首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological indicators are taxa that are affected by, and indicate effects of, anthropogenic environmental stress or disturbance on ecosystems. There is evidence that some species of soil macrofauna (i.e. diameter >2 mm) constitute valuable biological indicators of certain types of soil perturbations. This study aims to determine which level of taxonomic resolution, (species, family or ecological group) is the best to identify indicator of soil disturbance. Macrofauna were sampled in a set of sites encompassing different land-use systems (e.g. forests, pastures, crops) and different levels of pollution. Indicator taxa were sought using the IndVal index proposed by Dufrêne and Legendre [Dufrêne, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecological Monographs 67, 345-366]. This approach is based on a hierarchical typology of sites. The index value changes along the typology and decreases (increases) for generalist (specialist) faunal units (species, families or ecological groups). Of the 327 morphospecies recorded, 19 were significantly associated with a site type or a group of sites (5.8%). Similarly, species were aggregated to form 59 families among which 17 (28.8%) displayed a significant indicator value. Gathering species into 28 broad ecological assemblages led to 14 indicator groups (50%). Beyond the simple proportion of units having significant association with a given level of the site typology, the proportion of specialist and generalist groups changed dramatically when the level of taxonomic resolution was altered. At the species level 84% of the indicator units were specialist, whereas this proportion decreased to 70 and 43% when families and ecological groups were considered. Because specialist groups are the most interesting type of indicators either in terms of conservation or for management purposes we come to the conclusion that the species level is the most accurate taxonomic level in bioindication studies although it requires a high amount of labour and operator knowledge and is time-consuming.  相似文献   

2.
We present here an indicator of soil quality that evaluates soil ecosystem services through a set of 5 subindicators, and further combines them into a single general Indicator of Soil Quality (GISQ). We used information derived from 54 properties commonly used to describe the multifaceted aspects of soil quality. The design and calculation of the indicators were based on sequences of multivariate analyses. Subindicators evaluated the physical quality, chemical fertility, organic matter stocks, aggregation and morphology of the upper 5 cm of soil and the biodiversity of soil macrofauna. A GISQ combined the different subindicators providing a global assessment of soil quality.Research was conducted in two hillside regions of Colombia and Nicaragua, with similar types of land use and socio-economic context. However, soil and climatic conditions differed significantly. In Nicaragua, soil quality was assessed at 61 points regularly distributed 200 m apart on a regular grid across the landscape. In Colombia, 8 plots representing different types of land use were arbitrarily chosen in the landscape and intensively sampled. Indicators that were designed in the Nicaragua site were further applied to the Colombian site to test for their applicability.In Nicaragua, coffee plantations, fallows, pastures and forest had the highest values of GISQ (1.00; 0.80; 0.78 and 0.77, respectively) while maize crops and eroded soils (0.19 and 0.10) had the lowest values. Examination of subindicator values allowed the separate evaluation of different aspects of soil quality: subindicators of organic matter, aggregation and morphology and biodiversity of macrofauna had the maximum values in coffee plantations (0.89; 0.72 and 0.56, respectively on average) while eroded soils had the lowest values for these indicators (0.10; 0.31 and 0.33, respectively).Indicator formulae derived from information gained at the Nicaraguan sites were not applicable to the Colombian situation and site-specific constants were calculated.This indicator allows the evaluation of soil quality and facilitates the identification of problem areas through the individual values of each subindicator. It allows monitoring of change through time and can guide the implementation of soil restoration technologies. Although GISQ formulae computed on a set of data were only valid at a regional scale, the methodology used to create these indices can be applied everywhere.  相似文献   

3.
Using pre-established trial sites on allophanic soils, we investigated the impacts of long to medium-term pastoral management practices, such as fertilisation and grazing intensity, on a range of soil biological and biochemical properties; hot water-extractable C (HWC), water-soluble C (WSC), hot-water extractable total carbohydrates, microbial biomass-C and N and mineralisable N. These properties were examined for their usefulness as soil quality indicators responding to changes in the rhizosphere caused by management practices. Adjacent cropping, market garden and native bush sites located on similar soil types were included to determine the changes in soil biological and biochemical properties resulting from changes in land use. The seasonal variability of HWC and its relationship with other labile fractions of soil organic matter was also examined.Microbial biomass-C, mineralisable N and extractable total carbohydrates showed promise in differentiating treatment and land use effects. However, HWC was one of the most sensitive and consistent indicators examined at 52 different sites. The impact of different land uses on the amounts of HWC in the same soil type was far greater than that was observed for the soil organic carbon. The average values of HWC for soil under different land use were: native (4000 μg C g−1 soil), sheep/beef pastures (3400), dairy pastures (3000), cropping (1000) and market gardening soils (850). HWC was also sensitive to differences within an ecosystem, e.g. effects of grazing intensities and effects of N or P fertilisers on pastures. The sheep and beef/cattle grazed pastures always had higher amounts of HWC than the intensively grazed dairy pastures. Nitrogen fertiliser application (200 and 400 kg N ha−1 yr−1) over the previous 5 yr had significant (P<0.001) negative impacts on HWC and other soil microbial properties. In contrast, long-term application of P fertilisers had a significant (P<0.001) positive effect on the HWC levels in pastoral soils. In the case of long-term P trials, HWC increased even though no increase in the total soil carbon pool was detected.HWC was positively correlated with soil microbial biomass-C (R2=0.84), microbial nitrogen (R2=0.72), mineralisable N (R2=0.86), and total carbohydrates (R2=0.88). All these correlations were significant at P<0.001 level of significance. The HWC was also positively correlated with WSC and total organic C. However, these correlations were poorer than those found for other soil parameters. Most of these measurements have been actively promoted as key indicators of soil quality. Given the strong correlations between HWC and other biochemical measurements, HWC could be used as an integrated measure of soil quality. When HWC is extracted, other pools of labile nutrients are also extracted along with C. Therefore it is suggested that decline in HWC would also indicate a decline in other labile organic pools of nutrients such as nitrogen, sulphur and phosphorus. About 40-50% of the C in the HWC extract was present as carbohydrates.  相似文献   

4.
In the Amazon basin, tropical rainforest is being slashed and burned at accelerated rates for annual crops over a couple of years, followed by forage grasses. Because of poor management, the productivity of established pastures declines in a few years so that grazing plots are abandoned and new areas are deforested. Previous studies in the region report higher bulk density in soils under pasture than in similar soils under forest. The objective of this study was to detect changes in the physical quality of the topsoil of nutrient-poor Typic Paleudults in the colonisation area of Guaviare, Colombian Amazonia, and analyse the effect of soil deterioration on pasture performance. Temporal variation of soil compaction under pasture was analysed by comparing natural forest taken as control and pasture plots of Brachiaria decumbens (Stapf) grouped into three age ranges (<3, 3–9, >9 years). Evidence of soil compaction through cattle trampling, after clearing the primary forest, included the formation of an Ap horizon with platy structure and dominant greyish or olive colours, reflecting impaired surface drainage, the increase of bulk density and penetration resistance, and the decrease of porosity and infiltration rate. From primary forest to pastures older than 9 years, bulk density of the 5–10 cm layer increase was 42% in fine-textured soils and 30% in coarse-textured soils. Penetration resistance ranged from 0.45 MPa under forest to 4.25 MPa in old pastures, with maximum values occurring at 3–12 cm depth in pastures older than 9 years. Average total soil porosity was 58–62% under forest and 46–49% under pasture. Basic infiltration dropped from 15 cm h−1 in the original forest conditions to less than 1 cm h−1 in old pastures. Crude protein content and dry matter yield of the forage grass steadily decreased over time. No clear relationship between declining protein content as a function of pasture age and changes in chemical soil properties was found, but there was a high negative correlation (r=−0.81) between protein content and bulk density, reflecting the effect of soil compaction on pasture performance. After about 9–10 years of use, established grass did no longer compete successfully with invading weeds and grazing plots were abandoned. As land is not yet a scarcity in this colonisation area, degraded pastures are seldom rehabilitated.  相似文献   

5.
This study describes the impact of the conversion of native Colombian savannahs into crops and pastures on: (1) the quantity and diversity of the bio-structures produced by soil ecosystem engineers and (2) soil structure. Bio-structure diversity decreased in all agroecosystems (12 types in the savannah, four to six in pastures and three in crops). Bio-structures were mostly earthworm casts in native savannah and pastures, and ant mounds in crops. Compared with the savannah (750 cm3 m–2), their volume increased in the old pasture (+48%) and decreased in recent pasture and crops (–65% to –97%). Soil structure was similar to savannah soil in the older pasture, but was sharply affected in annual crops. In contrast to crops, pastures appear to sustain soil structure and are also suitable for engineering activity.  相似文献   

6.
Grasslands are often characterized by small-scale spatial heterogeneity due to the juxtaposition of grass tufts and bare ground. Although the mechanisms generating plant spatial patterns have been widely studied, few studies concentrated on the consequences of these patterns on belowground macrofauna. Our objective was to analyze the impact of grass tuft (Brachiaria bryzantha cv. marandu) spatial distribution on soil macrofauna diversity in Amazonian pastures, at a small scale (less than 9 m2). Soil macrofauna was sampled among B. bryzantha tufts, which showed a variable spatial distribution ranging from dense to loose vegetation cover. The vegetation configuration explained 69% of the variation in total soil macrofauna density and 68% of the variation in total species richness. Soil macrofauna was mainly found in the upper 10 cm of soil and biodiversity decreased with increasing distances to the nearest grass tuft and increased with increasing vegetation cover. The size of the largest grass tuft and the micro-landscape connectivity also had a significant effect on biodiversity. The density and species richness of the three principal soil ecological engineers (earthworms, ants and termites) showed the best correlations with vegetation configuration. In addition, soil temperature significantly decreased near the plants, while soil water content was not influenced by the grass tufts. We conclude that soil macrofauna diversity is low in pastures except close to the grass tufts, which can thus be considered as biodiversity hotspots. The spatial arrangement of B. bryzantha tussocks influences soil macrofauna biodiversity by modifying soil properties in their vicinity. The possible mechanisms by which these plants could affect soil macrofauna are discussed.  相似文献   

7.
Previous research has shown that β-glucosidase activity can detect soil management effects and has potential as a soil quality indicator, but mechanisms for this response are not well understood. A significant amount of hydrolytic enzyme activity comes from extracellular (abiontic) activity that is bound and protected by soil colloids. This study was conducted to determine how management affects the kinetics of this enzyme (Km, substrate affinity, and Vmax, maximum reaction velocity) and its degree of stabilization on soil colloids. Soils were sampled from three sites in Oregon, with a paired comparison within each site of a native, unmanaged soil, and a matching soil under agricultural production (>50 years). Microwave radiation (MW) stress was used to denature the β-glucosidase fraction associated with viable microorganisms in these soils as an estimate of abiontic activity. Total activity and Vmax were decreased by both management and MW. The results showed that β-glucosidase activity is sensitive to soil management on a variety of soils and environments (135 vs. 190, 80 vs. 111 and 80 vs. 134 μg PNP g−1 h−1 for managed and unmanaged treatments, respectively, at the three study sites in Oregon). The evidence suggests that this sensitivity to management is not (or minimally) due to differences in isoenzymes (Km generally was unaffected) but rather due to an overall reduction in the amount of enzyme present (Vmax decreased) and that this reduction in activity is reflected more from the activity of enzymes in the stabilized fraction than that associated with viable microbial population. Although β-glucosidase activity after MW irradiation appears to be limited as a soil quality indicator, it maybe useful as research tool to separate abiontic from microbial activity ‘biomass’ β-glucosidase activity correlated with microbial biomass C (r=0.42, P<0.05) but MW irradiated, abiontic, activity did not (r=−0.20NS).  相似文献   

8.
Soil microbial biomass plays important roles in nutrient cycling, plant-pathogen suppression, decomposition of residues and degradation of pollutants; therefore, it is often regarded as a good indicator of soil quality. We reviewed more than a hundred studies in which microbial biomass-C (MB-C), microbial quotient (MB-C/TSOC, total soil organic carbon) and metabolic quotient (qCO2) were evaluated with the objective of understanding MB-C responses to various soil-management practices in Brazilian ecosystems. These practices included tillage systems, crop rotations, pastures, organic farming, inputs of industrial residues and urban sewage sludge, applications of agrochemicals and burning. With a meta-analysis of 233 data points, we confirmed the benefits of no-tillage in preserving MB-C and reducing qCO2 in comparison to conventional tillage. A large number of studies described increases in MB-C and MB-C/TSOC due to permanent organic farming, also benefits from crop rotations particularly with several species involved, whereas application of agrochemicals and burning severely disturbed soil microbial communities. The MB-C decreased in overgrazed pastures, but increased in pastures rotated with well-managed crops. Responses of MB-C, MB-C/TSOC and qCO2 to amendment with organic industrial residues varied with residue type, dose applied and soil texture. In conclusion, MB-C and related parameters were, indeed, useful indicators of soil quality in various Brazilian ecosystems. However, direct relationships between MB-C and nutrient-cycling dynamics, microbial diversity and functionality are still unclear. Further studies are needed to develop strategies to maximize beneficial effects of microbial communities on soil fertility and crop productivity.  相似文献   

9.
The main change in soil use in Amazonia is, after slash and burn deforestation followed by annual crops, the establishment of pastures. This conversion of forest to pasture induces changes in the carbon cycle, modifies soil organic matter content and quality and affects biological activity responsible for numerous biochemical and biological processes essential to ecosystem functioning. The aim of this study was to assess changes in microbial biomass and activity in fallow and pasture soils after forest clearing. The study was performed in smallholder settlements of eastern Brazilian Amazonia. Soil samples from depths of 0–2, 2–5 and 5–10 cm were gathered in native forest, fallow land 8–10 yr old and pastures with ages of 1–2, 5–7 and 10–12 yr. Once fallow began, soil microbial biomass and its activity showed little change. In contrast, conversion to pasture modified soil microbial functioning significantly. Microbial biomass and its basal respiration decreased markedly after pasture establishment and continued to decrease with pasture age. The increase in metabolic quotient in the first years of pasture indicated a disturbance in soil functioning. Our study confirms that microbial biomass is a sensitive indicator of soil disturbance caused by land‐use change.  相似文献   

10.
This work investigated the effects of land cover and land-use change (LUC) on the ability of a soil to store carbon (C) and reduce carbon dioxide (CO2) emissions, in a Mediterranean area. Using a paired-site approach, we estimated the effect of land-cover change on the C stock from 1972 to 2008 in a natural reserve (Grotta di Santa Ninfa) in western Sicily. We selected 15 paired sites representative of five LUCs. We studied the effect of land use on soil organic C (SOC) content in bulk soil and in different particle-size fractions (2000-1000 μm, 1000-500 μm, 500-250 μm, 250-63 μm, 63-25 μm, and < 25 μm). Laboratory incubation of the soil samples was conducted to measure CO2 evolution in bulk soil collected at two different depths from each paired site. We found that the conversion of natural vegetation to orchards (vineyards and olive groves) resulted in SOC decreases ranging from 27% to 50%. The conversion from vineyards to arable land led to a 9% decrease in SOC, whereas the opposite caused a 105% gain. When arable land was replaced by Eucalyptus afforestation, a 40% increase in SOC was observed. SOC decline occurred mainly in coarser soil fractions, whereas the finest fractions were not influenced by land use. We calculated an overall SOC reduction of 63% in the study area, corresponding to a 58 Mg ha− 1 SOC loss in less than 30 years. Our results indicate that land-use conversion, vegetation type, and management practices that control the biogeochemical and physical properties of soil could help reduce CO2 emissions and sequester SOC.  相似文献   

11.
Little work has been done to quantify annual soil CO2 effluxes in the High Arctic region because of the difficulty in taking winter measurements. Since the effects of climate change are expected to be higher in Arctic than in temperate ecosystems, it is important that summer measurements are extended to cover the entire year. This study evaluates the quantity and quality of soil organic C (SOC) and seasonal controls of soil CO2 effluxes in three soils under three dominating types of vegetation (Dryas, Cassiope, and Salix) at Svalbard. Measurements included soil CO2 effluxes in the field and the laboratory, temperature, water content, and snow thickness. About 90% of the variation in soil respiration throughout 1 year was due to near-surface soil temperatures which ranged from −12 to +12 °C. Total annual soil CO2 effluxes varied from 103 g C m−2 at soils under Cassiope, 152 g C m−2 under Dryas sites, and 176 g C m−2 under Salix, with 20%, 14%, and 30%, respectively, being released during a 6-month winter period. The sensitivity of soil respiration with respect to soil temperature was the same year round and differences in winter CO2 effluxes at the three vegetation types were mainly related to subsurface soil temperatures controlled by snow depth. The quantity and quality of soil organic matter varied under the different vegetation types. Soils under Salix had the largest and most labile pool of SOC and were characterized by a long period of snow cover. In contrast, soils under Cassiope were more nutrient-poor, more acidic and held the smallest amount of total and labile SOC, whereas soils under Dryas remained snow-free most of the winter and therefore had the coldest winter conditions. Thus, winter soil respiration rates under Dryas and Cassiope were significantly lower than those under Salix; under Dryas this was mainly due to snow depth, under Cassiope this was a combination of snow depth and poor litter quality. It is concluded that winter respiration is highly variable across Arctic landscapes and depends on the spatial distribution of snow, which acts as a direct control on soil temperatures and indirect on vegetation types and thereby, the amount and quality of soil organic matter, which serve as additional important drivers of soil respiration.  相似文献   

12.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

13.
Long-term diversity-disturbance responses of soil bacterial communities to copper were determined from field-soils (Spalding; South Australia) exposed to Cu in doses ranging from 0 through to 4012 mg Cu kg−1 soil. Nearly 6 years after application of Cu, the structure of the total bacterial community showed change over the Cu gradient (PCR-DGGE profiling). 16S rRNA clone libraries, generated from unexposed and exposed (1003 mg Cu added kg−1 soil) treatments, had significantly different taxa composition. In particular, Acidobacteria were abundant in unexposed soil but were nearly absent from the Cu-exposed sample (P<0.05), which was dominated by Firmicute bacteria (P<0.05). Analysis of community profiles of Acidobacteria, Bacillus, Pseudomonas and Sphingomonas showed significant changes in structural composition with increasing soil Cu. The diversity (Simpsons index) of the Acidobacteria community was more sensitive to increasing concentrations of CaCl-extractable soil Cu (CuExt) than other groups, with decline in diversity occurring at 0.13 CuExt mg kg−1 soil. In contrast, diversity in the Bacillus community increased until 10.4 CuExt mg kg−1 soil, showing that this group was 2 orders of magnitude more resistant to Cu than Acidobacteria. Sphingomonas was the most resistant to Cu; however, this group along with Pseudomonas represented only a small percentage of total soil bacteria. Changes in bacterial community structure, but not diversity, were concomitant with a decrease in catabolic function (BioLog). Reduction in function followed a dose-response pattern with CuExt levels (R2=0.86). The EC50 for functional loss was 0.21 CuExt mg kg−1 soil, which coincided with loss of Acidobacteria diversity. The microbial responses were confirmed as being due to Cu and not shifts in soil pH (from use of CuSO4) as parallel Zn-based field plots (ZnSO4) were dissimilar. Changes in the diversity of most bacterial groups with soil Cu followed a unimodal response - i.e. diversity initially increased with Cu addition until a critical value was reached, whereupon it sharply decreased. These responses are indicative of the intermediate-disturbance-hypothesis, a macroecological theory that has not been widely tested in environmental microbial ecosystems.  相似文献   

14.
More than 200,000 ha of short rotation Eucalyptus globulus plantations have been established in south-western Australia to supply wood for the pulp and paper industries. Sustaining the productivity of these tree crops over successive rotations will depend in part on maintenance of soil fertility, especially soil nitrogen (N) supply. We investigated the impact of four alternative strategies for management of harvest residues on soil N dynamics in recently logged first rotation plantations. The experiments were conducted over 5 years following harvesting at two sites with contrasting soils—a coarse textured grey sand over laterite (Podzol) with low natural fertility and a relatively fertile red earth soil (Ferralsol). At the grey sand site, 31 t ha−1 of residues containing 219 kg N ha−1 were deposited following harvest while at the red earth site the equivalent figures were 51 t ha−1 of residues and 347 kg N ha−1. Experimental treatments applied included residues burned, removed, retained and retained with double the amount of residues. The impact of treatments on soil nitrogen supply was investigated by incubating intact soil cores in the field to determine rates of net N mineralization. Additionally, the effect of treatments on soil moisture and temperature, the resident pool of soil mineral N and the amount of N potentially available for mineralization was assessed. The mulching effect of retained residues resulted in higher soil moisture where residues had been retained and a trend for soil on these treatments to dry out more slowly with the onset of the dry summer season, especially in the first year following harvest. Diurnal variations in soil temperature were moderated and average soil temperatures were reduced during summer where residues were retained. Concentrations of mineral N in soil were high in the 2 years following harvest at both sites and declined as newly established seedlings developed. At the more fertile site, where mineral N occurred predominantly as nitrate, retention of residues resulted in lower pools of soil mineral N following harvest. The effect of residue treatments on soil mineral N pools was less marked at the grey sand site. Concentrations of potentially mineralizable soil N and the amounts of N mineralized annually were greater where residues were retained at both sites. The results indicate that retention of harvest residues will favour the conservation of N following logging. However, accumulation of soil mineral N following harvesting due to reduced plant uptake will result in leaching of N early in the rotation that is largely independent of residue management. Retaining harvest residues will contribute to enhanced N supply for the next tree crop through mineralization in the long term. However, on some sites, additions of nitrogenous fertilizers will still be required to maximise the rate of tree growth.  相似文献   

15.
Communities of resident rhizobia capable of effective nodulation of pulse crops were found to vary considerably over a range of soil environments. These populations from soils at 50 sites in Southern Australia were evaluated for nitrogen fixing effectiveness in association with Pisum sativum, Vicia faba, Lens culinaris, Vicia sativa, Cicer arietinum and Lupinus angustifolius. The values for nitrogen fixing effectiveness could be related to soil pH as determined by soil type and location. It was found that 33% of paddocks had sufficient resident populations of Rhizobium leguminosarum bv viciae for effective nodulation of faba bean, 54% for lentils, 55% for field pea and 66% for the effective nodulation of the vetch host plant. Mesorhizobium cicer populations were very low with only 7% of paddocks surveyed having sufficient resident populations for effective nodulation. Low resident rhizobial populations (<10 rhizobia g−1 soil) of R. leguminosarum bv viciae and M. cicer were found in acid soil conditions. In contrast, Bradyrhizobium populations increased as soil pH decreased. Inoculation increased faba bean yields from 0.34 to 4.4 t ha−1 and from 0.47 to 2.37 t ha−1 for chickpeas on acid soils. On alkaline soils, where resident populations were large there was no consistent response to inoculation. Observations at experimental field sites confirmed the findings from the survey data, stressing the importance of rhizobial inoculation, especially on the acid soils in south-eastern Australia.  相似文献   

16.
This study focuses on spatial heterogeneity in the soil microbial biomass (SMB) of typical climax beech (Fagus crenata) at the stand scale in forest ecosystems of the cold-temperate mountain zones of Japan. Three beech-dominated sites were selected along an altitudinal gradient and grid sampling was used to collect soil samples at each site. The highest average SMB density was observed at the site 1500 m a.s.l. (44.9 gC m−2), the lowest was recorded at the site 700 m a.s.l. (18.9 gC m−2); the average SMB density at the 550 m site (36.5 gC m−2) was close to the overall median of all three sites. Geostatistics, which is specifically designed to take spatial autocorrelation into account, was then used to analyze the data collected. All sites generally exhibited stand-scale spatial autocorrelation at a lag distance of 10-18 m in addition to the small-scale spatial dependence noted at <3.5 m at the 550 m site. Correlation analysis with an emphasis on spatial dependency showed SMB to be significantly correlated with bulk density at the 550 and 1500 m sites, dissolved organic carbon (DOC) at the 700 and 1500 m sites, and nitrogen (N) at the 550 and 700 m sites. However, no soil parameter showed a significant correlation with SMB at every site, and some variables were also differently correlated (negative or positive) with SMB at different sites. This suggests that the factors controlling the spatial distribution of SMB are very complex and responsive to local in situ conditions. SMB regression models were generated from both the ordinary least-squares (OLS) and generalized least-squares (GLS) models. GLS performance was only superior to OLS when cross-variograms were accurately fitted. Geostatistics is preferable, however, since these techniques take the spatial non-stationarity of samples into account. In addition, the sampling numbers for given minimum detectable differences (MDDs) are provided for each site for future SMB monitoring.  相似文献   

17.
Selective erosion and transport of silt and clay particles from watershed soil surfaces leads to enrichment of suspended sediments by size fractions that are the most effective scavengers of chemical pollutants. Thus, preferential transport of highly reactive size fractions represents a major problem relative to sediment/chemical transport in watersheds, and offsite water quality. The objective of this research was to develop an approach to identify sediment sources at a soil mapping unit scale for the purpose of designing site specific best management practices which affect greater reductions in runoff and erosion losses. Surface soil samples were collected along transects from each of the major 25 mapping units in six subwatersheds of the Walnut Gulch Experimental Watershed. Suspended sediments were collected from supercritical flumes at the mouth of each subwatershed. Laboratory analyses included basic soil/sediment physical and chemical properties, radioisotopes, and stable carbon isotopes, all by standard methods. Aggregation index (AI) values [100 · (1 − water dispersible clay / total clay)] were taken as an indicator of relative soil erodibility. Potential sediment yield index (PSYI) values were calculated by multiplying percent relative area for individual soil mapping units times (100 − AI). Particle size results indicated that suspended sediments were enriched in clay, relative to the watershed soils, by an average of 1.28. Clay enrichment ratios (ER) were significantly (P ≤ 0.01) and positively correlated with AI, an indication that these two parameters can be equated with erodibility and sediment yield. The PSYI values for the six subwatersheds ranged from 68.0 to 81.7. The stable carbon isotope data for the suspended sediments gave a C3 (shrubs) to C4 plant (grasses) ratio that ranged from 1.06 to 2.25, indicating greater erosion from the more highly erodible, shrub-dominated subwatersheds which also coincided with the highest PSYI values. Correlation coefficients determined individually for PSYI versus clay ER, C3/C4 plant ratios, and multivariate mixing model results were: 0.962 (P ≤ 0.01), 0.905 (P ≤ 0.01), and 0.816 (P ≤ 0.05), respectively. These statistically significant relationships support the accuracy of a potential sediment yield index approach for identifying suspended sediment sources at soil mapping unit scales.  相似文献   

18.
The concentration of glucosinolates (GSLs) and isothiocyanates (ITCs) was monitored in soil following the incorporation of pulverised high and low GSL varieties of rape (Brassica napus) and mustard (Brassica juncea) biofumigant crops. The concentration of both GSLs and ITCs in soil was highest immediately (30 min) after incorporation and they could be detected for up to 8 and 12 d, respectively. Irrigating with 18 mm of water over 3 h had no effect on either GSL or ITC concentrations. The amounts detected were generally related to the amount of GSL added in the incorporated plant tissue. Maximum total GSL concentration detected in the soil was 13.8 and 22.8 nmol g−1 for rape and mustard, respectively, representing 7% and 13% of the original GSL present in the incorporated tissues. The non-ITC liberating GSLs (predominately indolyl GSLs) were found at lower concentrations than ITC-liberating GSLs, but tended to persist longer in the soil. Maximum total ITC concentration was 21.6 nmol g−1 and 90.6 nmol g−1 for rape and mustard, respectively. Calculated ITC release efficiency was 26% and 56% for high GSL rape and mustard, respectively at the time of the highest ITC concentration measured. These are the first reported measurements of GSLs in soil following biofumigant incorporation. They indicate that a significant proportion of plant GSL can persist un-hydrolysed in the soil for several days following Brassica incorporation. Further investigations of plant treatment and incorporation methods to maximise ITC release are warranted.  相似文献   

19.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

20.
Recently, soil carbon sequestration in agro-ecosystems has been attracting significant interest as soil organic carbon (SOC) can potentially offset some atmospheric carbon dioxide. The objectives of this study were to use the RothC model to simulate soil carbon sequestration and determine the proportion of pasture production as carbon input for SOC sequestration under different pasture types and pasture management in a long term experiment established in 1992. There were two types of pastures, annual and perennial pastures, with or without application of limestone. Simulation results showed that with an initial setting for the stubble retention factor of 0.65 and root/shoot ratio of 0.5 for annual pasture and 1.0 for perennial pasture, RothC can adequately simulate SOC for both pasture types, especially annual pasture. Using an inverse modelling technique, the root/shoot ratio was determined as 0.49 and 0.57 for annual pasture and 0.72 and 0.76 for perennial pasture with and without limestone application, respectively. There was a large improvement in model performance for perennial pasture with and without limestone application. The root mean squared errors (RMSE) reduced from 3.19 and 2.99 t C ha−1 in the initial settings to 2.09 and 2.10 t C ha−1, while performance efficiency (PE) increased from 0.89 and 0.91 to the same value of 0.95 when the root/shoot ratio of 0.72 and 0.76 were used for limed and unlimed perennial pastures. However, there was little improvement for annual pasture as RMSE had little change and PE was the same. As the stubble retention factor and root/shoot ratio can be combined into one factor that measures an equivalent amount of total above-ground pasture production allocated for soil carbon input, the modelled results can be summarised as 1.2 times and 1.4 times the above-ground dry matter for annual and for perennial pasture, respectively, regardless of liming. Our results provide useful information for simulation of soil carbon sequestration under continuous pasture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号