的基因表达变化的遗传学分支领域。目前研究主要集中在DNA甲基化、组蛋白密码、染色质重塑和非编码RNA调控等方面。副突变、亲代基因印记、性别相关性基因剂量补偿效应和转基因沉默等都是典型的表观遗传现象。相关研究有利于揭示生物生长发育、多倍体植物基因组进化、杂种优势以及人类疾病等许多生命现象的本质。  相似文献   

19.
肌肉发育相关LncRNA的研究进展   总被引:3,自引:1,他引:2  
生长发育性状是受遗传和环境因素共同作用和/或相互作用的复杂性状,尽管利用全基因组关联研究可分析基因组上全部基因,筛选出与某类性状关联的SNP,但很难综合评价某个基因对其确切的作用。寻找与生长发育相关的精准基因是育种研究的目标之一。长链非编码RNA(long noncoding RNA,LncRNA)在细胞增殖分化、个体发育、信号转导、干细胞维持、代谢等几乎所有重要生命活动中发挥关键的调控作用,在表观遗传水平、转录水平及转录后水平等方面具有控制基因表达的作用,与多种重大疾病的发生密切相关。LncRNA是一类长度大于200个nt,且不表现出蛋白质编码潜能的RNAs,通过多种机制发挥生物学功能,参与染色质修饰、X染色体沉默以及基因组印记、转录干扰、转录激活、核内运输等多种重要调控过程,涉及表观遗传调控、转录调控及转录后调控等多个层面。深入探讨LncRNA调控生肌因子进而调节肌肉发育分化的新路径,阐释哺乳动物生肌分子时间,寻找肌肉组织中与生长发育相关的新LncRNA分子,深入研究与生长发育密切相关的LncRNA分子及其靶基因的生物学功能,阐明 LncRNA 在肌肉生长发育的调控机制,是肌肉发育遗传育种的主要研究内容。本文就LncRNA在哺乳动物肌肉生长发育、细胞生长、分化、增殖中的作用进行综述。  相似文献   

20.
高等植物春化作用的分子基础及调控机制   总被引:1,自引:0,他引:1  
春化作用对控制高等植物开花具有重要的作用,它是一个由多基因相互作用并受环境因素(温度、光周期等)影响的复杂过程。双子叶植物拟南芥与单子叶植物谷物中春化关键基因是不同的。春化状态在有丝分裂中传递,在有性生殖的下一代中重建。综述了春化作用促进途径中春化相关基因的功能以及开花的表观遗传调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号